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Abstract 

This paper is an extension to and revision of Gonzalez 
and Ahlers’ [6] definition of the Context-Based 
Reasoning Paradigm.  Included are rigorous definitions of 
all terms and components applicable to CxBR models 
along with a discussion on how and where these models 
store and execute tactical knowledge.  In addition, new 
terms and concepts are introduced that justify the need for 
a revised specification and reflect the research done to 
and with CxBR over the past five years.  Finally, this 
paper includes a description of a physically implemented 
CxBR model, with an emphasis on how the defined 
components play a role in its functionality. 

Introduction 
We re-introduce here the technique of Context-based 
Reasoning (CxBR) [6].  CxBR is a reasoning paradigm 
that allows for intelligent agents to be modeled for use in a 
variety of environments and scenarios where tactical 
expertise is necessary.  After providing an overview of the 
paradigm and some related work in the field, each 
component of CxBR is introduced and defined in detail.  
An example CxBR model and interface is then given that 
ties together each component mentioned.  Concluding the 
paper is a discussion on the intrinsic and extrinsic 
knowledge representation properties of the CxBR 
paradigm. 

Motivation 
The motivation for CxBR is the idea that people tend to 
use only a fraction of their knowledge at any one given 
time [6].  For instance, let us consider an auto mechanic on 
his way to work.  While he needs to keep in mind rules of 
the road – following speed and caution signs, avoiding 
pedestrians and other obstacles, being mindful of the other 
drivers in the area – his knowledge of how to rebuild a 
car’s transmission is irrelevant with respect to his need to 
maneuver the road.  In creating a model for this 
mechanic’s behavior while driving to work, the 
representation of his expertise in fixing cars can be 
omitted.  On the other hand, such knowledge would be 

required for a CxBR representation of the mechanic’s day-
to-day activities.  While driving, however, our mechanic 
will not likely need to tap his technical knowledge. 

This idea lead to the concept of dividing the knowledge 
base into contexts is based on this idea.  Given any 
behavior to model, contexts represent exclusive behavior 
classes relevant to that behavior.  From that, the knowledge 
required to execute a specific behavior is confined to its 
representative context. 

While this paradigm benefits from its apparent 
intuitiveness, there are other advantages that make CxBR a 
viable solution, especially within the realm of tactical 
behavior.  First, de-composing a model’s behavior space – 
or behavioral capabilities – into contexts enables the model 
to carry a very broad understanding of its task.  While this 
understanding might, at times, be only on a general level, a 
context space representative of the entire domain in which 
the model is to operate, all but guarantees that it will 
operate on some level of intelligence at any point during its 
mission. 

There are many times where a certain skill may be 
helpful in more than one situation.  Furthermore, a certain 
behavior might be needed in a variety of tactical tasks.  
CxBR models, in this sense, are modular.  Contexts, which 
may have been constructed for one specific task, can be 
extracted from its model and inserted into a model for a 
new task in which that context is relevant.  Because of this 
feature, CxBR models greatly benefit from an object-
oriented software engineering approach. 

Overview of Context-Based Reasoning 
CxBR is a reasoning paradigm from which autonomous 
agents can be modeled to execute a specifically defined 
task in either a simulated or real-world environment.  The 
task assigned to the agent is encapsulated within a CxBR 
mission.  This mission provides for the agent both a set of 
goals, which represent the criterion for completing the task, 
and a set of constraints specific to that task.  Also present 
within a mission is a list of contexts that serve to partition 
the agent’s task-related knowledge by the situations under 
which it applies. 



A context represents a situation, based on environmental 
conditions and agent stimuli, which induces a certain agent 
behavior specific to that mission.  When an agent is 
executing a mission within CxBR, its behavior is 
controlled by the current active context, a determination 
made by context-transition logic.  At each time step, this 
transition logic examines the current stimuli on the agent 
and makes a determination of the active context for the 
subsequent time step.  This logic is often in the form of 
sentinel rules that contain the conditions for a specific 
context-to-context transition; however the transition logic 
is not required to be rule-based. 

Related Work 
Context Mediated Behavior (CMB) [14] is based on early 
work done in Context-sensitive Reasoning [15].  Contexts 
are captured and represented as context schemas (c-
schemas).  These c-schemas contain information regarding: 
important features to cause the c-schema to be active, 
standing orders, events, goals, and actions.  In addition to 
c-schemas, procedural schemas, p-schemas, are used to 
define actions for agents.  A context manager (CM) is used 
to reason about which c-schemas should be active for a 
given context. 

 Many of the concepts involved with CMB are parallel to 
that of CxBR.  One notable exception is the way that 
multiple c-schemas can be active or merged to create a new 
c-schema.  Also different is that c-schemas are used in 
much the same manner as cases in Case Based Reasoning 
(CBR).  This differs from CxBR in that Contexts in the 
implementation of CxBR provide a more active 
functionality.   

 There are many parallels between the design of SART’s 
[2] contextual reasoning and that of CMB and CxBR.  
Brézillon describes three major areas of knowledge 
representation: external knowledge, contextual knowledge, 
and procedural knowledge [3].  This is not different than 
the knowledge represented by CMB or CxBR except as a 
matter of semantics.  Procedural context knowledge is 
where an agent’s actions are defined.  Contextual 
knowledge includes what is analogous to transition criteria 
in CxBR and any knowledge necessary to reason about 
what procedural context should be used.  Brézillon [3] 
explains, “Proceduralized context defines what the focus of 
attention is, and contextual knowledge defines the context 
of the focus of attention.”  External knowledge is implied 
to be the knowledge known outside of contextual 
knowledge and procedural knowledge, such as particular 
elements of events or characteristics regarding the 
environment.  

CxBR Components 
The following subsections define each component modeled 
within CxBR, its function, and its relevance within the 
paradigm.   

Missions 
A mission, or mission context, is an abstraction defined 
within the model and assigned to a specific agent prior to 
run-time.  Included within a mission is the goal, any 
imposed constraints, and the context topology that will 
dictate the high-level behavior of the agent. 

The goal provides the agent with the criterion for 
mission termination – end-game conditions for the agent’s 
behavior.  For example, consider the assignment of a 
mission X in which the criterion for completing X would be 
to satisfy conditions a, b, and c.  Obviously, that goal can 
be represented formally using a Boolean function (e.g. 
goal_x = (a∩b∩c)) and embedded within a CxBR model 
to indicate whether or not the agent has satisfied the 
requirements of X.  While this expression can certainly 
encompass more exotic end-game criteria for a mission 
than the example above, the variables relevant to 
computing this goal state can certainly be reduced to a set 
of stimuli on and the current state of the agent performing 
X.  Because of this, the mission goal can be formally 
defined as a Boolean function g of a set of environmental 
and physical conditions E and P that exist at the time of 
query. 
 

goal = g(E(t0), P(t0)) 
 

In tactical missions, it is often the case where a ‘goal’ 
cannot be defined or is not applicable.  More specifically, it 
is not uncommon to assign an AIP with the mission of 
performing a certain task or behavior for an indefinite 
amount of time.  In this case, the goal can be construed as 
an end-game condition for the simulation or scenario.  If, 
for example, an agent representing a scout plane is 
assigned the mission of performing general reconnaissance 
on a particular area, the ‘goal condition’ might be defined 
as the point where the agent has either been shot down or is 
ordered to discontinue the mission and return to base.  

The constraints on the mission provide the AIP with a 
set of guidelines for operation.  These constraints can be in 
the form of physical limitations placed on the sensing 
faculties of the agent, maximum and minimum counts for 
scenario-specific entities such as obstacles or enemies, or 
even map boundaries within which the AIP is required to 
operate.  We can consider the constraints on the mission M 
to be the union of the set of physical, environmental, and 
logistical constraints (denoted Tp, Te, and Tl) placed on the 
agent as required by its mission.  In this definition, a 
constraint c provides the AIP with either a constant value 
or a range of valid values for a certain variable within the 
simulation. 

constraints = { Tp, Te, Tl } 
 

While the notion of a context will be formally introduced 
in the following section, it is important to mention it here, 
as it is an essential part of the mission.  It was mentioned 



earlier that to model a behavior with CxBR, that behavior 
must have the quality that it can be partitioned into sections 
representing all possible situations; these sections in sum 
represent completely that behavior.  The reason for this 
requirement is that the behavior or task, as represented by 
any CxBR model, must be defined completely by the 
contexts that constitute it.  It is because of this that the 
mission is also responsible for listing the contexts that are 
required to correctly execute the model’s behavior in that 
mission.  A default context is also listed within the 
mission, which is a behavior that the model can execute 
when it is unsure of a behavior to use for a certain 
situation.  This context is also used as the initial context for 
the agent when it begins a scenario unless a more 
applicable context can be selected.   

The mission defines the high-level behavior of the agent 
by assigning it both a set of contexts and context-transition 
pairs, which indicate the specific context switches that will 
be allowed during the scenario.  For example, consider the 
following two sets.  The set Cx represents a set of five 
distinct major contexts present in a mission Mx, while set 
Tx includes all possible context-transition pairs applicable 
while executing Mx. 
 

Cx = {c1, c2, c3, c4, c5} 
Tx = {<c1,c4>,<c2,c3>,<c3,c1>,<c4,c2>,<c4,c5>,<c5,c1>} 

 
Since the context-transition pair <c1, c4> is a member of 
Tx, context c4 is an applicable transition from context c1.  
In other words, if the agent is currently operating in 
context c1, it is possible to switch contexts at a given time-
step t0 to context c4, if certain conditions exist at t0.  The 
logic used to trigger these pairs is known as context-
transition logic, and will be defined in the next section. 

A CxBR model’s context topology CTx consist of a set of 
contexts Cx, along with the set of context-transition pairs 
Tx, the Default Context (cDX), and the scenario’s universal 
transition criteria UTCx.  CTx, along with the goal 
conditions and constraints, comprises mission Mx.   

 

CTx = <Cx, Tx, cDX, UTCx > 
Mx = <goalx, constraintsx, CTx > 

Contexts 
A context is a set of environmental and physical conditions 
that may suggest a specific behavior or action [6].  Within 
a CxBR model, however, a context is a functional state 
induced as a result of these conditions.  Contexts are 
inserted within a mission to represent all possible 
conditions that can arise during the course of that mission.  
This ensures that a model can exhibit intelligent behavior 
no matter what occurs during mission execution.  

CxBR models are constructed such that a single context 
is active at any one point during a scenario.  It is said that a 
context within the model is ‘active’ if the conditions 

implying its validity exist and the agent is using its 
included knowledge to make decisions within a scenario.  
That context is then denoted the current active context. 

The knowledge engineer responsible for creating the 
model is in charge of defining and creating each context.  
Because of this, contexts themselves are often intuitive 
subsets of the behavior to be modeled.  When encoding the 
knowledge for these contexts, the idea is to achieve a 
model that can take the same actions that an expert might 
take when in the same situation.  Consider a mission M 
with context set C = {c1, c2…cn}.  While the division of 
knowledge represented by these contexts is in the extreme 
case arbitrary, the knowledge engineer responsible for 
constructing the model will likely partition each context in 
a manner consistent with his understanding of the mission.  
Furthermore, the context-space might also be partitioned so 
that each context is coupled with a specific task or 
behavior that is necessary for the mission.  This technique 
is often used for tactical models in which the sequence of 
activities and behavior is well known and bounded, and 
also where the mission itself entails the execution of a 
series of sub-tasks.  It is important to note here, however, 
that the context-space must partitioned in order to represent 
all possible situations that may exist for the agent during a 
scenario – not simply to divide all possible actions that the 
agent might take.  This is to ensure that the behavior space 
of the agent is completely spanned by the set of contexts 
and no situation within a scenario leaves the agent without 
an appropriate contextual response. 

Within a CxBR model, individual contexts are nothing 
more than conduits between the current set of stimuli 
facing the agent and the behavior that will be executed in 
response.  When a CxBR context is declared active, it 
references the appropriate behavior modules and fact-
bases, which in turn provide it with the correct course of 
action.  The command for that action is then passed from 
the context to the agent’s interface for execution.  The 
context will continue to repeat these steps until a different 
context is denoted as active. 

An active context controls the agent by referencing 
various knowledge and action modules.  These modules 
are not restricted to a specific form – inference engines, 
neural networks, and expert systems are all valid modules.  
Using these modules along with a local fact base present 
within the agent interface, the active context derives an 
appropriate action.  Restated, the context logic for a 
context is composed of the control functions, knowledge 
and action rules that constitute the AIP’s ‘behavior’ within 
that context.  We define FMC as the set of functions that 
control the AIP under a specific active context, such that 

 
CFMC = {cf1, cf2, c3, …, cfn} 

 
Furthermore, we define the set of action rules for a 

specific context as ARMC.  Action rules are general purpose 



productions used for among other things, Sub-Context 
activation.  They can use facts located in the agent’s local 
fact base, or local variables in the functions that form part 
of FMC.  Some implementations of CxBR may additionally 
contain a global fact base upon which facts accessible to all 
models may reside.  Action rules may also use facts on the 
global fact base as antecedents.  Thus, we can define 
ARMC as: 
 

ARMC = {ar1, ar2, ar3, ar4… ark} 
 
Lastly, we define the knowledge contained by the Major 

Context as a set of frames or classes whose attributes and 
methods/daemons are essential elements of the tactical 
knowledge required to successfully navigate the current 
situation.  We refer to this knowledge, for lack of a better 
name, as Knowledge Frames or KFMC. 

Therefore, the Context-logic which controls the actions 
of the AIP while under the control of a Major Context is 
formally defined as: 

 
Context-logic = < CFMC, ARMC, KFMC> 

Sub-Contexts.  CxBR supports the use of context-like 
structures, known as Sub-Contexts, which encompass a 
small functional section of a context not directly critical to 
the mission objectives.  These structures share logical 
similarities to contexts, but lack many of their attributes.  A 
Sub-Context is called upon, like a function, to perform a 
subtask deemed necessary in the logic by a context.  
Unlike contexts, however, one Sub-Context does not need 
to be active at any given moment.  Furthermore, when a 
Sub-Context has finished executing, it is immediately 
deactivated and control shifts back to the Major Context 
that called it.  In terms of its role, it is more convenient to 
think of Sub-Contexts as user-defined functions that are 
slightly more complex and specific to the model’s mission.  
However, unlike user-defined functions - whose scope is 
typically the context that uses it – Sub-Contexts can be 
used by any context present within the model.  This 
enhances re-usability of components in the model.  
Nevertheless, we can represent the Sub-Context by a 
vector function - whose input is an action rule of the 
calling context. 

theSubContext0 = f0 (ARMCi) 

Context Moderators.  A context moderator is an abstract 
operator that can be applied as a parameter to either a 
CxBR model’s context transition logic or to the functions 
and actions called upon by the active context selected. 
As a result, these moderators have the ability to either 
affect decision-making after an active context has been 
selected (functional moderators) or to affect the context-

transition logic itself (context-transition moderators).    
These moderators are often embodiments of stimuli not 
directly associated with the assigned mission but 
nevertheless have an affect on an agent’s behavior.  An 
example of such moderators are human moods and 
emotions, which were integrated into a CxBR model as 
both functional and context-transition moderators in [10]. 

Context-Transition Logic 
The selection of an active context during a scenario is 
controlled by the context-transition logic.  Knowing the 
active context and the recent stimuli on the AIP, the 
context-transition logic selects the appropriate context 
transition amongst the pairs listed by the mission. 

Context-transition logic is permitted to take any form 
within a CxBR model, so long as a context is chosen at 
each time step.  The most popular representation of 
context-transition logic is through the use of sentinel rules 
and universal sentinel rules.  
 
Sentinel Rules.  With this implementation, the knowledge 
containing conditions under which a context transition is 
required are called sentinel rules, or transition sentinel 
rules.  Sentinel rules indicate when the appropriate 
conditions for each applicable transition (each context-
transition pair provided by the Mission) hold true.  If, for 
instance, the mission provides a context-transition pair for 
context c1 to c3, a sentinel rule will be present within c1 that 
monitors for the conditions warranting a transition from c1 
to c3.  If that condition arises, the transition sentinel rule 
corresponding to that pair will fire, and a transition will be 
instantiated.   

Sentinel rule antecedents may include the fact-base of 
the current context and the current status of the agent (e.g. 
inputs, physical state and location).  While often there are 
fixed conditions for transitioning to a given context, 
sentinel rules are unique to the context where they exist.  
This feature allows the agent to function in more complex 
tactical domains where transitions to a context might be a 
consequence of two entirely different motivations. 

When sentinel rules are implemented within a mission 
Mx, the CxBR model provides a set Sx of transition criteria 
that represent the conditions necessary for each transition 
listed in Tx (the set of legal context-transitions).  
Representing the rule defining the transition criteria from 
context ci to cj as sij, we can define the set of sentinel rules 
Sx as the combination of all sij where <i, j> is a member of 
Tx (i.e. if <i,j> is a valid transition within mission Mx). 

 

Sx = U
xMjiji
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ij
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In many tactical scenarios, there exist conditions that 

require the agent to perform a certain task or behavior 



without considering its current context.  To account for 
such conditions, universal sentinel criteria are encoded 
within the mission.  These criteria dictate whether the 
agent should shift to a certain context regardless of its 
current active context, and hold precedence over all other 
transition criteria.  When sentinel rules are used to 
represent a model’s transition logic, universal sentinel 
criteria are encoded by a set of universal sentinel rules.  
Universal sentinel rules define conditions under which the 
model must transition to a certain context irrespective of 
the current active context. 

 
USj = U

j

 usrxj 

 
Transitional Fuzzy-ART Templates.  While sentinel 
rules are the most popular form of context-transition logic 
within CxBR models, there are other ways to achieve a 
similar functionality.  Stensrud [8] describes a learning 
algorithm by which context-transition logic can be 
constructed automatically by observing an expert’s 
behavior in a simulation.  More specifically, the actions 
and stimuli of an expert are fed into a Fuzzy ARTMAP 
neural network in order to create a mapping between the 
stimuli on the agent and the specific high-level decision 
made by the expert in response.  CxBR contexts are 
created a priori and are designed to correspond to a set of 
actions that may be necessary to complete a task.  The 
decision of the expert to change his action is identified as a 
possible context transition and fed into the neural network 
along with the inputs that prompted the expert’s decision. 
After the completion of the observational phase, the set of 
Fuzzy ARTMAP templates created within the neural 
network represent the context-transition logic used by the 
expert.  That logic is then plugged-in to the CxBR model (a 
model designed to imitate the observed expert) along with 
the other pre-existing contexts.  When this model is 
executed, context transitions can be determined simply by 
supplying applicable inputs to the neural network.  

Agent Interface 
CxBR models represent low-level functional intelligence 
through an agent interface that serves as a medium 
between the model and the physical or simulated agent.  
This low-level intelligence represents the physical 
capabilities of the agent it models – moving, turning, 
stopping, firing, etc.  While these functions are used to 
carry out the assigned mission, they are not considered 
tactical intelligence and are therefore stored externally to 
the model.   

When an autonomous agent is executing a scenario, its 
controlling CxBR model is continuously determining an 
appropriate course of action based on its current active 
context and relative stimuli.  The actions selected by the 

model are represented in terms of the low-level commands 
represented in the interface. 

Also present within the agent interface is the raw data 
representative of the states of both the agent and the 
surrounding environment.  For example, for a mission 
defined to drive a vehicle to work, data representing the 
agent’s speed, location, and distance to work would be 
stored in the interface module as well as any information 
on the current traffic environment, nearby pedestrians, and 
the like. 
 
A CxBR Model.  Figure 1 is a block diagram of a generic 
CxBR model that can be generated using the current 
framework created by Norlander [11].  This framework 
serves as both an engine for CxBR models as well as a 
foundation on which they are constructed.    

The agent interface module stores any sensor data that is 
read-in by the agent, and includes any necessary low-level 
functionality needed to implement the actions indicated by 
a context.  When a model is run, this module is instantiated 
and assigned a mission.  The CxBR model controls the 
agent by calling for actions in terms of the functions 
defined within this interface.  

 
Figure 1 - Block diagram of a CxBR model 

 
As illustrated, CxBR missions define a context topology 

for the model as well as valid context-transition pairs 
(illustrated by the dashed lines); agent constraints, 
universal sentinel rules, and mission objectives (goals).  
They are also responsible for identifying the Default 
context, which is the context that the agent will operate in 
at the start of the scenario.  If no sentinel rules fire within 
the current context and it is also found that the current 
context is not valid, the model will revert to this default 
context.   

As an example of a CxBR model, we present the iRobot 
Scenario developed in [14].  This scenario was an exercise 
in implementing a CxBR model on a physical platform.  In 
this scenario, the mission is to maneuver an iRobot around 
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an open area looking for a single enemy entity.  Upon 
detection, determine the hostility level of the enemy.  If it 
approaches, consider it hostile and retreat. If the enemy 
retreats, follow it at a close distance. If the enemy is not 
responsive (i.e., stationary), execute an end of mission 
signal and retreat to the original starting position.  The 
context topology for this scenario is provided as Figure 2.  
The agent interface connects the CxBR model to the 
iRobot and defines its low-level functions (move, turn, 
activate sonar). 

 

 
 

Figure 2 – Context Topology for iRobot Scenario 

Knowledge Representation in CxBR 
As alluded-to in the previous sections, the CxBR paradigm 
itself provides a way of representing knowledge through 
the use of the agent, mission, context, and context 
moderator objects.   

At some level, knowledge is contained in all CxBR 
components.  Some of this contained knowledge is directly 
responsible for the action of the agent, such as the high-
level behavioral knowledge represented within Contexts.  
Other knowledge contained in these CxBR Objects is 
concerned with the dynamics of the paradigm itself, such 
as the context topology contained in the Mission Object.  
Regardless of whether the knowledge is used for directly 
controlling the agent or the dynamics of the paradigm, 
CxBR does not constrain nor specify the use of any 
particular type of knowledge representation paradigm. 

The importance of not demanding a specific knowledge-
representation paradigm is in the flexibility offered to the 
modeler.  Any knowledge or associated reasoning 
mechanisms employed must be determined by the 
knowledge engineer responsible for model construction.  
For simple systems, a rule-based structure may prove to be 
the most efficient.  However, if learning is to be 
incorporated or the details of decision-making are not 
easily classified in terms of rules, a structure such as a 

neural network may be employed.  Both of these 
paradigms have been successfully integrated with CxBR 
models in the past (see [7], [11], [12]).  Again, the CxBR 
paradigm itself does not limit the type or types of 
knowledge representation used; rather it is a decision to be 
made based on the requirements of the model being 
constructed. 

Agent’s Extrinsic Knowledge 
Each agent is aware of its current Mission at any given 
time.  Missions, contexts, and context moderators are 
objects in CxBR that support the autonomous behavior of 
an agent.  Their interrelated nature and interdependencies 
are depicted in Figure 1.  As a brief oversimplification, a 
mission is composed of a set of contexts, which themselves 
can be modified by one or more sets of context moderators. 

As shown in Figure 3, a Mission contains the following 
knowledge: the agent’s high-level goal, mission 
constraints, and the context topology.  Contexts contain 
high-level behavior representation, sub-goals, context 
transition topology, context transition criteria, and context 
moderator affects.  Context moderators are new to CxBR 
and provide an optional way of expanding the richness of 
agent behavior through influencing context transition logic 
and intra-context behavior.   
 

 

Figure 3 – Knowledge Schema for a CxBR Agent 
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Agent’s Intrinsic Knowledge 
We define low-level behaviors as behaviors closely 

related to dynamic physical and behavioral characteristic 
of the agent.  Such behaviors may include motor skills, 
sensory data, what the agent perceives about its world, 
environmental knowledge, or even what the agent 
remembers with regard to its historical perception of the 
world These low-level behaviors are fundamental in 
defining the agent.  This is true in the sense that the agent 
is defined by the low-level behaviors of which it is capable 
and, also, in the sense that the constraints of the behaviors 
themselves further define the agent.  Consider a behavior 
such as movement and a corresponding function move() to 
represent this behavior.  Different agent types should be 
characterized in distinctly different ways by how move() 
defines them.  For example, move() to a helicopter allows 
for three dimensional movement through space, but there 
are certain constraints that must be adhered to regarding 
maximum velocity, maximum altitude, attitude of the 
aircraft, etc.  A fish would also have a low-level behavior 
defined by move(). However, the maximum velocity or 
maximum altitude of a fish will obviously differ from that 
of a helicopter. 

In addition to low-level behaviors, in CxBR each agent 
has some perception of and knowledge about its 
surrounding world.  What is of particular importance here, 
as in the other areas of knowledge representation employed 
by CxBR agents, is the flexibility the modeler is permitted 
in choosing knowledge representation paradigms.  The 
method in which memory is implemented for a model is 
not constrained by the CxBR paradigm.  A set of data 
structures stored in memory could be used to allow fast 
retrieval of information.  Alternatively, a database could be 
interfaced with the model to allow storage and retrieval of 
large quantities of data.   

Conclusion 
Context-Based Reasoning is an intuitive and effective 
means by which to model tactical behavior in either 
simulated or real-life scenarios.  Introduced in this paper is 
a formal definition of the CxBR paradigm as it applies to 
creating CxBR models for use on autonomous agents.  
Both the paradigm and the current modeling framework 
have proven to be compatible with expansion and change, 
which will allow CxBR to remain a viable and effective 
human-behavioral modeling paradigm throughout the years 
to come. 
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