
 
  

Abstract 
In this work we present a novel approach to ensemble learning 
for regression models, by combining the ensemble generation 
technique of random subspace method with the ensemble inte-
gration methods of Stacked Regression and Dynamic Selection. 
We show that for simple regression methods such as global lin-
ear regression and nearest neighbours, this is a more effective 
method than the popular ensemble methods of Bagging and 
Boosting. We demonstrate that the approach can be effective 
even when the ensemble size is small. 

Introduction   
Regression is a classical learning problem, the goal of 
which is to build a learning model from training data 
that predicts the values of a continuous target variable 
of test instances, where both the training and test in-
stances are drawn from the same population. Each in-
stance consists of a target variable together with a 
number of numeric or categorical variables which may 
act as predictors to the target variable.  

The purpose of ensemble learning is to build a learn-
ing model which integrates a number of diverse base 
learning models, so that the model gives better gener-
alization performance on application to a particular 
data set than any of the individual base models. A 
popular theoretical consideration of the generalization 
error of a learning method is based on the bias-
variance decomposition of the expected error. Infor-
mally the bias is a measure of how closely the model’s 
average prediction, measured over all possible training 
sets of fixed size, matches the true prediction of a tar-
get instance. Variance is a measure of how the models’ 
predictions will vary from the average prediction over 
all possible training sets of fixed size.  

Ensemble learning consists of two problems; ensem-
ble generation: how does one generate the base mod-
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els? and ensemble integration: how does one integrate 
the base models’ predictions to improve performance?  
Ensemble generation can be characterized as being 
homogeneous if each base learning model uses the 
same learning algorithm or heterogeneous if the base 
models can be built from a range of learning algo-
rithms. More formally, an ensemble consists of a set of 
base models, h1..hN where N is the size of the ensemble 
and each base model in the ensemble uses training in-
stances from the corresponding training set 

iT , i =1..N . Ensemble integration can be addressed 
by either one of two mechanisms, either the predictions 
of the base models are combined in some fashion dur-
ing the application phase to give an ensemble predic-
tion (combination approach) or the prediction of one 
base model is selected according to some criteria to 
form the final prediction (selection approach).  Some 
ensemble learning algorithms, such as Boosting, define 
both how ensembles are generated and how the base 
models are integrated. Theoretical and empirical work 
has shown the ensemble technique to be effective with 
the proviso that the base models are diverse (where the 
diversity is measured by the degree of correlation be-
tween their training errors) and accurate (Dietterich 
00). These measures are however not necessarily inde-
pendent of each other. If the prediction error of all 
base models is very low, then their learning hypothesis 
must be very similar to the true function underlying the 
data, and hence they must of  necessity, be similar to 
each other i.e. they are unlikely to be diverse. In es-
sence then there is often a trade-off between diversity 
and accuracy (Christensen 03). 

There has been much empirical work on ensemble 
learning for regression in the context of neural networks, 
however there has been little research carried out in terms 
of using homogeneous ensemble techniques to improve 
the performance of simple regression algorithms. In this 
paper we look at improving the generalization perform-
ance of nearest neighbours (NN) and least-squares linear 
regression (LR). These methods were chosen as they are 
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simple models with different approaches to learning and 
whereas linear regression is an eager learner which tries to 
approximate the true function by a globally linear func-
tion, k-nearest neighbours is a lazy learner which tries to 
approximate the true function locally. 
 
Ensemble Generation 
 
Ensemble generation for homogeneous learning is gener-
ally addressed by using different samples of the training 
data for each base model (this is intrinsic to bagging and 
boosting techniques as will be described later) or if the 
learning method has a set of learning parameters, adjust-
ing them to have different values for each of the base 
models (for example in the case of neural networks initial-
izing the base models with different random weights). 

An alternative approach for ensemble generation for 
homogeneous learning is the method of Random Sub-
spacing was first proposed by Ho (Ho 98a, Ho 98b) for 
classification problems. Random subspace method (RSM) 
is a generation method where each base model is built 
from the training data which has been transformed to con-
tain different random subsets of the variables. The RSM 
as proposed by Ho used a method of majority voting to 
combine the classifications of the base classifiers. Of 
course, such as the case with ensemble generation via 
sampling data, the ensemble generation of random sub-
spacing can be combined with a variety of more sophisti-
cated ensemble integration techniques. Ho has shown 
RSM to be both effective for unstable learners such as 
decision trees and for nearest neighbours if the data set 
size is small relative to its dimensionality. Skurichina et 
al. (Skurichina et al. 2003) have shown the conditions of 
training set size and data dimensionality where bagging, 
boosting and RSM may be effective for a range of linear 
classifiers. Tysmbal et al. (Tsymbal et al. 03) investigated 
the effect of RSM with more sophisticated ensemble gen-
eration techniques than majority voting.  
 
Ensemble Integration  
 
The initial approaches to ensemble combination for re-
gression were based on the linear combination of the base 
models according to the function:   
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The simplest approach to determining the values of  iα  is 
to set them to the same value. This is known as the Base 
Ensemble Method (BEM). Merz and Pazzani (Merz and 
Pazzani 99) provide an extensive description of more ad-
vanced techniques for determining the values of alpha.  

The generic approach of Stacking was introduced by 
Wolpert (Wolpert 92), and was shown theoretically by 

LeBlanc and Tibshirani  (LeBlanc and Tibshirani 92) to 
be  a bias reducing technique. In the approach of Stacked 
Regression (SR), the base models produce meta-instances 
consisting of the target value and the base models’ predic-
tions, created by running a cross validation over the train-
ing data. The meta-data is used to build a meta-model, 
based on a learning algorithm and the base models are 
built using the whole training data. Ensemble prediction is 
made by a 2-stage process. The test instance is passed to 
the base models whose output is composed as a meta-
instance. The meta-instance is passed to the meta-model 
which makes the final prediction. Typically the generation 
of the base models is heterogeneous or homogeneous but 
built with different training parameters. Breiman (Breiman 
96a) investigated the use of linear regression to form the 
meta-model and found that linear regression is a suitable 
meta-model so long as the coefficients of regression are 
constrained to be non-negative.  

Model selection simply chooses the best “base” model 
to make a prediction. This can be either done in a static 
fashion using cross-validation majority (Schaffer 93) 
where the best model is the one that has the lowest train-
ing error. Alternatively it can be done in a dynamic fash-
ion (Merz 96, Puuronen et al. 99) where based on finding 
“close” instances in the training data to a test instance, a 
base model is chosen which has the lowest training error. 
The advantage of this approach is based on the rationale 
that a learner may perform better than other learning mod-
els in a localised region of the instance space even if, on 
average over the whole instance space, it performs no 
better than the others. Dynamic Selection (DS) was one of 
a number of Dynamic Integration techniques developed by 
Puuronen and Tsymbal (Puuronen et al. 99, Tsymbal et al. 
03) Similar to Stacking; it performs a cross-validation 
history to determine the errors in the models. The errors 
for each training instance and the instance itself form 
meta-data that allows a lazy learner based on weighted 
nearest neighbours to dynamically select which base 
model should make a prediction for a test instance by as-
sessing which model had the lowest cumulative error for 
the neighbouring instances and selecting it to make a pre-
diction. 

Two well-known approaches for homogeneous learning 
are bagging and adaptive boosting (AdaBoost). Both ap-
proaches combine the problem of ensemble generation 
with that of integration. Bagging (bootstrap aggregation) 
(Breiman 96b) draws instances from the training data us-
ing bootstrap sampling with replacement to create base 
models. On each draw, each training instance has an equal 
probability of being drawn. Ensemble prediction is based 
in terms of classification by majority vote and in terms of 
regression, by averaging. AdaBoost (Freund and Schapire 
96) builds its base models iteratively. In each iteration, a 
new training set is generated using sampling with re-
placement and a predictor is trained using this training set. 



The difference to Bagging is that the probability of in-
stances being drawn depends on the previous training er-
rors of the previous cycle. The technique of adaptive 
boosting was adapted for regression by Drucker (Drucker 
97), so that the weighted median of predictions made by 
the base regressors is used to form the ensemble predic-
tion. This technique is known as AdaBoost.R1. Drucker 
showed this technique to be effective for regression trees. 
In general, Boosting and Bagging have shown to be good 
candidates for ensemble learning when the base models 
are unstable i.e. a small change in the input data can lead 
to a very different model being built (Opitz and Maclin 
99). 

In this paper, we focus on ensemble comprising of sim-
ple homogenous learning models, which are generated 
using the feature sampling technique of RSM.  We take as 
our ensemble learner (for model integration) the tech-
niques of BEM, SR and DS. We compare these ensemble 
methods to the data sampling techniques of Bagging and 
AdaBoost.R1. This forms a preliminary investigation of 
the benefit or otherwise of using RSM to generate base 
models for regression problems. 

Experimental Technique and Results 

The techniques were assessed using 10 fold cross valida-
tion and the mean absolute error was recorded for each 
technique. Data sets were pre-processed to remove miss-
ing values using a mean or modal technique. The two base 
learners used were 5-NN and Linear Regression. The loss 
function for AdaBoost.R1 was chosen to be linear and the 
number of nearest neighbours in the meta-model for DS 
was chosen to be 5. We chose the model tree technique 
M5, which combines instance based learning with regres-
sion trees (Quinlan 1993), as the meta-model for SR. We 
chose this as the technique as it provides greater flexibility 
in the model it induces than simple linear regression. 

There has been much research into the optimal size of 
ensembles for classification problems in the area of bag-
ging and boosting (Opitz and Maclin 99, Kohavi 99, Diet-
terich 98). In general it only takes an ensemble of a few 
base classifiers, to reduce the generalization error, how-
ever ensemble sizes up to 200 have been investigated 
(Dietterich 98). Zenobi and Cunningham (Zenobi and 
Cunningham 01) state from probabilistic considerations 
that the diversity and accuracy of the ensemble will pla-
teau between 10 and 50. As such we chose 25 as a suitable 
size for all the ensemble methods.  

The ensemble approaches were compared to the base 
technique for significant difference in Mean Absolute 
Error (MAE) using a paired sample t-test (p = 0.05). If the 
result for MAE for an ensemble technique is shown to be 
significantly better than the base model, the result is 
shown in bold. If the MAE for an ensemble technique is 

significantly worse than the base model it is shown itali-
cised and underlined. For data sets where the MAE for the 
ensemble was significantly less than the MAE for the 
base-model for a given data set, we measured the average 
relative percentage reduction in MAE (RRE) over those 
data sets. For data sets where the MAE was significantly 
greater than the base model, we measured the average 
relative percentage increase in MAE to the base model’s 
MAE (RIE). This section shows the results on 15 data sets 
selected from the WEKA (Witten and Frank 99) reposi-
tory. These data sets were chosen as they represent real 
world data. It is divided into two subsections, one where 
the base regressor was 5-NN and the other where it was 
Linear Regression.  
 
Nearest Neighbour Base Regressor 
 
Table 1 shows a comparison of the MAE values for the 
data sampling techniques to the base model 5-NN.  
 

Data set 5-NN Bagging 
 

AdaBoost.R1 
 

abalone 1.60±0.09 1.55±0.09 1.55±0.09 
autohorse 12.27±3.63 11.71±3.75 11.75±4.04 
autompg 2.46±0.37 2.39±0.37 2.37±0.34 

autoorice 1770.91± 
738.12 

1758.60± 
746.23 

1750.38± 
719.20 

auto93 3.90±1.27 3.86±1.33 3.74±1.56 
bodyfat 2.39±0.49 2.33±0.37 2.35±0.41 

breastTumor 8.59±0.86 8.43±0.87 8.47±0.83 
cholesterol 41.49±4.52 40.98±4.74 40.36±4.41 

cloud 0.55±0.20 0.52±0.2 0.53±0.12 
cpu 35.65±15.1 34.67±15.35 34.45±14.30 

housing 2.97±0.64 2.92±0.60 2.93±0.68 
lowbwt 387.48±93.04 378.04±82.73 375.41±90.72 
sensory 0.61±0.06 0.58±0.06 0.59±0.05 
servo 0.56±0.18 0.56±0.18 0.54±0.19 
strike 208.64±46.04 199.02±47.06 187.32±46.27 

Table 1 MAE for the base technique and data-sampling 
ensembles 

Either Bagging or Boosting or both proved effective in 
reducing the error significantly for the data sets abalone, 
autohorse, autompg, breastTumor, lowbwt, sensory, and 
strike. Bagging reduced the error significantly for 5 data 
sets: abalone, autohorse, breastTumor, sensory, strike with 
a RRE value of 3.61%. Boosting reduced significantly the 
error of 4 data sets: abalone, autompg, lowbwt and strike 
with a RRE value of 5.11%.   
 Table 2 shows a comparison of the MAE values for 
the feature sampling techniques to the base model 5-NN. 
BEM proved the least reliable ensemble approach to error 
reduction. It improved the accuracy for abalone, auto-
horse, cloud and cpu with RRE of 9.53%, however it dra-
matically increased the error for the data sets lowbwt, 
sensory and servo with an RIE of 80.05%. DS showed a 



degradation in accuracy for 2 data sets, abalone and 
lowbwt with a RIE value of 10.7%. 
 
Data set 5-NN BEM SR DS 
Abalone 1.60±0.09 1.55±0.09 1.51±0.7 1.68±0.1 
autohorse 12.27±3.63 10.18±3.96 9.35±3.34 8.86±3.49 
autompg 2.46±0.37 2.40±0.34 2.05±0.45 2.32±0.44 
autoprice 1770.91± 

738.12 
1658.59± 
625.27 

1395.89± 
426.73 

1561.30± 
542.55 

auto93 3.90±1.27 3.75±1.4 3.32±1.19 4.16±1.07 
bodyfat 2.39±0.49 2.48±0.38 0.41±0.27 1.24±0.26 
breast-
Tumor 

8.59±0.86 8.28±0.64 8.01±1.02 9.09±0.71 

cholesterol 41.49±4.52 39.64±4.34 40.46±5.79 42.41±4.73 
cloud 0.55±0.20 0.47±0.18 0.29±0.09 0.37±0.2 
cpu 35.65± 

15.1 
31.81± 
15.26 

21.52± 
7.02 

31.99± 
13.77 

housing 2.97±0.64 2.92±0.59 2.19±0.28 2.54±0.4 
lowbwt 387.48± 

93.04 
455.42± 
60.16 

377.90± 
81.59 

439.34± 
84.97 

sensory 0.61±0.06 1.24±0.08 0.60±0.06 0.68±0.09 
servo 0.56±0.18 0.87±0.18 0.35±0.24 0.42±0.23 
strike 208.64± 

46.04 
205..37± 
42.66 

226.75± 
34.37 

181.80± 
41.15 

Table 2 MAE for 5-NN and feature-sampling ensembles 

 

Table 3 Summary of significance comparison 

However it improved the performance of 6 data sets auto-
horse, bodyfat, cloud, housing, servo and strike with a 
RRE value of 26.76%. SR proved the most effective tech-
nique. It never significantly reduced the accuracy of any 
of the data- sets and in the case of abalone, autohorse, 
autompg, bodyfat, cloud, cpu, housing, servo the error 
was reduced significantly with a RRE value of 35.01%. 
Comparing, the RRE values for DS and SR to the values 
for Bagging and Boosting, shows that when the techniques 
significantly reduce the error there are more substantive 
gains with DS and SR.  

Table 3 summarises the results of the significance com-
parison for both the data-sampling and feature sampling 
techniques. The format of this table is in the win/tie/loss 
format where a win indicates the number of data sets for 
which the ensemble technique significantly reduced the 
MAE in comparison to the base learner, tie indicates the 
number of data sets for which there was no significant 
difference and loss indicates the number of data sets for 
which the MAE was significantly increased. 

 
Linear Regression Base Regressor 
 
Table 4 shows a comparison of the MAE values for Bag-
ging and Boosting to the base model LR. It is clear that 

neither Bagging nor Boosting provided any benefit over 
the data sets. In fact if anything Boosting was detrimental 
to the performance for 5 data sets (abalone, bodyfat, hous-
ing, sensory and strike) with an RIE value of 95.99%. 
 
Dataset LR Bagging AdaBoost.R1 
abalone 1.58±0.08 1.58±0.08 2.49±0.18 
autohorse 7.30±1.79 7.80±4.17 7.15±3.44 
autompg 2.27±0.34 2.25±0.21 2.47±0.24 
autoprice 1919.90± 

363.34 
1936.25± 
343.42 

2065.06± 
435.41 

auto93 3.79±1.3 3.84±1.41 3.63±1.35 
bodyfat 0.5±0.18 0.49±0.25 1.93±0.38 
breastTumor 7.89±0.71 8.02±0.9 8.64±0.87 
cholesterol 39.23±6.94 39.27±5.89 41.48±6.33 
cloud 0.268±0.11 0.269±0.09 0.273±0.1 
cpu 36.35±9.81 32.33±5 28.97±6.35 
housing 3.40±0.43 3.42±0.31 4.78±0.46 
lowbwt 370.48± 

78.48 
369.24± 
56.37 

380.26± 
67.66 

sensory 0.61±0.04 0.61±0.05 0.63±0.04 
servo 0.62±0.12 0.64±0.27 0.75±0.23 
strike 224.79 

±45.05 
220.41 
±36.87 

426.37 
±81.16 

Table 4 MAE for Linear Regression and data-sampling 
ensembles 

Dataset LR BEM SR DS 
abalone 1.58±0.08 1.66±0.11 1.51±0.08 1.57±0.06 
autohorse 7.30±1.79 8.15±3.82 6.86±3.4 6.87±4.05 
autompg 2.27±0.34 2.38±0.16 2.19±0.68 1.98±0.21 
autoprice 1919.90± 

363.34 
1792.03± 
390.64 

1596.31± 
491.39 

1554.48± 
321.11 

auto93 3.79±1.3 3.23±1.16 3.6±1.33 4.21±1 
bodyfat 0.5±0.18 1.65±0.28 0.43±0.228 0.43±0.26 
breast- 
tumor 

7.89±0.71 7.76±0.94 8.51±1.02 7.98±1.03 

cholesterol 39.23±6.94 38.21±4.65 40.62±6.56 38.57±5.02 
cloud 0.268±0.11 0.264±0.09 0.29±0.12 0.3±0.08 
cpu 36.35±9.81 28.53±7.76 15.69±5.99 25.87±7.37 
housing 3.40±0.43 3.76±0.62 2.53±0.37 2.66±0.54 
lowbwt 370.48± 

78.48 
389.55± 
80.08 

369.7± 
62.26 

384.71± 
71.68 

sensory 0.61±0.04 0.62±0.06 0.58±0.05 0.58±0.05 
servo 0.62±0.12 0.8±0.2 0.37±0.28 0.45±0.28 
strike 224.79 

±45.05 
225.66± 
35.5 

219.24± 
45.67 

177.57± 
46.58 

Table 5 MAE for the base technique and feature sampling 
ensembles 

Bagging Adaboost.R1 BEM SR DS 
0/15/0 0/10/5 0/13/2 4/11/0 6/9/0 

 

Table 6 Summary of significance comparison  

Table 5 shows a comparison of the feature sampling tech-
niques to LR. BEM again proved an in-effective tech-
nique. It never significantly improved the MAE for any 
data sets and in the case of bodyfat and servo it signifi-

Bagging Adaboost.R1 BEM SR DS 
5/10/0 4/11/0 4/8/3 8/7/0 5/8/2 



cantly increased the error with an RIE value of 129.56%. 
SR and DS never significantly decreased the accuracy of 
any of the data sets. In the case of SR, the error for 4 data 
sets (cpu, housing, sensory, servo) was significantly re-
duced. The RRE value for these data sets was 32.13%. DS 
reduced the error significantly also for 6 data sets 
(autompg, autoprice, cpu, housing, sensory, strike) with a 
RRE value of 18.99%. Table 6 summarises the results of 
the significance comparison for both the data-sampling 
and feature sampling techniques in a similar fashion to 
Table 3. It shows clearly that SR and DS were the most 
effective techniques at significantly reducing the error. 

In summary, the regression ensemble techniques of SR 
and DS in combination with Random Subspace method 
proved a more effective mechanism of improving the gen-
eralization performance of simple regressors than the 
popular ensemble methods of Bagging and AdaBoost. SR 
was most effective with nearest neighbours where the 
RRE value was much larger than that of Bagging and 
AdaBoost, whereas DS was more effective with Linear 
Regression. Clearly the technique of BEM did not per-
form well because RSM, although creating diversity, does 
not guarantee the level of accuracy of the base models and 
simple averaging is often not able to compensate for that. 
The problem of inaccurate models is clearly better ad-
dressed by the more sophisticated techniques of SR and 
DS. 

It is perhaps not surprising that Bagging and Boosting 
would not be effective techniques for base learners such 
as nearest neighbours and linear regression. Primarily 
Bagging and Adaboost are variance reducing techniques 
which have shown to be effective in reducing the error of 
unstable learners. Typical examples of such learners are 
neural networks and regression trees. What is principally 
of interest is that the random sub-space method seems to 
ensure diversity, allowing bias-reducing techniques such 
as SR and DS to improve the performance of simple re-
gression models. Tysmbal et al. (Tsymbal et al. 03) make 
the conjecture that for classification, RSM provides good 
coverage, i.e. at least, one base model is likely to classify 
the instance correctly. We intend to investigate further this 
issue in the context of regression. 

In addition, we assessed the effect of ensemble size for 
the techniques of SR and DS on the MAE. We chose the 
two data sets, housing and cpu, for which both the 
ensemble techniques had been effective in significantly 
reducing the error, and chose LR as our base model. The 
MAE was recorded for a given random sub-sample and 
ensemble size using cross-validation. This process was 
repeated 9 times using a different collection of random 
sub-samples and the same ensemble size. The average 
MAE over the 10 runs was then calculated. This process 
was carried out for ensemble size 3, 5, 10, 15 and 20.  The 

results of these experiments are displayed in Figure 1 and 
2. 
 
   

 
 
 
 
 
 
 
 
 
 

 
 

Figure 1 The effect on MAE for the housing data set with in-
creasing ensemble size 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 2 The effect on MAE for the cpu data set with increasing 
ensemble size 
 

 
It is clear from Figure 1 and 2 that there are no real 

benefits of forming ensembles greater than size 3 for the 
SR technique. In the case of DS, the MAE reaches its 
minimum by size 10, beyond which there is no significant 
improvement in error. Clearly in both cases, the ensemble 
size is much less than the usual ensemble size of 25 cho-
sen for Bagging and Boosting (Opitz and Maclin 99), in-
dicating that RSM/DS and RSM/SR could be potentially a 
more efficient ensemble technique. 
 
 

 
Conclusions 
 

In this paper, we have shown that the technique of random 
subspace method can be used to create different sub-
spaces of the data upon which the same regression algo-
rithm can be used to build diverse models. These models 
can be combined using the integration methods of Stack-
ing or Dynamic Selection in order to produce an ensemble 
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that was demonstrated to be more effective for simple 
regression models than the popular ensemble learning 
techniques of Bagging and Boosting. We have presented 
preliminary results which indicate that the ensemble size 
need not be large for this approach to work. We intend to 
focus on improving RSM to ensure small ensembles of 
sufficiently diverse and accurate base models. The reason 
for this is two-fold: it makes the learning approach more 
efficient, and it allows for the problem of comprehensibil-
ity to be addressed.  
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