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Abstract 
This paper describes an algorithm to extract rules from a 
dynamic cell structure (DCS) neural network and the 
rationale for extracting these rules.  The DCS is a form of 
self-organizing map (SOM) neural network that has been 
used in a real-time adaptive flight control application.  The 
purpose for extracting rules in this instance is to determine 
whether such rules, along with other techniques, could be 
used in the verification and validation (V&V) of a neural 
network being used in a safety-critical role.  This paper will 
explain the intelligent flight control application of the DCS, 
describe the method used for rule extraction, provide 
experimental results of the rule extraction techniques 
applied to several data sets, and examine the relevance of 
the rules to the V&V process. 

Introduction     
Neural networks are members of a class of software well 
suited for domains of non-linearity and high complexity 
that are ill defined, unknown, or just too complex for 
standard programming practices. Verifying correct 
operation of neural networks within projects such as 
autonomous mission control agents, vehicle health 
monitoring systems, adaptive flight controllers, or nuclear 
engineering applications requires a rigorous approach.  

Testing the neural network with similar data like that 
used in training is one of a few methods used to verify that 
a network has adequately learned the input domain. In non-
critical applications, such traditional testing techniques 
prove adequate for the acceptance of a neural network 
system that has been trained using input conditions that do 
not vary from operational conditions. However, in more 
complex, safety- and mission-critical systems, the standard 
neural network training-testing approach alone is not able 
to provide a reliable method for their certification. 

The V&V challenge is further compounded by 
adaptive neural network systems that modify themselves, 
or “learn,” during operation.  Traditional software 
assurance methods fail to account for systems that change 
after deployment. 

We have investigated a set of techniques known as 
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neural network rule extraction to determine their 
usefulness toward the V&V of neural networks in safety-
critical applications. Neural network rule extraction is a 
technique that translates the decision process of a trained 
neural network into an equivalent decision process 
represented as a set of rules. The technique of rule 
extraction has been used to model the knowledge that the 
neural network has gained while training or adapting.  The 
rules extracted are generally represented by a set of if-then 
statements that may be examined by a human.  If the neural 
network is fixed after training then the rules should, with 
some confidence level, model the way the neural network 
will handle other data that is processed.  If the neural 
network is an online adaptive neural network, then rule 
extraction can be done for one point of time to establish 
what the system looks like at that instance.   Repeated 
application of rule extraction could yield an understanding 
of the progression of the network during adaptation. 

There are many researchers investigating the area of 
neural network rule extraction (Towell and Shavlik 1993, 
Thrun 1993, Andrew, Diederich, and Tickle 1995, 
Carpenter and Tan 1995, Wettayaprasit and Lursinsap 
2002).  The techniques developed thus far are very neural 
network specific. Two specific rule extraction techniques 
seemed closely related to our work.  One was used to 
extract rules from a local cluster neural network and the 
other from a radial basis neural network; both are similar to 
the DCS. 

One technique, RULEX, was applied first to a 
constrained error backpropagation multilayer perceptron 
(Andrews and Geva 1995) and then to a local cluster neural 
network (Andrews and Geva 2002).  Another technique 
related to our effort is LREX, used to extract rules from 
radial basis function (RBF) neural networks (McGarry, 
Wermter, and Macintyre 1999, 2001).  Although these 
approaches seemed to be related to our task of extracting 
rules from the DCS, both techniques were too specific to 
be directly applied.  Therefore, a new technique had to be 
developed for rule extraction from the DCS.   

Application of Neural Networks to Intelligent 
Flight Control Systems 

The Intelligent Flight Control (IFC) project is working 
towards developing of a real-time adaptable flight control 



system utilizing neural networks (Song et al. 2002).  This 
project is a collaborative effort among the NASA Dryden 
Flight Research Center (DFRC), the NASA Ames 
Research Center (ARC), Boeing Phantom Works, the 
Institute for Scientific Research, Inc. (ISR), and West 
Virginia University (WVU).  The first generation flight 
control concept (GEN1) was designed to identify aircraft 
stability and control characteristics using neural networks, 
and use this information to optimize aircraft performance 
in both normal and simulated failure conditions. 

Two types of neural networks are designed into the 
IFC GEN1 scheme.  A pre-trained, non-adaptive neural 
network component provides a baseline approximation of 
stability and control derivatives for the aircraft.  The 
second neural network is an online adaptive network that 
learns and adapts during flight to account for aerodynamic 
changes, such as ones due to actuator failures. 

The IFC GEN1 system recently completed successful 
testing in flight on the NASA F-15 Advanced Control 
Technology for Integrated Vehicles (ACTIVE) aircraft.  
This aircraft has been highly modified from a standard F-
15 configuration to include canard control surfaces, thrust 
vectoring nozzles, and a digital fly-by-wire flight control 
system to enable the simulation of different actuator 
failures during flight. 

The Dynamic Cell Structure Neural Network 
The online adaptive neural network, the DCS, used in the 
GEN1 system is of special concern with respect to V&V.  
The DCS, is a member of a group of neural networks 
known as self-organizing maps (SOMs).  The DCS 
algorithm, implemented in the GEN1 system by NASA 
ARC (Jorgensen 1997), was originally developed by 
(Bruske and Sommer 1994) and is a derivative of work by 
(Fritzke 1994) combined with competitive Hebbian 
learning by (Martinez 1993).  These neural networks are 
designed as topology representing networks whose roles 
are to learn the topology of an input space with perfect 
preservation.   

The DCS neural network learns the function that 
describes a map of the input space, represented as Voronoi 
regions.  The neurons within the neural network represent 
the reference vector (centroid) for each of the Voronoi 
regions.  The connections between the neurons, cij, are then 
part of the Delaunay triangulation connecting neighboring 
Voronoi regions through their reference vectors.   

This reference vector is known as the “best matching 
unit” (BMU).  Given an input, v, the BMU is the neuron 
whose weights, w, are closest to v.  Along with the BMU, 
the second BMU (SEC) is found to maintain the Delaunay 
triangulation and to adjust nearby neurons within the BMU 
neighborhood, defined as the neurons connected to the 
BMU through the triangulation.  

The DCS algorithm consists of two learning rules, 
Hebbian and Kohonen.  Hebbian learning updates cij 

between neurons i and j to reflect the topology 
(triangulation) of the input space:  

where the connection is a perfect fit of 1, if i and j are the 
BMU and SEC. The forgetting constant, α, is included to 
produce a weakening between i and j if they are not 
currently the closest to the stimulus, and θ is the edge 
threshold, a minimum acceptable connection strength in 
order for the connection to be considered valid.  Kohonen 
learning is used to adjust the weight vectors, w, of the 
neurons.  The change in the weight vectors is represented 
by:  

)( BMUBMUBMU wvw −=∆ ε  
)( jNj wvw −=∆ ε  

where BMUε  is the BMU weight adjustment parameter and 

Nε  is the weight adjustment applied to the neighborhood 
of the BMU. 

These two learning rules allow the DCS neural 
network to change its structure.  The ability to add new 
neurons into the network as it grows gives the DCS neural 
network the potential to evolve into many different 
configurations.  This adaptive nature could open up the 
possibility of sub-optimal or even erroneous solutions. 

Developers of the DCS neural network have been 
cautious about expanding their use into safety- and 
mission-critical domains due to the complexities and 
uncertainties associated with these complex, adaptive 
software systems.  Since the DCS neural network and other 
adaptive neural networks are beginning to be used within 
high-assurance systems, NASA has encouraged research in 
the area of V&V of neural networks to answer the 
question: How can we be sure that any system that includes 
neural network technology is going to behave in a known, 
consistent and correct manner?  

The Rule Extraction Technique 
As mentioned in the introduction it was our objective to 
examine rule extraction as a possible way to V&V a 
critical system containing a neural network. 

The algorithm developed for extracting rules from the 
DCS is a modification of the LREX algorithm by McGarry 
et al. that was used to extract rules from a RBF neural 
network (McGarry, Wermter, and Macintyre 1999, 2001).  
The weights of the DCS after it has been trained are used 
as inputs to the algorithm because they form the centers of 
the Voronoi regions.  The BMU corresponding to each data 
point is recorded during training and also used as input to 
the algorithm.  The training data is divided into regions 
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based on the BMU.  Then for each region xlower is the 
smallest value of the independent variable that has a 
particular BMU and xupper is the largest value of that 
independent variable that has that same particular BMU.  
These two numbers form bounds for the intervals in the 
antecedent.  (Example: (variable >= xlower AND <= xupper))  
An interval is determined for each of the independent 
variables and the statements are connected by AND to 
form the full antecedent.  When the DCS was used as a 
classifier with the Iris data the conclusion of the if-then 
statement was categorical.  In this case the category 
associated with the BMU was reported in the rule as the 
conclusion.  When the DCS was used to learn a function 
and the dependent variables were continuous then the 
conclusion was stated the same way the antecedent was 
stated, intervals connected with ANDs.  The algorithm 
used for the rule extraction is in Figure 1. 

Figure 1 Rule Extraction Algorithm 

Experimental Results 
The testing of the extracted rules consisted of a multi-
phase approach: data separation and randomization, 
training the DCS, extract the rules from the DCS, 
implement the extracted rules, test the rules with a test data 
set, and compare the results to the DCS (Figure 2)  

The initial testing of the algorithm was done using the 
benchmark Iris data set to obtain results that could be 
compared to other author’s results (Fisher 1936).  
Eventually, the Iris data would be replaced with IFC flight 
data.  A five-fold cross validation approach was used for 

the testing of the Iris data.  This meant that the Iris data 
was divided into five equal parts, {S1, S2, S3, S4, S5}, of 
which four parts were used for training and a fifth part is 
used for testing.  The Iris data contains 150 data points; 
therefore, the data was partitioned into five groups of 30 
random points.   

After training on the Iris data, the DCS should have 
clustered the input data into different classifications 
representing the different Iris types: Setosa, Virginica, or 
Versicolor.  To capture what the DCS learned, the rule 
extraction algorithm was applied to the DCS.  The output 
was a set of rules in the form of if-then statements.  These 
rules represent the Voronoi regions that the DCS formed to 
cluster the Iris data.  An example rule for the Iris Data 
looks like:   

RULE FOR CELL 1 
IF   (SL >=5.6 AND <=7.9) AND 

(SW >=2.2 AND <=3.8) AND 
(PL >=4.8 AND <=6.9) AND 
(PW >=1.4 AND <=2.5) 

THEN Virginica 

Figure 2  Testing Approach Block Diagram 

Since the extracted rules are a representation of the 
DCS, they should classify data in the same way that the 
DCS classifies data.  To test the rules, they were 

Input: 
Weights of the DCS (centers of Voronoi region) 
Best matching unit for each input 
Output: 
One rule for each cell of the DCS 
Procedure: 
Train DCS on data set 
Record BMU for each input 
Collect all inputs with common BMU to form cell 
For each weight (wi) 
 For each independent variable 
  x lower = min{x | x has BMU = wi} 
  x upper = max{x | x has BMU = wi} 
Build rule by: 
 Independent variable in [x lower , x upper] 
 Join antecedent statements with AND 
 Dependent variable = category 
  OR 
 Dependent variable in [ylower , y upper] 
 Join conclusion statements with AND 
Write Rule 



implemented in MATLAB and applied to the test subset of 
the Iris data.  The results from the extracted rules were then 
compared to the results from the same data classified by 
the DCS. 

Five iterations of this procedure were completed to 
ensure that each subset was used as test data.  This meant 
that iteration one used subsets  {S1, S2, S3, S4} to train and 
S5 to test, iteration two used partitions {S1, S2, S3, S5} to 
train and S4 to test, and so on.   

After both the trained DCS and the extracted rules 
were applied to the test set.  The results were compared for 
all five iterations.  The DCS output and the extracted rules 
output had an overall agreement of 82% in classifying the 
Iris data. 

The next step was to train the DCS on IFC flight data.  
The DCS was used for the purpose of classification with 
the Iris data, however with the flight data the DCS is used 
to learn a function.  The flight data used was obtained from 
an F-15 Flight Simulator developed at WVU for use in 
testing the IFC GEN1 scheme (Perhinschi et al. 2002).  
This data set contains seven independent variables and 26 
dependent variables.  These variables were introduced to 
one of five different DCS networks, one network for each 
of the aerodynamic derivative coefficients: Cz, Cm, Cl, Cn, 
and Cy.  Each network learns the derivatives associated 
with a different coefficient.  For example, Cm learns the 
stability and control derivatives associated with pitching 
moments due to normal force and uses the inputs of mach, 
altitude, alpha, and beta as the independent variables and 
cma, cmdc, cmds and cmq as the dependent variables. 

After training the DCS on these variables the rules 
extracted take on the form seen in Figure 3.  The data in 
this case is continuous data so the rules give both 
antecedent and conclusion in the form of intervals. 

Using Extracted Rules for V&V of the DCS 
The objective of our overall research initiative is to 
develop methods or techniques that can assist in the V&V 
of neural networks (ISR 2002).  The extraction of rules is 
one such method.  After extracting the rules from the IFC 
neural networks, the rules were compared against the two 
documents provided by the IFC project team, the Software 
and Interface Requirements Specification (SIRS) (ISR 
2001a), and the Interface Control Document (ICD), (ISR 
2001b).  The usefulness in requirements traceability and 
the overall usefulness of rule extraction to the IV&V 
practitioners understanding were assessed. 

The first way the extracted rules were used is for 
comparison directly against requirements.  In the IFC 
case the rules can be used specifically for assessing the 
expected ranges of the inputs and outputs of the DCS 
system.  For V&V purposes a comparison can be made 
between the ranges from the SIRS document and the 
ranges in the antecedents of the rules.  

This verification activity proves to be worthwhile 
since there are certain situations that may lead to the DCS 
network rule antecedents that violate the input range limits.   

 
RULES FOR CELL1 

IF (mach >=0.73926 AND <=0.7738) AND 
(altitude >=20271.1609 AND <=21233.6014) AND 
(alpha >=2.1508 AND <=2.4619) AND 
(beta >=-0.079409 AND <=0.0035506) 
THEN (cma >=0.34593 AND <=0.40947) AND 
(cmdc >=-0.0025557 AND <=0.0029545) AND 
(cmds >=0 AND <=0) AND 
(cmq >=0 AND <=0) 

RULES FOR CELL2 
IF (mach >=0.77404 AND <=0.78946) AND 
(altitude >=19860.1718 AND <=20264.4617) AND 
(alpha >=1.8323 AND <=2.1414) AND 
(beta >=-0.021984 AND <=0.020729) 
THEN (cma >=0.40578 AND <=0.47844) AND 
(cmdc >=0.0031626 AND <=0.0079892) AND 
(cmds >=0 AND <=0) AND 
(cmq >=0 AND <=0) 

RULES FOR CELL3 
IF (mach >=0.78455 AND <=0.8178) AND 
(altitude >=19205.5546 AND <=19999.3379) AND 
(alpha >=1.2545 AND <=1.8311) AND 
(beta >=-0.20803 AND <=0.64913) 
THEN (cma >=0.274 AND <=0.40517) AND 
(cmdc >=0.0080297 AND <=0.016743) AND 
(cmds >=0 AND <=0) AND 
(cmq >=0 AND <=0) 

 

Figure 3 Rules Extracted from DCS Trained on Flight Data 

One possibility could be the improper use of a DCS 
“initialization” point.  If the DCS networks start with no 
knowledge and are initialized at an improper starting point 
(say the first two neurons within DCS are initialized to 
values of zero, something not unreasonable), then these 
initial values may affect the Voronoi regions within the 
DCS in an adverse way causing them to allow values 
outside the flight envelope.  Looking at the antecedents of 
the extracted rules identifies this situation. 

The rules may be also be used for analysis of specific 
input variables.  For example, mach and altitude are inputs 
that do not cross the zero value within their acceptable 
ranges.  One may want to check to ensure that the extracted 
rules align with the expected ranges, and in situations 
where the zero value is within a rule, perhaps identify this 
as an area of special interest that requires additional 
analysis. 

Another way the rules can be used is for comparison 
against implied design considerations.  The V&V task of 
requirements traceability throughout the lifecycle is an 
important step.  However in innovative research 
applications, such as the IFC project, the nature of the 
research may mean that well-defined requirements are hard 
to elicit.  Instead the project makes use of higher-level 



specifications that are hard to direct against the neural 
networks.  Adaptive neural networks may make the 
requirements generation even more difficult.  Since the 
extracted rules represent the learning of the neural 
network, the rules can be used to determine if the network 
is meeting these higher-level specifications when the 
requirements are not written clearly or concisely, yet the 
overall goal for the system is generally well understood. 

For example, with regards to flight control, one 
requirement for the network may be smooth transitions of 
derivatives between regions within the flight envelope.  If 
the neural network has been trained to learn these 
derivatives, one way to know whether the network has 
learned properly is to examine network knowledge, via 
rule-extraction, near the boundaries of the flight envelope 
regions.    The rules allow for an inspection of how the 
antecedents and rule conclusion change and if the ranges 
over which they change are an indication of the smooth 
transition.   If system designers are not satisfied with the 
network performance, then it is possible the network may 
require further training or modification.  Either way, the 
examination of the extracted rules can help to map back 
neural network knowledge to system requirements. 

The rules may have an additional use in examining 
different modes of operation.   The purpose of the IFC 
system is to induce “safe” failures and allow the system to 
adapt to accommodate these failures.  Some of the failures 
may induce learning that extends beyond the expected 
ranges of the inputs.  Retaining prior learning, especially 
after a failure occurs, may be something interesting the IFC 
project team will want to investigate.  The rules may 
identify Voronoi regions that violate the expected input 
ranges and point to an area of the input space that will 
require further simulation and understanding before the 
project proceeds. 

Conclusion 
The goal of this research is to demonstrate that rules 
extracted from the DCS neural network could be used to 
assist in the V&V of the neural network in a safety-critical 
application.  The rules are viewed as a descriptive 
representation of how the DCS “handles” data.  This 
representation provides the inner knowledge of the neural 
network that can be used to help understand whether the 
neural network is functioning as expected. 

A V&V practitioner might use rule extraction for 
different purposes.  They could apply rule extraction to 
obtain a set of rules that mimics the functionality of the 
network and then use these rules for comparison against 
the original set of requirements.  This would provide 
information for review of the correctness of the function 
the network is approximating.  Additionally, these rules 
could be validated through the use of formal methods, such 
as a model checker.  At a minimum, extraction of these 

rules would provide some sense of confidence that the 
network will behave as it was intended.   

Methods for determining the accuracy of the rules is 
also still under investigation.  In the case when the DCS is 
being used as a classifier with the Iris data, it was easy to 
access the accuracy of the rules by simply comparing the 
classification results.  Determining the accuracy of the 
rules when the DCS is trained with flight data is not as 
straight forward.  We will attempt to evaluate the rules by 
first looking at the domain coverage and then by looking at 
the actual difference between the rule boundaries and the 
Voronoi region boundaries. 

We are still refining the algorithm for the DCS rule 
extraction.  Our current algorithm is a simplistic attempt to 
capture the Voronoi regions that are created by the DCS.  
For future refinement we will attempt to better capture the 
n-dimensional convex hulls that make up these Voronoi 
regions with the rules.  The problem in doing so is that the 
explicit description of such regions may become overly 
complicated and no more understandable than the current 
information that can be obtained by looking at the weights 
and other parameters of the actual neural network.  There 
is a definite trade off between accuracy and 
understandability.  We must ensure that any rules extracted 
are accurate, useful, and understandable.  This is the 
challenge ahead as we continue to investigate this topic.   

We propose to continue our research in the area by 
developing the neural network rule extraction technology 
to a level where it can be transferred into a software tool 
that could facilitate the V&V.  The feasibility study for this 
continuing effort is funded by NASA Ames Research 
Center under an upcoming STTR award with Prologic, 
Inc., Fairmont, WV.  
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