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Abstract

People have the ability to perceive biological motion under
conditions of severely limited visual information.  If the
information is in the form of a point-light motion sequence
of a human walker or jogger, perceptual discontinuities are
barely noticeable.  This phenomenon can be simulated for a
machine perceptual system by using a recurrent artificial
neural network.  A feedback connection from the output of
the hidden layer to the input of the hidden layer provides
the network with information about past events that can be
used to classify an entire sequence of events.  In this case,
the discrete events are the x,y-coordinates of the point-light
displays during a specific motion sequence.
Generalizations about temporal as well as spatial patterns
can be made that enable the network to classify an input
sequence as being either biological or non-biological in
nature.

Introduction
Biological motion perception refers to the phenomenon
that people are able to recognize biological motion from
severely impoverished stimuli consisting of only a few
points of light attached to a human walker's major joints
and head.  The perception one has is not of a sequence of
disjoint and randomly moving points of light, as might be
expected, but of a coherent sequence of plausible human
motion.  The perception  of motion in this case relies upon
the integration of spatial cues over time, and not just on
the static display of the light points presented one after the
other in succession.  Thus, time plays an important role in
human cognition.
    Johansson  (1973) was the first to show that severely
impoverished stimuli in the form of points of light
attached to the major joints and head of a human walker
are sufficient for the recognition of biological human
motion. The time course of the perceptual response was
found to be less than one second.  The explanation for the
rapid response to such a restricted set of stimuli rests upon
the recognition that the organization of the dot pattern
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follows strict mathematical laws of relative coherence
among the dots.  The ease of detectability is a result of our
intuitive understanding of these laws.
    In a more recent study, Neri, Morrone, and Burr (1998)
found that biological motion detection requires the
simultaneous analysis of the motion of more than one
joint.  Detection depends upon virtual links that exist
between the joints.  Increasing the number of illuminated
joints causes a rapid increase in the sensitivity to
biological motion, i.e., people can more readily detect
biological motion when more points are presented.  This
sensitivity increases at a rate much greater than the rate of
sensitivity to other types of non-biological rigid motion
detection, suggesting that biological motion perception
may represent a fundamental property of cortical function
and an important evolutionary objective.
    Pavlova et al. (2001) tested children, three to five years
of age, and adults for sensitivity to biological motion from
point-light displays.  The displays consisted of either
people walking on a treadmill, dogs walking or running, or
cartoon birds moving.  Static displays were also used in
the study for comparison purposes.  The recognition of
biological motion was near perfect for the motion
sequence, whereas recognition for the static displays was
near chance.  This suggests that the dynamic nature of
presentation is a critical component in the detection
process.
    Vaina et al. (2001) used whole-brain functional MRI
(fMRI) scans of individuals engaged in the detection and
recognition of biological motion from point-light displays.
The goal was to discover which parts of the brain are most
active when an individual is presented with such a display.
The method they used involved comparing the brain
activity of subjects while they were engaged in a task that
required them to distinguish between a walker and a non-
walker from a point-light display.  Brain activity involved
both the dorsal and the ventral extrastriate areas, and the
activity was distributed across both of these regions.
    Grossman et al. (2000) also used fMRI to isolate the
cortical areas associated with the perception of biological
motion.  Activation was located in the STS region, as well
as the MT/MST region and the kinetic-occipital (KO)
region.  More activity was found in the right hemisphere



than in the left hemisphere, suggesting that spatial analysis
may play a role in the detection process.
    Giese and Poggio (1999) and Giese (2000) created an
artificial neural network that is a plausible model of brain
functioning during the recognition of biological motion.
The model simulates processing along the ventral and
dorsal pathways, which allows the simultaneous
processing of both form and motion information.  A
dynamic recurrent network was used that is hierarchically
organized into three layers each for the form (ventral) and
motion (dorsal) pathways.  Lateral recurrent connections
between the two pathways allowed for the temporal
association of information.

Model Description
The purpose of this study is to create a simulation of
human detection and classification of point-light displays
of motion patterns for a machine perception system.  A
recurrent neural network based on the Elman network was
designed and used for this study.  The purpose of the
network is to decide whether or not a given recurrent input
sequence corresponds to biological (human) motion.
    An Elman network is a two-layer back-propagation
network that has a recurrent connection from the output of
the hidden layer to the input of the hidden layer.  Neurons
with tangent-sigmoidal activation functions are used in the
hidden (recurrent) layer, and neurons with linear activation
functions are used in the output layer.  This configuration
allows the network to model and detect non-linear as well
as linear functions of time.  The recurrent connection in
the first layer allows for a delay, which provides the
network with the capability of storing values from the
previous time step and combining those values with the
current input for prediction purposes.
    Elman (1990) has suggested that time should be
represented in a network by the effect that it has on
processing.  The goal of an Elman network is to enhance
the ability of the network to process time-varying inputs
by giving the network dynamic properties.  In effect, the
network gains the ability to remember past events, and
uses that memory to predict future events.  It is the
recurrent connections in the network that allow the system
to remember past events, and enables future behavior to be
shaped by previous responses.
    This type of network is ideal for the detection of
biological motion from impoverished stimuli, because the
detection is highly dependent upon the time-varying
nature of the stimuli, as well as the spatial relationship
between the various input points.

Method

Data Collection
Eight sequences of biological motion were captured using
a SONY Digital Handycam® camcorder.  All of the
sequences were recorded in the NTSC video format at 30
frames per second.
    The first four sequences were each of a (different)
person walking on a treadmill at a rate of 3 miles per hour.
Sequences 1 and 3 were of a (different) female person
walking, and Sequences 2 and 4 were of a (different) male
person walking.  The camcorder was held stationary on a
tripod and recorded a side-view of the person facing
straight ahead while they walked.  The direction of
walking was to the left in the camera frame of reference.
The second four sequences are sequences of non-walking
motion tasks.  Sequence 5 is of a person skipping rope,
Sequence 6 is of a person performing jumping jacks,
Sequence 7 is of a person jogging in place, and Sequence
8 is of a person swinging on an outdoor swing.  From the
eight sequences, there were a total of five different human
motion tasks.
    After the video sequences were recorded, a ten second
segment (300 frames) was extracted from each sequence.
For each sequence, the entire image set of 300 images was
sub-sampled (every second and third image was deleted)
to lower the temporal resolution to ten images per second.
This was done to improve the processing speed for each
sequence, and does not affect the perception of smooth
motion (Palmer, 1999).  Ten points of light were manually
selected for each image to coincide with the major joints
and head of a person in motion.  Figure 1 shows a point
light display taken from each of the five motion tasks, and
an example of a non-biological motion sequence.

Figure 1.  Point-light displays for five human motion tasks, and
non-biological motion.  Top row: walking (left), skiping rope
(right).  Middle row: jumping jacks (left), jogging (right).
Bottom row: swinging on a swing (left), non-biological (right).



   The points were selected in the same order for all of the
images in a single sequence.  For example, a given order
might be: head, left shoulder, left elbow, left hand, right
elbow, right hand, left knee, left foot, right foot, and left
foot.  As the points were selected, matrices of the x- and y-
coordinates were created.  Each row of the matrix is a
vector of the x- or y-coordinates of the points selected
from a single frame.  Each column of the matrix is a
vector containing the x- or y-coordinate of the same joint
over an entire motion sequence.  Since 10 points were
selected, and each sequence consisted of 98 frames, the
size of each matrix is 10 x 98.  The two matrices, taken
together, provide the information that is used for the input
to the neural network.

Network Design
A two-layer recurrent network, also known as an Elman
network, was created for the motion perception.  The first
layer (not including the input layer) is the hidden layer and
has ten neurons, one for each joint point.  The hidden layer
is also the recurrent layer, and uses a tangent-sigmoidal
activation function.  The second layer is the output layer
and has a single neuron with a linear activation function.
The weights and biases were initialized using the Nguyen-
Widrow layer initialization method (Nguyen and Widrow,
1990).
    The weights and biases were updated using back-
propagation, along with a gradient descent learning
function that used momentum and an adaptive learning
rate.  Both the training function and the adaptation used an
approximation of the gradient, not the actual gradient, to
determine the weight and bias updates.  An approximation
is used because the error from the recurrent connections is
ignored when calculating the gradient, which allows the
network to learn more efficiently.  This has the
disadvantage of making the network less reliable than it
would be if there were no recurrent connections, however
the disadvantage can be overcome if more neurons are
used in the hidden layer (Demuth and Beale, 2000).

Network Training

The input to the network is a sequence of numbers that
represents the x- and y-coordinates of the joint points from
a motion task. The x- and y-coordinates are scaled to
range from 0 to 1 before they are input into the network.
It was found empirically that an input range from 0 to 1
allows the network to learn most quickly.
    After scaling, the Euclidean distance is found from each
point of light to the upper left corner of the display, which
provides a reference coordinate.  The distances taken
together provide a frame-of-reference for the purpose of
binding together all points from a single sequence into a
coherent display of motion.  The binding of the
coordinates used in conjunction with the spatial

relationship between the joint points describes coherent
biological motion.  This provides the information used by
the recurrence relation and defines the network behavior.
    The network was trained on two examples of valid
biological motion (Sequences 1 and 2) as well as on two
examples of non-biological motion.  The non-biological
sequences were created by randomly permuting the x- and
y-coordinates of the joint points.  That is, the x-
coordinates were shuffled and the y-coordinates were
shuffled, and then they were randomly matched together.
For example, the x-coordinate of the head point might be
matched to the y-coordinate of the knee joint.  This
procedure destroys the binding of the coordinates and thus
the coherence of the biological motion pattern, yet
contains the same absolute information as the valid
sequence.  The perception one has when viewing such a
sequence is that the motion is not biological in nature,
despite a distinct perception of some other type of
coherent motion.
    The network was trained on two examples of the
walking sequence and two examples of the non-biological
(randomized) sequences.  The non-biological sequences
used for training were created from the walking sequences
used for training.
    The network trained in a reasonable amount of time (70
to 85 seconds) and the summed squared error was
stabilized to approximately 0.1 after 110 training epochs.
Figure 2 shows the summed squared error of the network
as training progressed.

Figure 2.   The summed squared error during training of the
network designed to perceive biological motion.  SSE stabilizes

to 0.1 after 110 training epochs.

Results

Testing the Network

The network was first tested on the training data to ensure
that a specific input would give the correct classification.
Sequences 1 and 2 (both walking) were used as the valid
training data and a randomized version of Sequences 1 and
2 were used as the invalid (non-biological) training data.
The network was trained to output +1 if the input data is



biological in nature and –1 if the input data is non-
biological in nature.  During the training stage, the
network was sequentially presented with the four training
sets, alternating a valid sequence with a non-valid
sequence.  Each sequence was input into the network
sequentially, beginning with the first frame of the motion
sequence, and ending with the 98th frame of the sequence.
Figure 3 shows the output of the network after testing the
network on the trained data.  Time steps 1 – 98 and 196 –
293 correspond to a valid motion sequence, and time steps
99 – 195 and 294 – 391 correspond to the invalid,
randomized sequences.  As expected, the training data is
correctly classified.

Figure 3.  Testing the network on the training data.

Sequences 3 and 4 (also walking) and the randomized
versions of these sequences were used to test the network
on newly presented data.  Figure 4 shows the output when
the network was presented with these sequences.  The
network correctly classifies these sequences as either valid
biological walking motion or invalid, non-biological
walking motion.

Figure 4.  Testing the network on unknown data.

Generalization of the Network
It is apparent from figures 3 and 4 that the network has
correctly learned the temporal and spatial patterns of the
joint movements associated with a person walking on a
treadmill at a speed of 3 miles per hour.  It is possible that

the network has over-learned this one specific task and
will not generalize well to other kinds of human motion
tasks.  Therefore, the second set of non-walking motion
sequences was input to the network to test the
generalization capabilities.  These sequences consist of a
person jogging, a person skipping rope, a person
performing jumping jacks, and a person swinging on a
swing.  Randomized versions of these motion sequences
were not used as input to the network for either training or
testing.
    The results are shown in figure 5, and suggest that the
network has learned some generalization of the training
data.  For the jogging sequence the motion was classified
as being definitely biological in origin.   This is likely
because the movement of joints during running is similar
to the movement of joints during walking.  For the
skipping rope sequence, the classification is also
biological.  For the jumping jacks sequence the
classification is not entirely biological, and the network
seems to have moments of “doubt” during portions of the
sequence when the arms are in the upward position.
Despite this, and despite the fact that the viewpoint is
frontal rather than sideways as in the walking sequence,
the network still classifies the motion as being mostly
biological in nature.  Finally, in the swinging sequence,
the network alternates between classifying the motion as
being biological when the person on the swing is in the
downward position, and not biological when the person is
swinging in the air.  This is probably because the network
was trained on data where the center of gravity of the joint
points was close to the center of the frame.  During
swinging, the center of gravity moves upward and to the
far left or far right of the frame.  This is a positive
generalization feature of the network because human
biological motion does not usually include flying in the
air.

Conclusions
A recurrent neural network in the form of an Elman
network is able to correctly identify and classify human
biological motion that is similar to walking.  An
application of this type of network for the solution of a
real-world problem would be to use the network in
conjunction with a video camera to monitor a geographic
area for the presence of people walking by, where there
may be other kinds of motion in the background.  For
example, it may be desirable to distinguish between a
person walking by and a truck or bicycle crossing the path.
A surveillance camera used with this type of neural
network could successfully determine the presence or
absence of people walking by when other types of motion
are present.



Figure 5.   Testing the generalization of the network on other human motion sequences.

    Additional work on the design could include an
algorithm to automatically extract the joint-points from the
video images, and a means of determining the fewest
number of points that can correctly classify the input.
Other areas of investigation could include presenting the
joint-points in a field of other randomly moving points of
light to determine if the network is able to segment the
biological motion from the random motion.  Also,
changing the direction of the motion may affect the
network generalization capabilities, and occlusions might
result in occasionally missing points, effecting the
classification.  These issues need to be considered.
    Other types of biological motion, such as a cat running
or a bird flying, could be included in the model.  Another
interesting application would be to combine a recurrent
neural network with a Bayesian network to determine
certain properties of the motion sequence, based on
evidence gathered from the temporal and spatial
relationship between the joint-points.  For example, using
this type of network it may be possible to correctly guess
the weight of a box being lifted, solely from the motion of
the joints of the lifter.
    It may be advantageous to incorporate top-down
influences, such as an attentional mechanism, into the
design.  This would reduce the number of joint-points to
only those that are necessary for a specific action-

perception task.  This constrains the amount of
information that the  network requires to  properly classify
the motion.  Fewer, yet more relevant, input coordinates
may enable the network to learn a broader class of motion
inputs, and therefore improve generalization capabilities.
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