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Abstract

We propose a new approach for learning Bayesian clas-
sifiers from data. Although it relies on traditional
Bayesian network (BN) learning algorithms, the effec-
tiveness of our approach lies in its ability to organize
and structure the data in such a way that allows us to
represent the domain knowledge more accurately than
possible in traditional BNs. We use clustering to parti-
tion the data into meaningful patterns, where each pat-
tern is characterized and discriminated from other pat-
terns by an index. These patterns decompose the do-
main knowledge into different components with each
component defined by the context found in its index.
Each component can then be represented by a local BN.
We argue that this representation is more expressive
than traditional BNs in that it can represent domain de-
pendency assertions more precisely and relevantly. Our
empirical evaluations show that using our proposed ap-
proach to learning classifiers results in improved classi-
fication accuracy.

Introduction
Learning accurate classifiers from data continues to be an
active research area. Many algorithms have been developed
for learning classifiers of different functional representation
such as decision trees, neural networks, and Bayesian net-
works (Han and Kamber 2001).

Bayesian network (BN) classifiers (Cheng and Greiner,
2001) have gained more attention from machine learning
and data mining researchers since the discovery of the
first BN classifier known as naive-Bayes (Langley, Iba and
Thompson 1992). This classifier is merely a very simple BN
with a strong assumption of independence among its vari-
ablesgiven the classification variableC, though it has sur-
prisingly shown a competitive performance (i.e., classifica-
tion accuracy) with state-of-the-art non-Bayesian classifiers
such as C4.5 (Quinlan 1993).

The encouraging performance of naive classifiers has mo-
tivated researchers to build other BN classifiers that relax the
naive classifier’s strong independency assumption. The Tree
Augmented naive-Bayes (TAN) (Cheng and Greiner 1999;
Friedman, Geiger and Goldszmidt 1997) approximates the
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interactions between attributes by using a tree structure.
TAN has been shown to outperform naive-Bayes classifier.

Consequently, and with the advances in developing al-
gorithms that learn BNs from data, many researchers have
explored unrestricted BN classifiers. These classifiers are
learned based on recent learning algorithms that can learn
multiply connected BNs. Among these classifiers is the
Bayesian network Augmented naive-Bayes (BAN) (Cheng
and Greiner 1999; Friedman, Geiger and Goldszmidt 1997)
which extends TAN by allowing the attributes to form an ar-
bitrary graph, rather than a tree, and the General Bayesian
Network classifiers (GBN) (Cheng and Greiner 1999; Fried-
man, Geiger and Goldszmidt 1997) which treats the classi-
fication node as an ordinary node and identifies a relevant
attribute subset around the classification node defined by its
Markov blanket. These two classifiers have been built and
examined based on two different BN learning algorithms.
Friedman et al. (1997) used the MDL score algorithm (Lam
and Bacchus 1994) while Cheng et al. (1999) used the CBL
learning algorithm (Cheng, Bell and Liu 1997). In both stud-
ies, the empirical evaluation of the two classifiers showed
that these classifiers perform better than naive and in many
cases outperform TAN. Friedman et al. (1997), however,
have mentioned that GBN classifiers learned via the score-
based learning algorithms may result in relatively poor clas-
sification accuracy since a good score function does not nec-
essarily lead to good classification accuracy. Cheng et al.
(1999) have shown that GBN classifiers built based on non-
scoring learning algorithms (i.e., CI-test algorithms), do not
suffer from this problem and that these algorithms can effec-
tively learn unrestricted BN classifiers.

The above earlier work suggests that unrestricted BN clas-
sifiers can capture the relationships among the domain at-
tributes better, therefore, leading to more accurate classi-
fiers. This fact motivates us to raise the question of whether
improving the capability of BNs as a tool for represent-
ing dependency assertions can further improve their perfor-
mance as classifiers. In this paper, we introduce a new type
of Bayesian classifier called “Case-Based Bayesain Network
(CBBN)” classifiers. Although, this type of Bayesian clas-
sifier is learned from data using traditional BN learning al-
gorithms, we will show that our learning methodology or-
ganizes the data in such a way that allows more precise and
more relevant representation of the domain dependency re-



lationships. In particular, we introduce the concept of “case-
dependent relationships” and show that while traditional
BNs are not suitable to represent this type of knowledge,
our CBBNs can capture and encode them, hence improving
classification accuracy.

CBBN Methodology
Our approach to learning classifiers employs a clustering
technique to discover meaningful patterns in the training
data set represented by different clusters of data. Each clus-
ter is then characterized and discriminated from other clus-
ters by a unique assignment to its most relevant and descrip-
tive attributes. This assignment is called an index. As we
shall see, these indices provide a natural attribute selection
for the CBBN classifiers. Intuitively, each cluster represents
a piece of the domain knowledge described by the context
of its index. These clusters can also be viewed as a set of
conditionally independent cases with each case mapped to
an index that describes the context of the knowledge rele-
vant to that case. The knowledge associated with each case
can then be representedindependentlyby a BNconditioned
on its index. This independency of cases implies that the
relationships among the corresponding attributes might be
different for different cases. Thus, instead of assuming fixed
relationships between attributes for the whole domain as in
traditional BNs, these relationships can vary according to
each different context of each case in the same domain. This
conclusion is crucial, since it means that two variablesX
andY might be directly dependent (X→ Y ) in caseCi and
independent in caseCj . Moreover,X → Y might occur in
caseCi while Y ← X occurs in caseCj . Even if the rela-
tionships in different cases are the same, the parameters that
represent the strength of these relationships might be differ-
ent.

As an example, consider a database of customers apply-
ing to a loan in a bank. Such a database might have two
different patterns (i.e., cases) where each pattern represents
a group of customers. The first group includes those cus-
tomers who have a good balance in their checking and sav-
ing accounts. The decision to grant a loan to these customers
might not be influenced by whether a customer has a guar-
antor, whether he/she has properties, or whether he/she is a
citizen, but it might be highly affected by his/her residency
time and somewhat by his/her credit history. The second
group might include those people who do not have sufficient
balance in their checking account and with poor credit his-
tory. For this group the situation is different since the bank
decision will be highly affected by whether they have prop-
erties, whether they have a guarantor, whether they are cit-
izens, as well as their residency time. The bank decision
and its requirements may be considered as domain variables
in a BN that have case dependent relationships among them
Fig.(1).

Another example is cyclic knowledge. In a data set of
patients suffering from diabetes a doctor can distinguish be-
tween two groups of patients; those who have just started
taking a specific medication and found that it causes an im-
provement where the glucose level starts to decrease, and
those who have been taking the medication for a while and

Figure 1: An example of case-dependent relationships

are excited by the improvement thus causing them to in-
crease the dose of that medication or even taking an addi-
tional one. In this example the relation between medication
level and health improvement is not purely unidirectional,
but is case-dependent cyclic.

This kind of knowledge cannot be represented in tradi-
tional BNs. We argue that these relationships can be rep-
resented in our CBBN model and significantly improve its
accuracy as a classifier. Moreover, our approach provides
a novel procedure for selecting relevant attributes. In tradi-
tional GBN classifiers, a Markov blanket of the classifica-
tion node is used as an attribute selection procedure. Of-
ten, this selection is useful and discards truly irrelevant at-
tributes. However, it might discard attributes that are crucial
for classification (Friedman, Geiger and Goldszmidt 1997).
CBBN provides an alternative attribute selection procedure
that better avoid discarding relevant attributes. The attributes
that constitute an index for a cluster have fixed values for all
objects in the cluster. We conclude that these attributes are
irrelevant to the classification task in this cluster. Hence, the
BN classifier learned from this cluster can safely exclude
these attributes.1

CBBN Classification Model
Constructing a CBBN classification model consists of the
following three phases:

Clustering and indexing phase
SupposeD is a training data set described by a set of cate-
gorical attributesA1, A2, ..., An, C whereC is the classifi-
cation node. A clustering algorithm is used to partitionD
into a set of clustersC = {C1, C2, . . . , Ck} characterized
by a set of mutually exclusive indicesI = {I1, I2, . . . , Ik}
respectively. This indexing scheme guarantees at most one
mapping per a data object to the setI.

In order to generate such an indexing scheme, algorithmA
shown below begins by initializingI as set ofk n-dimension
vectors with “don’t care” (i.e. ‘x’) values for all elements
of each vectorIi. For a particular clusterCi, the algorithm
computes the probability distribution for each attribute, (i.e.,

1This attribute selection procedure might also be useful in sim-
plifying the structure of the classifiers, especially in BAN and
GBN, to avoid the overfitting problem reported by Cheng et al.
(1999)



the frequencies of its possible values estimated from the data
in this cluster). The algorithm proceeds to determine the
value of each attribute that has the maximum frequency and
assigns this value to this attribute inIi if its frequency ex-
ceeds an indexing thresholdα. The resulting assignment is
then used as a description of the objects inCi, thus the algo-
rithm moves all objects that are not covered byIi from Ci

to the outliers cluster. The same procedure is repeated with
each cluster. The algorithm then visits the outliers cluster
to check for possible mappings of its objects back to the in-
dexed clusters. These objects are retrieved from the outlier
to be placed in a cluster if the objects are compatible to the
cluster’s description index.

In order to achieve mutual exclusion between the above
assignments, algorithmB checks each two assignments
for the mutual exclusion condition (at least one common
attribute is assigned differently). If they do not satisfy this
condition, it searches for the “don’t care” attribute in both
assignments that can be assigned differently in both of them
such that a minimum number of objects is rejected from
both clusters due to the new assignments. The algorithm
then updates the members of all clusters, including the
outliers, according to the new mutually exclusive assign-
ments. Finally, to produce the index of each cluster, the
algorithm simply discards any “don’t care” attributes in
each assignment.

Algorithm A: Clustering and Indexing
Input:

D: training data set
k: number of clusters
α: indexing threshold

Output:
C: set ofk clustersC1, C2, . . . ,Ck

I : set of mutually exclusive indicesI1, I2, . . . ,Ik

Outliers: possible outliers cluster
Notation:

R(Aj): the domain of the attributeAj

aj,i(max): aj that maximizesP (Aj = aj |Ci)
Pj,i(max): P (Aj = aj,i(max)|Ci)

Begin
Call clustering algorithm onD to form the set of clustersC
For each clusterCi

Initialize Ii as an n-dimensional vector with ‘x’ values
For each attributeAj

ComputeP(Aj = aj |Ci)∀aj ∈ R(Aj)
Findaj,i(max) andPj,i(max)

If (Pj,i(max) > α) assignaj,i(max) to jth element inIi

Move the objects ofCi not covered byIi to Outliers
For each clusterCi

Move fromOutliersobjects covered byIi back toCi

Call AlgorithmB to get mutually exclusive vectors inI
For each clusterCi and using its updatedIi

Move objects ofCi not covered byIi to theOutliers
For each clusterCi and using its updatedIi

Move fromOutliersthe objects covered byIi back toCi

End

Algorithm B: check and fix
Input :

C: a set ofk data clusters
I : a set ofk n-dimensional vectors

Output:
I : a set of mutually exclusive indices (updatedI)

Notation:
at,i: the value of the attributeAt in Ii

Ii(t): the location of attributeAt in Ii

at,i(max): at with the maximizesP (At = at|Ci)
ui: no. of uncovered objects byIi in Ci

uj : no. of uncovered objects byIj in Cj

Begin
For i = 1 to k − 1

For j = i + 1 to k
If (Ii andIj are not mutually exclusive) then

For each attributeAt (t = 1, 2, ..., n)
If (a t,i = at,j =‘x’) then

Findat,i(max) andat,j(max)

If (a t,i(max)! = at,j(max)) then
Ii(t) = at,i(max) andIj(t) = at,j(max)

Findui anduj

Computest = ui + uj

Retrieve the original state ofIi andIj

Find the attributeAp that minimizesst

put Ii(p) = ap,i(max) andIj(p) = ap,j(max)

For eachIi

If an attributeAj =‘x’ then removeAj from Ii

End

Learning Phase

We apply a BN learning algorithm to learn a local BN classi-
fier Bi, wherei ∈ {1, 2, ..., k}, from the data objects in each
indexed cluster produced by algorithmsA andB. This local
classifier is defined over a subsetVi ⊂ V. If V (Ii) is the set
of the attributes inIi thenVi = V − V (Ii). We also learn a
BN classifier,Bo, from the outliers cluster defined over the
whole setV. The set of local classifiers together with the
indecies constitute a CBBN classifier.

Testing Phase

We test the newly learned CBBN classification model on
the given test data setT . Basically, we map each test ob-
ject (a1, a2, . . . , an) in T to an index inI by comparing the
attributes assignment in both of them. We then compute
P (C|a1, a2, . . . , an) from the local BN classifier character-
ized by that index and assign toC the value that maximizes
P . Because of the mutual exclusion property of our index-
ing scheme, an object can map to at most one local classifier
Bi. If an object cannot be mapped to any index inI, we map
it to Bo as the default classifier. Finally, we compute the ac-
curacy by comparing the predicted values ofC found above
with its true values inT .



Experimental Results

Experiment Settings

We have learned classifiers of different structures (i.e., naive,
TAN, BAN, BAN*, GBN and GBN*) from a set of twenty-
five benchmark databases. These classifiers have been
built based on BN approach and based on our CBBN ap-
proach. Moreover, the structures of local classifiers have
been learned using different learning algorithms. In partic-
ular, we used the MDL score algorithm to learn BAN and
GBN, and CBL2 algorithm to learn BAN* and GBN*. For
TAN classifier, we used Chow and Liu (1968) algorithm to
learn a tree-like structure. When comparing CBBN classi-
fiers and BN classifiers, we do that for corresponding struc-
ture types.

The data sets were obtained from the UCI machine learn-
ing repository(www.ics.uci.edu). In all data sets, objects
with missing attribute values have been removed and nu-
merical attributes have been categorized. To avoid dif-
ferences in data cleaning, we had to recompute the re-
sults of BN classifiers instead of using results from pre-
vious work. However, our recomputed results are still
close to the ones reported in (Cheng and Greiner 1999;
Friedman, Geiger and Goldszmidt 1997).

For data clustering in CBBN model, we used the cluster-
ing algorithm,k-modes(Huang 1998), that extends the pop-
ular clustering algorithm, k-means, to categorical domains.
The biggest advantage of this algorithm is that it is scalable
to very large data sets in terms of both number of records
and number of clusters. Another advantage of k-modes al-
gorithm is that the modes provide characteristic descriptions
of the clusters. These descriptions are important in charac-
terizing clusters in our CBBN approach.

The k-modes algorithm, as many clustering algorithms,
requires that the user specify the number of clustersk. In
this work, we have determined an acceptable range ofk for
each data set. More specifically,k can take integer values
betweenkmin = 2 andkmax which is the maximum num-
ber of clusters estimated such that each cluster has a num-
ber of objects sufficient to learn a BN classifier. We then
ran our experiments at three different values ofk (kmin=2,
kmax, andkarb ∈ ]kmin, kmax[) and compare the accuracy
of CBBN classifiers in each case to that of BN classifiers and
machine learning (ML) classifiers (C4.5 and Instance-Based
(IB) classifiers).

Classification Accuracy

Tables (1, 2, and 3) show our classification accuracy for BN,
ML and CBBN classifiers. Because of space limitations, we
only show the results fork = karb. Similar results have been
obtained for other values ofk (i.e.,kmin andkmax).

The experimental results have shown that classifiers
learned using our CBBN approach are either superior to or
competitive with BN classifiers. This confirms our theoreti-
cal intuition in that better representation of the dependency
relationships results in more accurate classifiers. However,
the amount of improvement in the classification accuracy
of CBBN models over BN models differs from one data

set to another depending on how good the chosen cluster-
ing scheme and how rich the original data set with case-
dependent relationships. In the worst case, as we can see
from the experimental results, CBBN classifiers perform as
well as BN classifiers. When case-dependent relationships
matter, as an example, in the german loan approval data
set, we noticed a cyclic relationship between three variables
(balance, loan, and business). This relationship appears as
follows: in one case, (balance→ loan→ business) while in
another case, (balance← business). The results have also
shown that CBBN classifiers are either superior to or com-
petitive with ML classifiers.

In order to compare CBBN classifiers vs. BN classifiers
and ML classifiers, we considered theaverage improvement
in accuracyand thewinning countover all data sets. Com-
parisons for all different structures have shown that CBBN
classifiers have considerable average improvement in accu-
racy over BN classifiers and ML classifiers, and they beat
them in most of the data sets.

The min. average improvement (9.661%) in CBBN over
BN classifiers was recorded in naive classifiers. The rea-
son for that is the restricted structure of the naive BN. How-
ever, the improvement is due to the ability of CBBN to esti-
mate the parameters accurately from the relevant knowledge
to identify and get rid of irrelevant attributes. By contrast,
BAN and GBN classifiers recorded higher average improve-
ments (15.562% and 13.714%) in CBBN over BN. We ar-
gue that these two classifiers allow unrestricted relationships
between attributes, hence increasing the chance to capture
case-dependent relationships.

BAN and BAN* classifiers in CBBN have the min. aver-
age classification error (4.554% and 5.058%), which means
that their general accuracy is better than other classifiers.
This is due to the fact that these classifiers allow unrestricted
dependencies between attributes and at the same time con-
siders the classification node as a parent for all other nodes.
This is useful in some data sets when weak dependencies ex-
ist between attributes but cannot be captured unless the state
of the classification node is given.

GBN classifier learned using MDL approach has the max.
average error (12.137%) (i.e., the worst general accuracy).
However, this accuracy is improved in GBN* using the CI
test algorithm since it has only (8.614%) average error. This
confirms that GBN classifiers built based on CI test learning
algorithm perform better than those built based on search &
score learning algorithms.

The indexing thresholdα affects the size of the outliers
clusters in a CBBN model. A large value forα is likely
to lead to a small size for the outliers cluster, which is de-
sirable, but will also make the descriptive attribute in the
indices rare. By contrast, a small value ofα will probably
simplify the classifier structure by assigning more attributes
to the index, but is likely to increase the size of the outliers
cluster. So there is always a tradeoff. In our experiments, we
adjustα such that the outliers do not exceed a predetermined
percentage (10%) of the size of the training set.
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Time Cost
SupposeN is the number of data objects in the training
set,r is the maximum number of possible values for an at-
tribute, andt is the number of iteration required for k-modes
to converge. We are interested in the construction time of
the model. In BN models, the construction time is only
the learning time which isO(Nn4rn) for unrestricted BNs
and onlyO(Nn2) for tree-structure networks. In our CBBN
model, the construction time is the summation of the clus-
tering time, the total learning time, and the indexing time.

The clustering time isO(tknN) wheret, k, n << N . It
is obvious that we will not waste too much time in clustering
because of the linearity of the running time of the clustering
algorithm we chose with the size of the data set. The total
learning time is the summation of the learning times needed
to learn a BN classifier from each cluster. The repetition of
the learning process is time consuming in CBBN models.
However, as we can see the learning time in the algorithms
mentioned above is linear with the number of data objectsN
and polynomial in number of attributesn. Since each cluster
is smaller in size than the original data set and represented
by a fewer number of nodes because of our indices, we con-
clude that the average time of learning from a cluster might
be much smaller than learning from a whole large training
set described by a large number of attributes. The only time
left is the indexing time. From algorithmsA andB this time
can be estimated asO(rnNk2) in the worst case.

Based on the above discussion, for sparse BNs, we would
expect a CBBN model to be expensive compared to a BN
model because of the indexing time and the repeated learn-
ing time. For dense BNs, we would expect some of the time
used in indexing and repeated learning in a CBBN model
to be compensated by the lengthy time to learn such a com-
plex BN model. For example, for the DNA data set with
60 attributes and 2000 data objects in the training set, it
takes 117 CPU seconds to build a BN-TAN, while it takes
374 CPU seconds to build a CBBN-TAN from four clusters.
For the same database, it takes 563 CPU seconds to build a
BN-BAN*, while it takes 957 CPU seconds to build CBBN-
BAN* which is only 1.7 times slower.

Conclusions and Future Work
In this paper, we have proposed a new approach to learn
Bayesian classifiers from data. This approach uses a cluster-
ing technique to organize the data into semantically sound
clusters, thereby representing the domain knowledge in a
more expressive and accurate way. In particular, using our
novel approach, we were able to learn Bayesian classifiers
that can capture finer levels of dependency assertions than
possible in traditional BNs. We have shown that being able
to represent such dependency relationships more accurately
can significantly improve the performance of our classifiers.

We plan to extend this work in the following directions:
We would like to study Bayesian multi-net classifiers since
we believe that they are a special case of our CBBN classi-
fiers.

We believe that the semantics of the case indices in
CBBNs are probabilistically sound. In fact, we will formally

demonstrate that CBBNs are a special case of Bayesian
Knowledge Bases (Santos Jr, Santos and Shimony 2003).

We will also explore multi-source data sets using our
CBBN classifiers. In such data sets, assuming fixed rela-
tionships among attributes for the whole domain is inappro-
priate. Different sources (i.e., experts) might have different
organizations for the domain, hence, they might allow dif-
ferent relationships among the corresponding attributes.

Finally, we suggested using the k-modes clustering algo-
rithm and ran our experiments with three different values of
k and withα adjusted by the user. Although we obtained
good results in all runs, there is no guarantee that these are
the best results possible. We would like to find a procedure
to optimizek andα for the best classification accuracy.
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