
Rule Extraction From Dynamic Cell Structure Neural Networks Used in
a Safety Critical Application

Marjorie Darrah, Brian Taylor, Spiro Skias

Institute for Scientific Research, Inc.

Fairmont, WV 26554
mdarrah@isr.us, btaylor@isr.us, sskias@isr.us

Abstract
This paper describes an algorithm to extract rules from a
dynamic cell structure (DCS) neural network and the
rationale for extracting these rules. The DCS is a form of
self-organizing map (SOM) neural network that has been
used in a real-time adaptive flight control application. The
purpose for extracting rules in this instance is to determine
whether such rules, along with other techniques, could be
used in the verification and validation (V&V) of a neural
network being used in a safety-critical role. This paper will
explain the intelligent flight control application of the DCS,
describe the method used for rule extraction, provide
experimental results of the rule extraction techniques
applied to several data sets, and examine the relevance of
the rules to the V&V process.

Introduction
Neural networks are members of a class of software well
suited for domains of non-linearity and high complexity
that are ill defined, unknown, or just too complex for
standard programming practices. Verifying correct
operation of neural networks within projects such as
autonomous mission control agents, vehicle health
monitoring systems, adaptive flight controllers, or nuclear
engineering applications requires a rigorous approach.

Testing the neural network with similar data like that
used in training is one of a few methods used to verify that
a network has adequately learned the input domain. In non-
critical applications, such traditional testing techniques
prove adequate for the acceptance of a neural network
system that has been trained using input conditions that do
not vary from operational conditions. However, in more
complex, safety- and mission-critical systems, the standard
neural network training-testing approach alone is not able
to provide a reliable method for their certification.

The V&V challenge is further compounded by
adaptive neural network systems that modify themselves,
or “learn,” during operation. Traditional software
assurance methods fail to account for systems that change
after deployment.

We have investigated a set of techniques known as

 Copyright ©, American Association for Artificial Intelligence
(www.aaii.org). All rights reserved.

neural network rule extraction to determine their
usefulness toward the V&V of neural networks in safety-
critical applications. Neural network rule extraction is a
technique that translates the decision process of a trained
neural network into an equivalent decision process
represented as a set of rules. The technique of rule
extraction has been used to model the knowledge that the
neural network has gained while training or adapting. The
rules extracted are generally represented by a set of if-then
statements that may be examined by a human. If the neural
network is fixed after training then the rules should, with
some confidence level, model the way the neural network
will handle other data that is processed. If the neural
network is an online adaptive neural network, then rule
extraction can be done for one point of time to establish
what the system looks like at that instance. Repeated
application of rule extraction could yield an understanding
of the progression of the network during adaptation.

There are many researchers investigating the area of
neural network rule extraction (Towell and Shavlik 1993,
Thrun 1993, Andrew, Diederich, and Tickle 1995,
Carpenter and Tan 1995, Wettayaprasit and Lursinsap
2002). The techniques developed thus far are very neural
network specific. Two specific rule extraction techniques
seemed closely related to our work. One was used to
extract rules from a local cluster neural network and the
other from a radial basis neural network; both are similar to
the DCS.

One technique, RULEX, was applied first to a
constrained error backpropagation multilayer perceptron
(Andrews and Geva 1995) and then to a local cluster neural
network (Andrews and Geva 2002). Another technique
related to our effort is LREX, used to extract rules from
radial basis function (RBF) neural networks (McGarry,
Wermter, and Macintyre 1999, 2001). Although these
approaches seemed to be related to our task of extracting
rules from the DCS, both techniques were too specific to
be directly applied. Therefore, a new technique had to be
developed for rule extraction from the DCS.

Application of Neural Networks to Intelligent
Flight Control Systems

The Intelligent Flight Control (IFC) project is working
towards developing of a real-time adaptable flight control

system utilizing neural networks (Song et al. 2002). This
project is a collaborative effort among the NASA Dryden
Flight Research Center (DFRC), the NASA Ames
Research Center (ARC), Boeing Phantom Works, the
Institute for Scientific Research, Inc. (ISR), and West
Virginia University (WVU). The first generation flight
control concept (GEN1) was designed to identify aircraft
stability and control characteristics using neural networks,
and use this information to optimize aircraft performance
in both normal and simulated failure conditions.

Two types of neural networks are designed into the
IFC GEN1 scheme. A pre-trained, non-adaptive neural
network component provides a baseline approximation of
stability and control derivatives for the aircraft. The
second neural network is an online adaptive network that
learns and adapts during flight to account for aerodynamic
changes, such as ones due to actuator failures.

The IFC GEN1 system recently completed successful
testing in flight on the NASA F-15 Advanced Control
Technology for Integrated Vehicles (ACTIVE) aircraft.
This aircraft has been highly modified from a standard F-
15 configuration to include canard control surfaces, thrust
vectoring nozzles, and a digital fly-by-wire flight control
system to enable the simulation of different actuator
failures during flight.

The Dynamic Cell Structure Neural Network
The online adaptive neural network, the DCS, used in the
GEN1 system is of special concern with respect to V&V.
The DCS, is a member of a group of neural networks
known as self-organizing maps (SOMs). The DCS
algorithm, implemented in the GEN1 system by NASA
ARC (Jorgensen 1997), was originally developed by
(Bruske and Sommer 1994) and is a derivative of work by
(Fritzke 1994) combined with competitive Hebbian
learning by (Martinez 1993). These neural networks are
designed as topology representing networks whose roles
are to learn the topology of an input space with perfect
preservation.

The DCS neural network learns the function that
describes a map of the input space, represented as Voronoi
regions. The neurons within the neural network represent
the reference vector (centroid) for each of the Voronoi
regions. The connections between the neurons, cij, are then
part of the Delaunay triangulation connecting neighboring
Voronoi regions through their reference vectors.

This reference vector is known as the “best matching
unit” (BMU). Given an input, v, the BMU is the neuron
whose weights, w, are closest to v. Along with the BMU,
the second BMU (SEC) is found to maintain the Delaunay
triangulation and to adjust nearby neurons within the BMU
neighborhood, defined as the neurons connected to the
BMU through the triangulation.

The DCS algorithm consists of two learning rules,
Hebbian and Kohonen. Hebbian learning updates cij

between neurons i and j to reflect the topology
(triangulation) of the input space:

where the connection is a perfect fit of 1, if i and j are the
BMU and SEC. The forgetting constant, α, is included to
produce a weakening between i and j if they are not
currently the closest to the stimulus, and θ is the edge
threshold, a minimum acceptable connection strength in
order for the connection to be considered valid. Kohonen
learning is used to adjust the weight vectors, w, of the
neurons. The change in the weight vectors is represented
by:

)(BMUBMUBMU wvw −=∆ ε
)(jNj wvw −=∆ ε

where BMUε is the BMU weight adjustment parameter and

Nε is the weight adjustment applied to the neighborhood
of the BMU.

These two learning rules allow the DCS neural
network to change its structure. The ability to add new
neurons into the network as it grows gives the DCS neural
network the potential to evolve into many different
configurations. This adaptive nature could open up the
possibility of sub-optimal or even erroneous solutions.

Developers of the DCS neural network have been
cautious about expanding their use into safety- and
mission-critical domains due to the complexities and
uncertainties associated with these complex, adaptive
software systems. Since the DCS neural network and other
adaptive neural networks are beginning to be used within
high-assurance systems, NASA has encouraged research in
the area of V&V of neural networks to answer the
question: How can we be sure that any system that includes
neural network technology is going to behave in a known,
consistent and correct manner?

The Rule Extraction Technique
As mentioned in the introduction it was our objective to
examine rule extraction as a possible way to V&V a
critical system containing a neural network.

The algorithm developed for extracting rules from the
DCS is a modification of the LREX algorithm by McGarry
et al. that was used to extract rules from a RBF neural
network (McGarry, Wermter, and Macintyre 1999, 2001).
The weights of the DCS after it has been trained are used
as inputs to the algorithm because they form the centers of
the Voronoi regions. The BMU corresponding to each data
point is recorded during training and also used as input to
the algorithm. The training data is divided into regions

[] []

=
<⋅
>⋅
∈∈

⋅
=

ji
c
c

SECBMUjSECBMUi
c

c
ij

ijij
ij θα

θαα
,,,

0
0

1

&

based on the BMU. Then for each region xlower is the
smallest value of the independent variable that has a
particular BMU and xupper is the largest value of that
independent variable that has that same particular BMU.
These two numbers form bounds for the intervals in the
antecedent. (Example: (variable >= xlower AND <= xupper))
An interval is determined for each of the independent
variables and the statements are connected by AND to
form the full antecedent. When the DCS was used as a
classifier with the Iris data the conclusion of the if-then
statement was categorical. In this case the category
associated with the BMU was reported in the rule as the
conclusion. When the DCS was used to learn a function
and the dependent variables were continuous then the
conclusion was stated the same way the antecedent was
stated, intervals connected with ANDs. The algorithm
used for the rule extraction is in Figure 1.

Figure 1 Rule Extraction Algorithm

Experimental Results
The testing of the extracted rules consisted of a multi-
phase approach: data separation and randomization,
training the DCS, extract the rules from the DCS,
implement the extracted rules, test the rules with a test data
set, and compare the results to the DCS (Figure 2)

The initial testing of the algorithm was done using the
benchmark Iris data set to obtain results that could be
compared to other author’s results (Fisher 1936).
Eventually, the Iris data would be replaced with IFC flight
data. A five-fold cross validation approach was used for

the testing of the Iris data. This meant that the Iris data
was divided into five equal parts, {S1, S2, S3, S4, S5}, of
which four parts were used for training and a fifth part is
used for testing. The Iris data contains 150 data points;
therefore, the data was partitioned into five groups of 30
random points.

After training on the Iris data, the DCS should have
clustered the input data into different classifications
representing the different Iris types: Setosa, Virginica, or
Versicolor. To capture what the DCS learned, the rule
extraction algorithm was applied to the DCS. The output
was a set of rules in the form of if-then statements. These
rules represent the Voronoi regions that the DCS formed to
cluster the Iris data. An example rule for the Iris Data
looks like:

RULE FOR CELL 1
IF (SL >=5.6 AND <=7.9) AND

(SW >=2.2 AND <=3.8) AND
(PL >=4.8 AND <=6.9) AND
(PW >=1.4 AND <=2.5)

THEN Virginica

Figure 2 Testing Approach Block Diagram

Since the extracted rules are a representation of the
DCS, they should classify data in the same way that the
DCS classifies data. To test the rules, they were

Input:
Weights of the DCS (centers of Voronoi region)
Best matching unit for each input
Output:
One rule for each cell of the DCS
Procedure:
Train DCS on data set
Record BMU for each input
Collect all inputs with common BMU to form cell
For each weight (wi)
 For each independent variable
 x lower = min{x | x has BMU = wi}
 x upper = max{x | x has BMU = wi}
Build rule by:
 Independent variable in [x lower , x upper]
 Join antecedent statements with AND
 Dependent variable = category
 OR
 Dependent variable in [ylower , y upper]
 Join conclusion statements with AND
Write Rule

implemented in MATLAB and applied to the test subset of
the Iris data. The results from the extracted rules were then
compared to the results from the same data classified by
the DCS.

Five iterations of this procedure were completed to
ensure that each subset was used as test data. This meant
that iteration one used subsets {S1, S2, S3, S4} to train and
S5 to test, iteration two used partitions {S1, S2, S3, S5} to
train and S4 to test, and so on.

After both the trained DCS and the extracted rules
were applied to the test set. The results were compared for
all five iterations. The DCS output and the extracted rules
output had an overall agreement of 82% in classifying the
Iris data.

The next step was to train the DCS on IFC flight data.
The DCS was used for the purpose of classification with
the Iris data, however with the flight data the DCS is used
to learn a function. The flight data used was obtained from
an F-15 Flight Simulator developed at WVU for use in
testing the IFC GEN1 scheme (Perhinschi et al. 2002).
This data set contains seven independent variables and 26
dependent variables. These variables were introduced to
one of five different DCS networks, one network for each
of the aerodynamic derivative coefficients: Cz, Cm, Cl, Cn,
and Cy. Each network learns the derivatives associated
with a different coefficient. For example, Cm learns the
stability and control derivatives associated with pitching
moments due to normal force and uses the inputs of mach,
altitude, alpha, and beta as the independent variables and
cma, cmdc, cmds and cmq as the dependent variables.

After training the DCS on these variables the rules
extracted take on the form seen in Figure 3. The data in
this case is continuous data so the rules give both
antecedent and conclusion in the form of intervals.

Using Extracted Rules for V&V of the DCS
The objective of our overall research initiative is to
develop methods or techniques that can assist in the V&V
of neural networks (ISR 2002). The extraction of rules is
one such method. After extracting the rules from the IFC
neural networks, the rules were compared against the two
documents provided by the IFC project team, the Software
and Interface Requirements Specification (SIRS) (ISR
2001a), and the Interface Control Document (ICD), (ISR
2001b). The usefulness in requirements traceability and
the overall usefulness of rule extraction to the IV&V
practitioners understanding were assessed.

The first way the extracted rules were used is for
comparison directly against requirements. In the IFC
case the rules can be used specifically for assessing the
expected ranges of the inputs and outputs of the DCS
system. For V&V purposes a comparison can be made
between the ranges from the SIRS document and the
ranges in the antecedents of the rules.

This verification activity proves to be worthwhile
since there are certain situations that may lead to the DCS
network rule antecedents that violate the input range limits.

RULES FOR CELL1

IF (mach >=0.73926 AND <=0.7738) AND
(altitude >=20271.1609 AND <=21233.6014) AND
(alpha >=2.1508 AND <=2.4619) AND
(beta >=-0.079409 AND <=0.0035506)
THEN (cma >=0.34593 AND <=0.40947) AND
(cmdc >=-0.0025557 AND <=0.0029545) AND
(cmds >=0 AND <=0) AND
(cmq >=0 AND <=0)

RULES FOR CELL2
IF (mach >=0.77404 AND <=0.78946) AND
(altitude >=19860.1718 AND <=20264.4617) AND
(alpha >=1.8323 AND <=2.1414) AND
(beta >=-0.021984 AND <=0.020729)
THEN (cma >=0.40578 AND <=0.47844) AND
(cmdc >=0.0031626 AND <=0.0079892) AND
(cmds >=0 AND <=0) AND
(cmq >=0 AND <=0)

RULES FOR CELL3
IF (mach >=0.78455 AND <=0.8178) AND
(altitude >=19205.5546 AND <=19999.3379) AND
(alpha >=1.2545 AND <=1.8311) AND
(beta >=-0.20803 AND <=0.64913)
THEN (cma >=0.274 AND <=0.40517) AND
(cmdc >=0.0080297 AND <=0.016743) AND
(cmds >=0 AND <=0) AND
(cmq >=0 AND <=0)

Figure 3 Rules Extracted from DCS Trained on Flight Data

One possibility could be the improper use of a DCS
“initialization” point. If the DCS networks start with no
knowledge and are initialized at an improper starting point
(say the first two neurons within DCS are initialized to
values of zero, something not unreasonable), then these
initial values may affect the Voronoi regions within the
DCS in an adverse way causing them to allow values
outside the flight envelope. Looking at the antecedents of
the extracted rules identifies this situation.

The rules may be also be used for analysis of specific
input variables. For example, mach and altitude are inputs
that do not cross the zero value within their acceptable
ranges. One may want to check to ensure that the extracted
rules align with the expected ranges, and in situations
where the zero value is within a rule, perhaps identify this
as an area of special interest that requires additional
analysis.

Another way the rules can be used is for comparison
against implied design considerations. The V&V task of
requirements traceability throughout the lifecycle is an
important step. However in innovative research
applications, such as the IFC project, the nature of the
research may mean that well-defined requirements are hard
to elicit. Instead the project makes use of higher-level

specifications that are hard to direct against the neural
networks. Adaptive neural networks may make the
requirements generation even more difficult. Since the
extracted rules represent the learning of the neural
network, the rules can be used to determine if the network
is meeting these higher-level specifications when the
requirements are not written clearly or concisely, yet the
overall goal for the system is generally well understood.

For example, with regards to flight control, one
requirement for the network may be smooth transitions of
derivatives between regions within the flight envelope. If
the neural network has been trained to learn these
derivatives, one way to know whether the network has
learned properly is to examine network knowledge, via
rule-extraction, near the boundaries of the flight envelope
regions. The rules allow for an inspection of how the
antecedents and rule conclusion change and if the ranges
over which they change are an indication of the smooth
transition. If system designers are not satisfied with the
network performance, then it is possible the network may
require further training or modification. Either way, the
examination of the extracted rules can help to map back
neural network knowledge to system requirements.

The rules may have an additional use in examining
different modes of operation. The purpose of the IFC
system is to induce “safe” failures and allow the system to
adapt to accommodate these failures. Some of the failures
may induce learning that extends beyond the expected
ranges of the inputs. Retaining prior learning, especially
after a failure occurs, may be something interesting the IFC
project team will want to investigate. The rules may
identify Voronoi regions that violate the expected input
ranges and point to an area of the input space that will
require further simulation and understanding before the
project proceeds.

Conclusion
The goal of this research is to demonstrate that rules
extracted from the DCS neural network could be used to
assist in the V&V of the neural network in a safety-critical
application. The rules are viewed as a descriptive
representation of how the DCS “handles” data. This
representation provides the inner knowledge of the neural
network that can be used to help understand whether the
neural network is functioning as expected.

A V&V practitioner might use rule extraction for
different purposes. They could apply rule extraction to
obtain a set of rules that mimics the functionality of the
network and then use these rules for comparison against
the original set of requirements. This would provide
information for review of the correctness of the function
the network is approximating. Additionally, these rules
could be validated through the use of formal methods, such
as a model checker. At a minimum, extraction of these

rules would provide some sense of confidence that the
network will behave as it was intended.

Methods for determining the accuracy of the rules is
also still under investigation. In the case when the DCS is
being used as a classifier with the Iris data, it was easy to
access the accuracy of the rules by simply comparing the
classification results. Determining the accuracy of the
rules when the DCS is trained with flight data is not as
straight forward. We will attempt to evaluate the rules by
first looking at the domain coverage and then by looking at
the actual difference between the rule boundaries and the
Voronoi region boundaries.

We are still refining the algorithm for the DCS rule
extraction. Our current algorithm is a simplistic attempt to
capture the Voronoi regions that are created by the DCS.
For future refinement we will attempt to better capture the
n-dimensional convex hulls that make up these Voronoi
regions with the rules. The problem in doing so is that the
explicit description of such regions may become overly
complicated and no more understandable than the current
information that can be obtained by looking at the weights
and other parameters of the actual neural network. There
is a definite trade off between accuracy and
understandability. We must ensure that any rules extracted
are accurate, useful, and understandable. This is the
challenge ahead as we continue to investigate this topic.

We propose to continue our research in the area by
developing the neural network rule extraction technology
to a level where it can be transferred into a software tool
that could facilitate the V&V. The feasibility study for this
continuing effort is funded by NASA Ames Research
Center under an upcoming STTR award with Prologic,
Inc., Fairmont, WV.

Acknowledgements
This research was sponsored by NASA, under Research
Grant NAG5-12069.

References
Towell, G and J. Shavlik. 1993. The extraction of refined
rules from knowledge based neural networks. Machine
Learning 13(1):71-101.

Thrun, Sebastian B. 1993. Extracting Provably Correct
Rules from Artificial Neural Networks, Technical Report
IAI-TR-93-5, Institute fur Informatics III, Universität
Bonn.

Andrews, Robert; J. Diederich; and A. B. Tickle. 1995. A
Survey and Critique Of Techniques For Extracting Rules
From Trained Artificial Neural Networks. Knowledge
Based Systems 8:373-389.

Carpenter, A and A.H. Tan. Rule extraction: from neural
architecture to symbolic representation. Connection
Science 7(1):3-27.

Wettayaprasit, Wiphada and Chidchanok Lursinsap. 2002.
Neural Rule Extraction based on Activation Projection
with Certainty Factor Refinement. In Proceedings of IEEE
World Congress on Computational Intelligence.

Andrews, R. and S.Geva. 1995. RULEX & CEBP
networks as the basis for a rule refinement system. In
Hybrid Problems, Hybrid Solutions, ed. John Hallam. IOS
Press.1-12

Andrews, R and S. Geva. 2002. Rule Extraction From
Local Cluster Neural Nets. Neurocomputing 47:1-20.

McGarry, Kenneth, John Tait, Stefan Wermter, and John
McIntyre. 1999. Rule-Extraction from Radial Basis
Function Networks. In Proceedings of International
Conference on Artificial Neural Networks 1:613-618.
Edinburgh, Scotland.

McGarry, Kenneth, Stefan Wermter and John Macintyre.
2001. The Extraction and Comparison of Knowledge from
Local Function Networks, International Journal of
Computational Intelligence and Applications 1(3): 369-
382.
Fisher, A. 1936. Annals of Eugenics 7:179-188.

Song, Yongkyu, Giampiero Campa, Marcello R.
Napolitano, Brad Seanor, Mario G. Perhinschi. 2002. On-
Line Parameter Estimation Techniques Comparison Within
a Fault Tolerant Flight Control System. AIAA Journal of
Guidance, Control, and Dynamics 25(3):528-537.

Jorgensen, Charles C. 1997. Direct Adaptive Aircraft
Control Using Dynamic Cell Structure Neural Networks.

NASA Technical Memorandum 112198, NASA Ames
Research Center.

Bruske, Jorg and Gerald Sommer. 1994. Dynamic Cell
Structures. In Proceedings of Neural Information
Processing Systems (NIPS), 497-504.

Fritzke, B. 1994. Growing Cell-Structures – a Self-
Organizing Network for Unsupervised and Supervised
Learning, Neural Networks, 7(9): 1441-1460.

Martinetz, T. M. 1993. Competitive Hebbian Learning
Rule Forms Perfectly Topology Preserving Maps. In
Proceedings of International Conference on Artificial
Neural Networks (ICANN) 427-434. Amsterdam:
Springer.

Perhinschi, M. G., G. Campa, M. R. Napolitano, M.
Lando, L. Massotti, and M.L. Fravolini. Modeling and
Simulation of a Closed Loop Aircraft/Fault Tolerant
Control System. Submitted to: International Journal of
Modeling and Simulation.
Institute for Scientific Research, Inc. (ISR). 2002. Toward
Reliable Neural Network Software for The Development
of Methodologies for the Independent Verification of
Neural Networks. IVVNN-LITREV-F001-UNCLASS-
11120

Institute for Scientific Research, Inc. (ISR). 2001. Software
and Interface Requirements Document (SIRS). IFC-SIRS-
F004-UNCLASS-051501

Institute for Scientific Research, Inc. (ISR). 2001. Interface
Control Document (ICD). IFC-ICD-F008-UNCLASS-
01150.

