
An Active Architecture for Managing Events in
Pervasive Computing Environments

Edwin Wong, Lisa Burnell, Charles Hannon

Department of Computer Science, Texas Christian University
Box 298850, Fort Worth, TX, 76129

{e.s.wong, l.burnell, c.hannon}@tcu.edu

Abstract
Many dramatizations have depicted a fully automated home
living environment, where actions and events are
understood or even anticipated. While the realization of
such environments requires innovations on many fronts, our
current research focuses on the development of an active
database subsystem to respond to events in a home. The
architecture implements the well-known event-condition-
action (ECA) paradigm within an active data layer that is
abstracted from the detection and processing of raw data
sources. Our goals in this work are to develop and analyze
the effectiveness of the active database system in a smart
home system being developed as part of a larger
collaborative effort. The knowledge encoded in the system
is based on significant domain modeling, including analysis
of inhabitant-device data collected from actual and
simulated home environments, and standard knowledge
acquisition techniques. The current system is composed of a
Java framework for event management, an underlying data
model to store transient and persistent data, and a JESS rule
base to represent condition and actions. Interaction between
the subsystems is maintained through an event manager
responsible for interpreting the semantics of event execution
and recognition.

Introduction
Smart home environments have the potential to enhance
home living whether through reducing cost and effort or
supporting the elderly or handicapped. While the
realization of such environments requires innovations on
many fronts, our focus here is on the analysis of event
types and the development of an active database subsystem
to capture and respond to events in a home. To date, the
application of such systems to smart homes has been
limited.

The Event-Condition-Action (ECA) paradigm in active
databases detects event patterns, evaluates conditions
under which the event occurs and selects appropriate
actions. A relational database trigger is perhaps the most
familiar use of the ECA paradigm. Rules are defined that
monitor specific data updates and take appropriate actions.
For instance, a bank database trigger might raise a flag
when the current funds available drop below a certain
value. In such a case, a withdrawal would constitute the

triggering event, the condition would consist of a
comparison of values and the action could be something as
simple as sending an alert to the bank manager.

Our system employs a Java control framework, a
relational database, and a rule base for representing
complex conditions and decisions. Active behavior is
based on the Event-Condition-Action model and is
implemented in JESS (Java Expert System Shell). A Java
event dispatcher is used to manage event information,
communicate with the rule base, and execute appropriate
actions when necessary. The event dispatcher takes
advantage of the Java Reflection API to reference objects,
fields and methods at runtime. Objects and methods can be
reflected (initiated) at runtime from within the rule base to
dynamically construct appropriate actions. Event
processing is performed independently of underlying
hardware. A simulator that currently supports a subset of
Smart Home events provides the input required to test the
system. SOAP and CORBA provide interfaces between
both Java and C++ components of the smart home system.

In this article, we report on the development of our
active database system that is one component of a
collaborative effort to create a distributed multi-agent
smart home. First, we discuss related work in smart homes
and active databases, and summarize the architecture of the
smart home within which our system fits. Next, the active
data model is presented, including event types,
representation, and persistence. Architecture and
implementation issues are described, followed by
conclusions and discussion of future work.

Related Work
Smart Homes
Smart home architectures typically adopt a layered
architecture approach, with the database separating lower-
level processing (e.g., sensors) from decision-making
components. Database implementations may be centralized
or distributed, and are often based on a relational or object-
relational model.

In the Microsoft Easy Living Project (Microsoft, 2002),
a world model database describes computing devices,
people and their personal preferences, services and the

Copyright © 2002, American Association for Artificial Intelligence
 (www.aaai.org). All rights reserved.

home geometry such as rooms and doorways. The database
serves as an abstraction layer between sensors and
applications that use data from sensors. The disadvantage
of the relational DBMS used is speed and the awkwardness
of representing some knowledge as relations.

Rule bases are common in intelligent environments. The
Intelligent Home Project (Lesser, et al, 1999) achieves
goals by analyzing the methods of achieving them and
taking the best action, based on a set of rules. Ambiente (i-
LAND, 2002) uses rules to allow a room to reconfigure
itself to the state that the user last had it in.

Active Databases
Active database capability most frequently uses triggers
that execute actions based on the Event-Condition-Action
(ECA) Model (Elmasri and Navathe, 2003). Events are
specified actions detected by the system that are tested for
specified conditions that, when true, trigger one or more
actions to be taken. In most relational DB systems, rules
are defined to detect certain data manipulation operations
such as inserts, updates and deletes. Object-oriented
database management systems (OODBMS) such as
Sentinel (Chakravarthy, 1997) consider any operations on
an object as a possible event. Snoop (Chakravarthy and
Mishra, 1993) defines an expressive language for
representing active capability, most prominently in
Sentinel. Ode (Gehani, 1992) is another active database
developed by AT&T Bell Laboratories.

Active database research has examined both integrated
solutions and adding an active layer that resides above
underlying data sources. Alert (Schreier, et al., 1991) is a
simple architecture that provides active capabilities to SQL
queries. ECAAgent (Li and Chhakravarthy, 1999) provides
a seamless approach that emphasizes the ECA paradigm.
Finally, (Desari, 1999) reports on an event detection
framework on which our work is based.

While most research concentrates on centralized models
with data and events in a single domain, complex
applications such as smart homes can benefit from a
distributed architecture. The Global Event Detector (GED)
(Chakravarthy and Liao, 2001) detects events in a

distributed environment through a client/server
architecture that minimizes message communication and
allows for event registration and notification. GED extends
the active capabilities of the Sentinel active OODBMS.
Other systems include SRI’s Open Agent Architecture
(OAA) (Martin, 1999) that supports cooperation of
software services within autonomous agents, actively
matching agents with user requests, and DeeDS (Andler,
1996) that implements active features in a real-time
distributed database system.

An active data layer in a smart home needs to not only
react, but also predict events and inhabitant behaviors.
Many of the rules and events in a home environment and
in active systems in general are dependent upon time. For
recording a favorite television show or starting the
sprinkler system, techniques from temporal databases
(Dittrich and Gatziu, 1993; Ramamritham, 1996) can be
employed.

Smart Home Architecture
The smart home effort for which we are exploring active

DB issues is focused on developing a distributed, multi-
agent, adaptable home environment (Figure 1) (Cook,
2001). Sensors monitor the environment and, if necessary,
transmit data to other agents through the Communication
layer. The data is recorded in the Information layer,
learned concepts and predictions are updated as needed,
and the Decision layer is alerted of the presence of new
data. During action execution, information flows top
down. The Decision layer selects an action and relates the
decision to the Information layer to update the database
and send a message to the Communication layer that routes
the action to the appropriate effector to execute. If the
effector is actually another agent, the agent receives the
command as perceived information and must decide upon
the best method of executing the desired action. A
specialized interface agent provides interaction capabilities
with users and with external resources such as the Internet.

Agent Architecture

Physical
 Sensors
 Actuators
 Networks
 Agents

Communication
 Routing
 Multimedia
 download

Information
 Data mining
 Action prediction
 Mobility prediction
 Active database

Decision
 MDP/Policy
 Reinforcement learning
 Multiagent systems/
 communication

Figure 1. Agent Architecture.

Example Scenario
The smart home needs to detect, predict and respond to
inhabitant behaviors. Consider an example in which an
inhabitant wakes up at 6:30, checks the weather on the
computer, showers, dresses, gets a cup of coffee while
watching local news, gets into the car, and leaves for work.
The following actions could be taken by the smart home:

• At 6:30, turn on the shower so water is warm by the
time inhabitant is done reading the weather.

• Start the coffee pot 5 minutes into inhabitant's shower
so coffee is fresh and ready by the time inhabitant is
done dressing.

• Turn on TV to local news as soon as the inhabitant
enters the kitchen.

• Turn off all lights in the house once inhabitant has left
for work and set the security system.

For this scenario, the active DB must receive
notification of a number of events and respond
appropriately. To predict future behaviors, inhabitant
behaviors must be recorded.

Knowledge acquisition and domain analysis of the
required events, conditions and actions has been performed
in three ways: 1) analysis of actual and simulated
inhabitant behaviors and device interactions, 2) interviews
and observations of typical inhabitant behavior patterns,
and 3) analysis of output from inhabitant behavior
predictors developed within the overall smart home
project. (Cook, et al, 2003).

The Active Database
The active database design is patterned after that described
by Li and Chakravarthy (1999) in which a mediator uses
ECA rules to interface with a standard DBMS. Such an
approach overcomes restrictions of trigger capabilities in
existing systems, such as lack of composite event
specification and restriction of a trigger to a single table. A
relational DBMS affords many built-in benefits for
maintenance, concurrency control, and transaction
management. The separation of active capability from the
underlying database system provides a number of benefits
including extensibility, scalability, and portability (Li and
Chakravarthy, 1999).

In this section we describe event types, data
representation, and storage, with further details of the
current version given in the implementation section. The
phrase “external agent” used in this section refers to smart
home agents within the complete smart home software that
interact with the active database system.

Events and Action Types
Typical home events can be categorized. Four key event
types are 1) data manipulation, 2) temporal, 3) exception,
and 4) behavioral. Data manipulation events correspond to
standard update queries in relational databases. For
example, in predicting television-viewing patterns by an

inhabitant, an external agent (e.g. a smart remote control)
would gather data such as channel, duration and genre of
what was viewed. Temporal events constitute events that
occur based on a specified pattern with time. This category
may include events that occur periodically within a
schedule, or events that occur at a specific time. For
example, inhabitants may want the living room
temperature set at 70 degrees at 7:00 a.m. when inhabitants
awaken every morning. In contrast, an event where
recording of a television show occurs at 8:00 p.m. on
Sunday, February 10, 2003 describes an instant event. The
first example relies on a specified schedule, while the
second event relies on recognizing a specific instance in
time. In the event of failures or unexpected behavior,
certain exception events are raised, and actions must be
carefully designed to handle these conditions. One
example of an exception event is a power failure. What
actions should the DBMS take when power is restored?
Finally, behavioral events include actions taken by a
particular inhabitant. Events in this category frequently
include events that require recording for interpretation by
the decision layer. For instance, the system may record
when the children arrive home from school, or when
dinner for a particular household is typically served.

Temporal and behavioral events and the associated
actions that should be taken have been our primary focus.
Critical issues are the ordering and timing of action
execution. Actions may be a single device change or a
composition of actions for which an order of execution
must be guaranteed. In either case, how long an action
takes to complete and whether it was successful must be
considered.

Persistent and Transient Data
The data and storage types are based on whether the data
needs to be retained over time. Persistent data such as
object location and name are maintained in a relational
database. Transient data regarding current state, including
sensor readings, on/off device status, and inhabitant
locations, is maintained in the knowledgebase, with
notifications sent to appropriately registered agents.
However, specific events that produce transient data may
have a useful purpose after a particular session has ended.
For example, an inhabitant turning the television on in the
late afternoon is useful for predicting future behaviors and
thus needs to persist.

Device and Inhabitant Representation
An entertainment class contains devices such as
televisions, VHS recorders, and DVD players that
generally allow direct control assuming a reliable physical
layer for transmitting, for example, IR signals, between the
software and these devices. JINI (Jini, 2003) and JavaTV
(JavaTV, 2003) could be used to support interaction with
this class of devices.

The inhabitant layer is perhaps the m
model, since human behaviors are not as e
and detected as electronic devices. Effort
minimized this challenge by modeling re
behaviors. A generic Person class defi
movement action and location manipulato
the person's location in the environm
inhabitants are technically physical objec
conform to the mappings of standard de
on/off functions), the Person class exten
PhyObject, primarily for use of extended at
id and location

The utilities class primarily consists of d
action detection. Sensors of varying types,
temperature and air are implemented. Activ
as motion, monitor pre-defined events and
when actions are detected. In contrast, p
remain in the background, collecting inform
status of the environment, and must b
checked.

Other classes contain basic devices use
categorization, and include kitchen applia
temperatures. For the most part these devic
actions such as changing state from on to of

Two interfaces are the Pollable an
interfaces respectively. The latter enforce
uniqueness, while the former provides a
device readings, which often appear as co
antecedents.

In the next section, we describe the i
including the persistence mechanism, event
mention future plans where appropriate.

Implementation
The architecture for event management (Fig
a layered approach relating to the two fun
Figure 2. Active Database Architecture.
ost difficult to
asily classified
s to date have
latively simple
nes a general
rs, which alter
ent. Although

ts, they do not
vices (e.g., no
ds the general
tributes such as

evices that aid
such as motion,
e sensors, such
 trigger alarms
assive sensors
ation about the
e periodically

d primarily for
nces, light and
es have simple
f.
d Identifyable

s ID and name
n interface for
nditions in rule

mplementation,
s and rules, and

ure 2) relies on
damental types

of data encountered. First, the event interface is
responsible for event processing, whether the input is
derived from sensors or software triggers. Furthermore, the
event interface resolves semantics of an event such as the
event type (composite/primitive), coupling mode and
execution mode (sequential, repetition, etc). Another
significant responsibility of the event interface is proper
management of Jess facts, retracting and updating when
necessary.

From the event interface, data moves toward the active
layer, which maintains object and environment status data,
evaluates Jess rules and dispatches additional events
accordingly. Operations from the active layer not only
encompass internal data manipulation events, but also
external environment operations such as switching off
lights.

Below the active layer resides the persistence layer,
which storages long-term data. Any updates such as
logging of a television may be pre-specified and executed,
or may be a single data manipulation operation to long-
term data such as location.

The active layer is implemented in Java and Jess and the
persistent layer in Postgres. Java supports multi-platform
development and deployment, including handheld (Java
ME) and entertainment (JavaTV) devices. Jess provides
the rules to express conditions and actions, and is
expressly designed to integrate with Java. Postgres is
robust, readily available, and supports object extensions to
base relational model.

The persistence mechanism, which provides seamless
interaction between the relational database and the active
architecture, uses the Castor API. Castor provides binding
of Java objects with data from relational database tables.
Although Castor has a built in mechanism to deduce object
information using reflection, an XML mapping file is used
to bind object fields to relational database columns.
Persistent device objects are currently bound at system

initialization using Castor. Device updating, using
something like JINI, is planned for a future version.

Events
Primitive event handling depends largely upon the
capabilities of the Java virtual machine and closely
resembles an earlier approach (Dasari, 1999). Events that
are available to the Smart Home are loaded through the
classpath environment variable, which includes the
supported objects home devices. Each class is recursively
traversed to determine supported methods, regardless of
scope. The goal is to select appropriate method objects
available given a message. Primitive event input can occur
directly through a user interface, while composite events is
accomplished through XML input. Generation of events
occurs through a testing user interface, where method
signatures are selected, followed by the specification of
input parameters if applicable. An approach to interfacing
with underlying hardware components would require
detecting event occurrences at the hardware level,
triggering the appropriate Java method, which is then
recognized by the expert system.

Events, both primitive and composite, are represented as
standard Java objects with a corresponding Jess fact that is
asserted when an event runs. The PrimitiveEvent must
maintain a reference to the invoking object, the method
object to be invoked and an array of parameters, which are
cast appropriately before execution. Events are prioritized
based on coupling mode and execution order, which will
be discussed further. The Jess template for a simple event
is shown below.
(deftemplate PrimitiveEvent
 "The basic template for a primitive event"

 (slot event) ;Java Method object that is a primitive event
 (slot parent) ;object reference to the calling object
 (multislot params); store the parameters
 (slot firedTime); when the method was fired
 (slot priority) ;priority of the event))

An event is processed by the EventDispatcher, which
analyzes the semantic properties of the event. Data is
extracted to generate a Jess fact. For PrimitiveEvents, fact
assertions simply set the appropriate slot values to the
corresponding object attribute value. CompositeEvent facts
are generated dynamically by the expert system. Event
patterns, which constitute composite events require
detection in the form of a Jess rule, with the right hand side
of the rule asserting a CompositeEvent fact with references
to other event IDs. Parameter passing is modeled after that
described in (Dasari, 1999). Parameters are maintained in
arrays as general Java objects obtained from input.
Primitive data types are represented as literals, while
object parameters are referenced through a unique ID.

Composite events, which are composed of other events
both primitive and composite, inherit other attributes such
as name and id from the event superclass. Specification of
composite events and the semantics of composite events
have been well researched and generally many different

composite event patterns exist. However, for the purpose
of home events, typical events can be represented in the
categories presented earlier.

Whereas most database transactions occur
instantaneously, events in home living do not necessarily
terminate in a reasonable period of time. For instance, a
channel surf event, which cycles through the channels in a
loop may not end until some sort of user intervention has
occurred. Hence, each event received by the event
dispatcher for execution is arranged such that all expert
system fact updates, database transactions and method
execution occur in a separate thread. The effect of this is
platform dependent and may pose problems in single
processor systems (Holub, 2000).

Scheduled tasks are implemented as Java timer tasks,
and the job of scheduling is left to the virtual machine.
Polling temperature sensors is one example of such a task.
Although this works for simple types of polling patterns,
not all events run on a regular, scheduled pattern used by a
Java TimerTask. For instance, consider the monitoring of
gas levels in the house, where the carbon monoxide levels
were taken every ten minutes. However, suppose an
increase occurred, causing the responsible agent to ask for
readings at faster intervals than ten minutes. Hence, the
scheduling is a function of the results of the event itself. In
particular, the monitoring of human behavior, such as
human motion and location is difficult to monitor in a
regular fashion. This is an area still under investigation.

Rules
Rule evaluation and event detecting are accomplished
using the Jess API (Jess, 2003). The rules left hand side
corresponds to triggering events and conditions, which
cause invocation of actions and possibly new events to be
generated. Rules can be predefined or, via the
reinforcement learning component in the decision layer,
modified dynamically.

A recent update to Jess includes rule listeners that
provide the ability to listen for rule firings when the
corresponding events and conditions have occurred. The
current system takes advantage of this feature, and actions
are written in Java code. All actions to be executed must
extend the generic ECAAction class, which provides the
framework for all actions that appear on the RHS of Jess
rules. Furthermore, these actions are themselves a type of
event, either primitive or composite, and can trigger the
firing of other rules. Again, ECAActions are executed
using the event dispatcher.

We are exploring two improvements in this area that
would enhance usability and performance. First, the
association between rule and action is hard coded within a
generic JessListener, which listens for the firing of any
rule. A better method of association between rules and
actions is desired. Secondly, and outside the scope of the
current project is the ability to compile actions into Java
code. For example, many actions involve turning on or off
something.

Preliminary evaluation of system performance for

simple and composite event execution has been performed
on a standard MS Windows 2000 PC. For simple events,
the time between event invocation and recognition rule
was measured using a maximum of 1000 rules and
250,000 facts. Peak target rule recognition rate was 20
milliseconds. For composite events, the maximum number
of child events was 500. Similar to the first experiment,
these limits are affected by hardware specifications.

Conclusions and Future Work
We have presented an active database subsystem to
respond to events in a home that is based on the event-
condition-action (ECA) paradigm. The main contributions
of this paper are the domain analysis and identification of
issues peculiar to intelligent environment domains, and the
development of a prototype active database system for a
multi-agent smart home that is based on inhabitant
behaviors in actual homes. The active database is a
necessary component to support reasoning and learning
within the smart home that we are developing in
partnership with another university. Storage, retrieval and
relatively simple decision making is supported with the
active database subsystem.

Current work indicates promise in the approach. In
particular, the seamless interaction between the rule base
and the event dispatcher has generally led to accurate
evaluation of rules and execution of events. It remains to
be seen how the system will react as temporal sequences
and composite events are incorporated. A simulator that
currently supports a subset of Smart Home events provides
the input required to test the system.

Three possible avenues for further work are 1) moving
from a simulated to physical data environment, 2)
exploring the use of a distributed processing environment
designed to support inference systems, as in (Hannon,
2002), and 3) adding an emotion-based control mechanism
(Hannon, 2003) to model inhabitant’s emotional states and
respond appropriately via biologically inspired decision
making.

Acknowledgements
This work was partially supported by the National Science

Foundation under Grant EIA-0203499.

References
Andler, S., et al. 1996. DeeDS Towards a Distributed and

Active Real-Time Database System. SIGMOD Record,
25(1).

Chakravarthy, S. 1997. Sentinel: An Object-Oriented
DBMS with Event-Based Rules. ACM SIGMOD
Conference, Tucson.

Chakravarthy, S. and Liao, H. 2001. Asynchronous
Monitoring of Events for Distributed Cooperative
Environments. Third International Symposium on

Cooperative Database Systems for Advanced
Applications (codas), Beijing.

Chakravarthy, S. and Mishra, D. 1993. Snoop: An
Expressive Event Specification Language For Active
Databases. Technical Report, University of Florida.

Cook, D. 2001. MavHome Smart Home Project
Description. http://ranger.uta.edu/smarthome/sh/.

Cook, D., Youngblood M., Heierman, E., et al. 2003.
MavHome: An Agent-Based Smart Home, IEEE Int.
Conf. on Pervasive Computing and Communications,
Fort Worth, TX, Mar. 23-26, 521-524.

Dasari, R. 1999. Events and Rules for Java: Design and
Implementation of a Seamless Approach. Master's
Thesis, University of Florida, December 1999.

Dittrich, K. and Gatziu, S. 1993. Time Issues in Active
Database Systems. International Workshop on an
Infrastructure for Temporal Databases, Arlington, TX.

Elmasri, R. and Navathe, S.B. 2000. Fundamentals of
Database Systems 3/e. Addison Wesley Longman,
Inc.: Reading, MA.

Gehani, N. H. 1992. Composite Event Specification in
Active Databases: Model and Implementation. Proc. of
the 18th Int. Conference on Very Large Databases.

Hannon, C. 2002. A Geographically Distributed
Processing Environment for Intelligent Systems, Proc.
of the 15th International Parallel and Distributed
Systems Conference: 355-360.

Hannon, C.2003. Emotion-based Control Mechanisms for
Agent Systems. Proc. of the International Conference of
Information Systems and Engineering, 10-15.

Holub, A. 2000. Taming Java Threads. Apress, Berkeley,
CA.

i-LAND, 2002. Ambiente.
http://www.darmstadt.gmd.de/ambiente/i-land.html

JavaTV, 2003. http://java.sun.com/products/javatv/.
Jess, the Rule Engine for the Java Platform. 2003.

Available at http://herzberg.ca.sandia.gov/jess/.
Jini. 2003. http://www.jini.org/.
Lesser, V.; Atighetchi, M.; Benyo, B.; et al. 1999. The

UMASS intelligent home project. In Proc. of the 3rd
Annual Conf. on Autonomous Agents, 291--298.

Li, L., and Chakravarthy, S. 1999. An Agent-Based
Approach to Extending the Native Capability of
Relational Database Systems. Proc. of the 15th
International Conference on Data Engineering, Sydney,
March 23-26, 384-391.

Martin, D. L., et al. 1999. The Open Agent Architecture: A
Framework for Building Distributed Software Systems.
Applied Artificial Intelligence.

Microsoft. 2002. Microsoft Easy Living Project.
http://research.microsoft.com/easyliving/.

Ramamritham, K., et al. 1996. Integrating Temporal, Real-
Time, and Active Databases. SIGMOD Record, 25(1).

Schreier, U., et al. 1991. Alert: An Architecture for
Transforming a Passive DBMS into an Active DBMS.
Proc. of the 17th International Conference on Very
Large Databases, Barcelona.

