
The Use of a Modified Backpropagation
Neural Network for Random Access to

Data Files on Secondary Storage

Jim Etheredge

University of Louisiana at Lafayette
P.O. Box 41771

Lafayette, LA 70504-1771

Abstract
For many applications random access to data is critical to
providing users with the level of efficiency necessary to
make applications usable. It is also common to maintain
data files in sequential order to allow batch processing of the
data. This paper presents a method that uses a modified
backpropagation neural network to locate records in a file
randomly. The modifications necessary to the
backpropagation model are presented. Correlations are
drawn between the features of the backpropagation model
and the access patterns common to data files. Finally, the
performance of the neural network is compared to the B+
tree indexing method commonly used to provide both
sequential and random access to stored data files. The
results presented show that the proposed method can provide
performance comparable to the B+ tree depending on the
attributes of the file.

Introduction
The B+ tree and its1 variants are the most widely used
indexing structures for providing sequential and random
access to data files. While this indexing method has been
proven to be a good choice for random access, it does have
some disadvantages. The size of the index increases as the
data file grows. There is a cost associated with
maintaining the B+ tree structure as records are added and
deleted. The index itself must also reside on secondary
storage. Finally, the B+ tree treats all records in the file
uniformly. The cost of accessing any record in the file is
the same regardless of its activity. An inactive record
occupies the same space in a B+ tree as the most active
record in the file.

This paper describes the use of a modified
backpropagation neural network to randomly access
records within a sequentially organized data file. The
performance of the neural net is compared to the
performance of the B+ tree index based on the average

Copyright © 2004, American Association for Artificial Intelligence
(www.aaai.org). All rights reserved.

number of disk accesses required by each method to
retrieve records from the file. The following sections
describe the B+ tree index method, the modified
backpropagation neural network, and the architecture of
the testbed. The final sections present the results of the test
runs, draw conclusions, and discuss future work.

B+ tree Indexes
The creation and maintenance of B+ trees has been well
documented in many file structures publications such as
Folk [2] and Tharp [5]. The original idea was presented by
Knuth [4] in 1973 as a variant of the B-tree structure
developed by Bayer (with McCreight) [1] in 1972. Figure 1
shows the general architecture of a B+ tree index and the
associated data file. The data records are stored in the
terminal blocks of the tree. The terminal blocks are linked
together to produce a logical sequential file. This chain of
linked data blocks is called the sequence set. The non-
terminal blocks in the tree contain key values and pointers
to child blocks in the level below. This tree structure is
called the index set. Records are accessed sequentially by
following the links between sequence set blocks. Records
are accessed randomly by following a path from the root of
the tree downward until a sequence set block is reached.
The sequence set block is then read and searched
sequentially for the desired record.

The B+ tree is created by inserting records into the
sequence set. When the first sequence set block fills up, a
new block is allocated and the data is divided between the
two, maintaining sequential order. In addition, a non-
terminal block is allocated and the key value separating the
two sequence set blocks is placed in it along with a pointer
to each of the two sequence set blocks. New records are
placed in the appropriate sequence set block. When a new
record is inserted and there is no room for it, a new block is
allocated and the data is split evenly between the two. The
sequence set linkages are adjusted to accommodate the
new block. A new key separating the two blocks is
determined and inserted into the parent index set block. If

FIGURE 1: B+ tree Index Architecture.

there is no more room in that block, another index block is
allocated and the key/pointer pairs are divided equally
between the two. The middle key is promoted to the parent
block in the index set. Thus, insertion of a new record into
the file can potentially cause a split in the sequence set
block and an associated split in the index set at every level
of the tree back up to the root. When the root splits, a new
root is created and the tree increases in height by one. The
doubly-linked list implementation of the sequence set
blocks shown in Figure 1 is necessary to allow backward
as well as forward searches when locating records using
the neural network.

Every block in the B+ tree (except possibly the root) is
always at least half full. The height of the tree is a function
of the number of records in the file, the size of the record
keys, and the number of key/pointer pairs that can be
stored in an index block (called the fan-out factor).
Deletion of records from the file has the reverse effect on
both the sequence and index sets.

The Modified Neural Network
It is assumed that the reader is already familiar with the
backpropagation neural network model. The discussion
presented here focuses on the modifications required to use
it as a random access method.

The neural network has 30 nodes in the input layer,
and 15 nodes in the output layer. There are two hidden
layers with 29 and 25 nodes respectively. The neural
network is fully connected with a learning rate of 0.9 and a
momentum rate of 0.7. Record keys and block numbers
are encoded as shifted binary (0 => 0.1, 1 => 0.9)

The neural network developed for this application
deviates from the standard model in three important ways.
First, there is no separate training phase prior to using the
neural network. Every time a data record is inserted into or
retrieved from the data file, its key and the sequence set
block number where the record resides are presented to the
neural network. The difference between the actual output
of the network and the target output is used to train the
network. The training and utilization phases are combined
into a single continuous process. Second, overfitting is no
longer considered an undesirable condition. In fact,
memorization of record keys and their location in the
sequence set is the goal of the neural network. Finally,
each time a record is accessed, it is presented to the neural
network multiple times to speed the learning process.

The B+ tree/Neural Network Testbed
Architecture

The testbed is a combination of a B+ tree and a modified
neural network. The B+ tree code was obtained from
Jannik [3] and modified for use with the neural network.
Both the B+ tree and the modified neural network are
written in C++. Figure 2 shows the architecture. Records
are created using a random number generator to produce
nine digit numbers. These numbers represent data record
keys in the file. The keys are inserted into the file using
the B+ tree. This is necessary since the B+ tree index is
created as a byproduct of the insertion process. Once the
file is created, the same set of random keys is used to
simulate record access in the file. Any record that is either
inserted into or retrieved from the file is also presented to

the neural network as a pair of values: the record key and
the sequence set block number where the record is actually
stored. The input key is propagated through the neural
network and the error is propagated back through the
neural network. The performance of both methods is
measured in terms of average accesses to retrieve records
over time. The number of accesses required to find a
record using the neural network is the distance, in blocks,
between the actual block and the output of the neural
network. The number of accesses required to locate a
record using the B+ tree is equal to the height of the tree.

The neural network configuration and current weights
are saved to a file when the test run ends. This allows
multiple test runs to have a cumulative effect on the ability
of the neural network to locate records in the file

The Test Plan
The primary goal of the project is to evaluate the viability
of using a neural network as the primary method for
providing random access to records in a data file. In large
data files it is likely that a large percentage of the records
see little, if any, activity. Since the neural network is
trained on every record accessed, it gives preference to
(remembers) the more active records in the file and gives
less consideration to (forgets) records with less activity.

The test plan involves comparison of the performance
of the neural network to that of the B+ tree in the random

access of records in a data file. The B+ tree index serves
both as a mechanism for creating the data file and a
baseline for the performance of the neural network.
Various combinations of file sizes and access patterns were
tested. Due to space limitations, only two of the test runs
are shown. Both of these runs used a randomly generated
file of 1000 records. In one run, each time a record was
accessed it was presented to the neural network 100 times.
In the other run, each time a record was accessed it was
presented to the neural network 200 times.

Results
Figures 3 and 4 show the results of the two test runs. In
each case, the top X% of the records receive 100 - X % of
the activity. For example, the top 20% of the records in the
file receive 80% of the activity. This simulates the
assumptions that a small percentage of the records have a
high percentage of the activity. The last two digits of the
record key are used to assign the record to an activity
group. Records with 00 are the most active and records
with 99 are the least active. For each test run, average file
accesses are shown for the most active 20% of the records,
the least active 20%, and the overall performance. The
difference between the runs shown is the number of times
each key/block pair is presented to the neural network.
The values used were 100 and 200 times respectively. The
graph in Figure 4 also shows the average accesses for the

FIGURE 2: Testbed Architecture.

B+ tree. The x axis in the graphs indicates the number of
times the file is processed during the test run (times
10,000).

Conclusions
The results presented in the previous section show that
over time the neural network becomes better able to predict
the location of a data record within the file. The results
show that the performance of the neural network improves
as the number of record accesses increases and the active
data record percentage decreases. When the key/block
pairs are presented to the neural network multiple times,
the performance improves dramatically. At 100
presentations per access, the average accesses range
between 8 and 10. At 200 presentations per access, the
neural network requires fewer average accesses than the B+
tree to find the more active records in the file. In both

figures, the records with the most activity (top 20%)
require fewer accesses than the overall, and the least active
records (bottom 20%) require the most accesses. Figure 4
also includes the average accesses for the B+ tree. Since
the testbed architecture does not provide for the deletion of
records from the file, this value is a constant, in this case 5,
and is equal to the height of the B+ tree.

8

8.2

8.4

8.6

8.8

9

9.2

9.4

9.6

9.8

10

1 5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90 95 100

TOTAL FILE PASSES (X10,000)

AV
ER

AG
E

AC
C

ES
SE

S

BOTTOM 20%

OVERALL

TOP 20%

FIGURE 3: 100 Presentations Per Access

The graphs also show that the average number of
accesses increases with the number of file passes. This is
because the low activity records are presented to the neural
network more often as the number of file passes increases.
The more records the network has to remember, the less
accurate it becomes. However, at the 200 presentations per
access level, the performance of the neural network is still
better than the B+ tree.

In general, it appears that for certain types of data
files, the use of a neural network provides performance
comparable to that of B+ tree indexing without the

3.5

3.7

3.9

4.1

4.3

4.5

4.7

4.9

5.1

5.3

1 5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90 95 100

TOTAL FILE PASSES (X10,000)

AV
ER

AG
E

AC
CE

SS
ES

BOTTOM 20%

OVERALL

TOP 20%

B+ TREE

FIGURE 4: 200 Presentations Per Access

additional overhead incurred for storage and maintenance
of the index.

Future Work
Future work on the project will focus on extending the
capability of the neural network to provide efficient
random file access.

It is anticipated that larger file sizes will saturate the
current configuration. Other network configurations will
be tested to accommodate larger file sizes. It is also
possible that manipulation of the learning rate could be
used in combination with multiple presentations to speed
the memorization of record locations.

The testbed will be modified to include the deletion of
records from the file. This will allow testing of the neural
network's performance under more realistic file update
conditions. This will also allow for more accurate
assessment of the actual cost associated with the
maintenance of the B+ tree index.

Acknowledgments
The author would like to acknowledge the invaluable help
of Mr. Matt Price. The implementation of the modified
neural network was undertaken by Mr. Price as a student
assistantship under my direction during the summer 2003
term.

As with any implementation of this scale, the success
of the project depends to a large extent on the skill and
motivation of the programmer. Mr. Price demonstrated an
exceptionally high level of skill and dedication.

 References
[1] Bayer, R. and McCreight, C., “Organization and

Maintenance of Large Ordered Indexes,” Acta
Informatica, Vol. 1, No. 3 (1972), pp. 173-189.

 [2] Folk, M.J. and Zoellick, B., File Structures (2nd Ed),

Addison-Wesley Publishing Company, Inc., 1992.

[3] Jannink, J., B+ tree code obtained from URL:

http://www-db.stanford.edu/~jan/jan.html, posting
date 1995.

[4] Knuth, D.E., Sorting and Searching, Addison-Wesley,

Reading, MA, 1973.

[5] Tharp, A.L., File Organization and Processing, John

Wiley & Sons Inc., 1988.

	Neural Network for Random Access to
	Jim Etheredge
	Introduction
	B+ tree Indexes
	The Modified Neural Network
	The B+ tree/Neural Network Testbed Architecture
	The Test Plan
	Results
	Conclusions
	Future Work
	Acknowledgments
	References

