
An Evolutionary Neural Learning Algorithm for Offline Cursive
Handwriting Words with Hamming Network Lexicon

Moumita Ghosh, Ranadhir Ghosh, John Yearwood

School of Information Technology and Mathematical Sciences
University of Ballarat, Victoria, Australia

{m.ghosh, r.ghosh, j.yearwood} @ballarat.edu.au

Abstract

Original Word Image Rule Based Segmentation Character
Resizing

Recognition of Character
using an ANN (trained
with EALTS-BT)

Lexicon Analyser

Input

Feature
Extraction

Output

In this paper we incorporate a hybrid evolutionary method,
which uses a combination of genetic algorithm and matrix
based solution method such as QR factorization. A heuristic
segmentation algorithm is initially used to over segment
each word. Then the segmentation points are passed through
the rule-based module to discard the incorrect segmentation
points and include any missing segmentation points.
Following the segmentation the connected contour is
extracted between two correct segmentation points. The
contour is passed through the feature extraction module that
extracts the angular features of the contour, after which the
EALS-BT algorithm finds the architecture and the weights
for the classifier network. These recognized characters are
grouped into words and passed to a variable length lexicon
that retrieves words that has highest confidence value.
Hamming neural network is used as a lexicon that rectifies
the word misrecognized by the classifier. We have used
CEDAR benchmark dataset and UCI Machine Learning
repository (Upper case) to test the train and test the system

Introduction
Different approaches have been utilized for segmentation
and recognition in handwriting recognition tasks. Several
have used ANNs to segment the cursive words (Eastwoord
et al., 1997), (Blumenstein & Verma, 1999), (Blumenstein
& Jones, 1999). Segmentation plays important roles in the
overall process of handwriting recognition (Lu & Shridhar,
1999). Cursive word segmentation deserves particular
attention since it has been acknowledged as the most
difficult of all handwriting problems. In this proposed
word recognition system, rule based segmentation methods
are used for handwritten words. Following segmentation, a
contour between two consecutive segmentation points is
extracted. From this contour structural features are
extracted after which the EALS-BT algorithm finds the
architecture and the weights for a neural network classifier.
The recognized characters are grouped together into words
and passed to a variable length lexicon that retrieves words
that have the highest confidence value. An overview of the
recognition system is shown in Figure 1.

Figure 1: Handwriting recognition System

Methodology
The research methodology is briefly explained in this
section.

Segmentation
The segmentation follows the following steps:
Step1: Compute Baselines.
Step2: Over-segment the word.
Step 3: Pass the segmentation points through the rule base
to detect the incorrect segmentation point.
Step 4: Output the correct segmentation points.

Baseline Computation
Baseline computation is an important technique in
handwriting recognition. Baselines are used for size
normalization, correcting rotation, extracting features etc.
In this approach we compute five lines for the
segmentation task. These are the: upper baseline, lower
baseline, middle baseline, ascender line, and descender
line. All the baselines are computed with respect to the
horizontal pixel density. The upper baseline is the line that
goes through the top of the lower case characters. The
lower baseline is the line that goes through the bottom of
the lower case characters. The middle baseline corresponds
to the writing line on which the word was written. The
ascender line corresponds to the line that passes through
the topmost point of the word.

Over Segmentation
This module is used to assign Candidate Segmentation
Points (CSP) that could be validated through the rule-
based system for further processing. A heuristic over
segmentation algorithm is used that incorporates the
vertical histogram change. A vertical histogram is drawn at
each column point and the change in vertical density is
noted. Where the change is drastic, a possible Candidate
segmentation point is drawn.

Rule Based Validation
The over-segmented word is passed through the rule base
where rules are written on the basis of contour
characteristics of a character (such as a loop, a hat shape
etc.) described below. Application of the rules leads to the
removal of segmentation points from the character.
Rule 1. If a loop (closed area) is detected, remove the
segmentation points within a loop. Add a segmentation
point after the end of the loop as a Candidate Segmentation
Point (CSP).

Rule 2. If the hat shape is detected remove the
segmentation point within the hat shape contour. Add an
extra segmentation point after the end point of the hat
shape. The hat shape is described as ‘∧’ or ‘∨’.

Rule 3. Add missing segmentation points. The missing
points are detected by comparing the distance between two
segmentation points to a threshold. The average distance
between two segmentation points (threshold) is calculated
by taking the average of all segmentation points. If the
distances cross the threshold value a Candidate
Segmentation Point is added as a missing one.

Rule 4. Delete a few irrelevant segmentation points. The
irrelevant points are detected by comparison with the
average width between two segmentation points. The
average distance between two segmentation points is
calculated by taking the average of all segmentation points.
If the distance is less than the average width a
segmentation point is irrelevant and one deleted.

Contour Extraction
The contour between two consecutive segmentation points
is extracted as follows. In the first step disconnect the
pixels near the first segmentation point; disconnect the
pixels near the second segmentation point. Find the
smallest distance of the first black pixel from the first
segmentation point and the three baselines. Follow the
contour path across that baseline having minimum
distance. Find the connecting contour. Mark it as visited
once it is visited. If the contour is already visited then
discard that, take the other part if any.

Resizing
The individual extracted contours are of varying size and
hence in need of size normalization for use with the neural
network. The contours are passed through a resizing
algorithm that adjusts each contour to a normalized size.

Feature Extraction
A novel feature extraction technique is used to extract the
features of the extracted contour. The features extracted in
this methodology are structural features.

Slope. The slope of consecutive points is calculated. The
rate of change of slope is used as the main feature. The
input to the feature extraction module is the set of
coordinates (x, y) of the contour extracted from the contour
extraction phase. Slope (θ) between two coordinate (x1, y1)
and (x2, y2) is as follows
If (x2 = x1) then
 θ = 0
else

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−
−

= −

12

121tan
xx
yy

θ

Direction Change (Up/Down). The point with respect to
the main body of the contour where the direction is
changing is also taken care of. The change of direction is
classified by whether the contour is changing direction
upwards to downward or vice versa.

EALS-BT Classifier Model
A hybrid evolutionary technique is used to find the neural
network architecture and weights. The details of this
algorithm are described in Ghosh [2003]. The training of
the model is based on a hierarchical structure, which is
evolved with its own architecture and weights. A method
called ‘Evolutionary Algorithm and Least Squares’ is used
to find the weights and a type of Binary Search is used for
the architecture (EALS-BT). In Figure 2 the flowchart for
the dynamics of the combination methodology for
searching the architecture and calculating the weights is
given. The two separate modules for the architecture and
the weights are referred to as the findArchitecture and the
findWeight modules respectively.

Architecture Details. A two-layer network architecture is
considered. The input nodes for the ANN do the range
compression for the input and transmit output to all the
nodes in the hidden layer. The activation function used for
all the nodes in hidden and output layer is sigmoidal. The
first layer is composed of input nodes, which simply range
compress the applied input (based on pre-specified range
limits) so that it is in the open range interval (0, 1) and fan
out the result to all nodes in the second layer. The hidden

nodes perform a weighted sum on its input, and then pass
that through the sigmoidal activation function before
sending the result to the next layer. The output layers also
perform the same weighted sum operation on its input and
then pass that through the sigmoidal activation function to
give the final result.

Figure 2 Hierarchical structure for weight and architecture

module

FindWeight module. The weight variables for each layer
are found using a hybrid method, which uses the genetic
algorithm (GA) and a least square method. The
architecture is shown in Figure 3. The genetic algorithm is
applied for the first layer weight and the least square
method is applied to find the weights for the output layer.

Figure 3: A two layer ANN architecture for the proposed
hybrid learning method

We initialize the hidden layer weights with a uniform
distribution with closed range interval [-1, +1]. How we
can combine the evolutionary algorithm with the least
square method (EALS) is again a very important issue as
there are many possibilities joining the two independent
modules. The LS method is called after the convergence of
the evolutionary algorithm (EA) is over. After certain

number of generations for the EA, the best fitness
population is halved and the lower half is used as the
weights for the hidden layer and those weights are used for
the LS method. The Stopping criterion for EALS is also
based on a few simple rules. All the rules are based on the
current train and test output and the maximum number of
generations for the evolution algorithm. In the following,
we describe the stopping criterion for the convergence of
the evolutionary algorithm.
If (best_RMS_error1 < goal_RMS_error) then Stop

Else if (number_of_generation =

total_number_of_generation2) then
 Stop

Else if (train_classification_error is increased in #m3
consecutive generation) then
 Stop
Else continue
FindArchitecture module. We use a binary tree search
type to find the optimal number of hidden neuron. The
pseudo-code of the algorithm is given below:

Step 1: Find the percentage test classification error &
train_classification_error (error_min) for the minimum
number of hidden neurons, where error_min =
(train_classification_error (%)+ test_classification_error
(%)) / 2

Step 2: Find the percentage test classification error & train
classification error (error_max) for the maximum number
of hidden neurons, where error_max =
(train_classification_error (%) + test_classification_error
(%)) / 2

Step 3: Find the percentage test classification error & train
classification error (error_mid) for the middle (mid = (min
+ max) / 2) number of hidden neurons, where error_mid =
(train_classification_error (%) + test_classification_error
(%)) / 2

Step 4: If (error_mid < error_min) and (error_mid >
error_max) then
 min = mid
 mid = (min + max / 2)
 else
 max = mid
 mid = (min + max / 2)
 end if
Step 5: Go to Step1, if (mid > min) and (mid < max)
 Else go to Step 6

1 The best_RMS_error is the best of the RMS error from
the population pool
2 Total number of generations is considered as 30
3 m is considered as 3

Step 6: Number of hidden neurons = mid

A simple rule base can describe the working of the
stopping criterion for the combined algorithm.
Rule 1: If the current output is satisfactory, then stop the
algorithm, else check rule 2.
Rule 2: If the stopping criterion for the weight search is
met and the search is completely exhausted (in terms of the
number of iterations) then stop, else check rule 3.
Rule 3: If the stopping criterion for the weight search is
met then go to rule 4, else go to the next generation for the
EALS.
Rule 4: If the stopping criterion for EALS is met then go
to rule 1, else initialize for the next number of hidden
neurons for EALS.

Lexicon Analyzer
A neural network based dictionary was used for
recognizing words following the recognition of individual
characters. The normalized ASCII value for each character
is taken as the feature for the Neural network. The number
of words in the dictionary represents the number of output
of the Neural network. The hamming neural network is
trained with the words in the dictionary. Hamming
distance can be defined as being the number of bits in the
input that do not match corresponding bits encoded in the
weights of the network. The hamming network calculates
the Hamming distance to the exemplar of each class and
selects the class with the minimum hamming distance.
When analyzing, the network fires the output neuron that
matches the word in the dictionary. Figure 4 shows a
representation of the lexicon analyzer.

Figure 4: ANN based lexicon analyzer

Experimental Results
A number of experiments were conducted. Samples of
handwritten words from the CEDAR benchmark dataset
were used to test the segmentation module. The character
dataset of the CEDAR and UCI Machine Learning
repository (Upper case) were also used to train and test the
neural network classifier. All algorithms were
implemented in C++ on a UNIX platform. The number of
characters used for training and testing respectively were
7000 and 2000 for CEDAR dataset. For UCI Machine

Learning repository handwriting dataset 6000 and 1500
were used respectively for training and testing. The
number of outputs was 26 representing uppercase
characters (A-Z) and 26 representing lowercase characters
(a-z).

Segmentation Results
To test the accuracy of the rule based novel segmentation
algorithm three criteria were used for the segmentation
results. These are the number of: 1) over segmentations, 2)
missed segmentations and 3) bad segmentations. Over
segmentation occurs when the character is segmented by
more than two segmentation lines. Missed segmentation
occurs when a correct segmentation point is not noted by
the segmentation algorithm. Bad segmentation occurs
when the segmentation point does not separate two
characters properly. The error rates are shown in Table 1.

Table 1: Segmentation Results

Over segmentation
(%)

Missed (%) Bad (%)

20.02 0.2 8.7

As shown in Table 1, the segmentation algorithm
performed reasonably well. The missed error rate was
almost zero (0.2%). The over segmentation error was
prominent but not excessive (20.02%). The bad
segmentation error obtained was also modest (8.7%).

Character Recognition Results
The character recognition results obtained for CEDAR
benchmark dataset are shown in Table 2. The character
recognition results obtained for UCI Machine Learning
repository dataset are shown in Table 3.The result is
compared with the traditional Back Propagation algorithm
in both the cases.

Moumita 0.21
0.81
0.91
0.77
0.70
0.89
0.56

0.9

0.2
.
.
.
-0.4

act

mat
.
.
.
Moumita

Feature
Vector

ANN based
dictionary Output

Word

Table 2: Character Recognition Results for CEDAR

Recognition Rate [%] Lower/
Upper
case

Dataset
Back

propagation
EALS-BT

Lower Training 100 99.8
Lower Testing 87.3 92.4
Upper Training 99.7 100
Upper Testing 86.4 95.6

Table 3: Character Recognition Results for UCI Machine
Learning

Recognition Rate [%] Dataset
Back

propagation
EALS-BT

Training 100 99
Testing 95 96.8

Word Recognition Results
The word recognition result is shown in Table 3. The
words are passed through the lexicon analyzer. The word
recognition result we got before passing through the
lexicon analyzer was 75%. The recognition rate after
passing through the lexicon was 96%.

 Table 3: Word Recognition Results

Analysis and Discussion
The experiment was started with two neural classifiers for
lower case and uppercase. The upper-case characters
were giving higher classification results than the lower
case. This is due to the increasing ambiguity of lower case
characters. The shapes of the upper case characters are
mostly straightforward and unambiguous. However, in the
case of lower case characters are very ambiguous. Several
lowercase characters (like i, l, j) sometimes follow
overlapping shapes and this caused miss-recognition a
number of times.

The following figure (Figure 5) shows the improvement of
test classification accuracy in percentage over the standard
EBP and the evolutionary algorithm (EA) in CEDAR
benchmark dataset. From the Figure 5, it shows that in
cases for the proposed algorithm the test classification
accuracies were higher than the standard EBP and EA
methods. Whereas in case of EBP the improvement was
5.8% for lowercase and 10.6% for Uppercase, the results
improved a lot when compared with standard EA method.
In later case the improvement was 9% for lowercase and
14% for Uppercase.

Figure 5: Improvement of Classification accuracy for CEDAR
dataset

The following figure (Figure 6) shows the improvement of
test classification accuracy in percentage over the standard
EBP and the evolutionary algorithm (EA) in UCI Machine
Learning repository (Upper case) dataset. The
improvement was 2% for EBP and 5.6% for EA method.

Improvement of Classification Accuracy

0

1

2

3

4

5

6

EBP EA

[%
]

Word Recognition Result [%] Length of
lexicon Before passing through

the Lexicon analyzer
After passing through
the Lexicon analyzer

50 75 96
100 75 95

Figure 6: Improvement of Classification accuracy in UCI
Machine Learning repository (Upper case) dataset

The following figure (Figure 7) shows the improvement of
time complexity of the training dataset in percentage over
the standard EBP and the evolutionary algorithm in
CEDAR benchmark dataset. From the Figure 7, it shows
that in cases for the proposed algorithm worked much
faster than the standard EBP and EA methods. In case of
EBP the improvement was 41% for Lower case and 42%
for Uppercase. In case of EA, the improvement was 43.5%
for lowercase and 45.5% for Uppercase.

Improvement of Time Complexity

38%

39%

40%

41%

42%

43%

44%

45%

46%

EBP EA

Lower Case

Upper case

 Improvement of Classification Accuracy

0%
2%
4%
6%
8%

10%
12%
14%
16%

EBP EA

Lower
CUpper

Figure 7: Improvement of Time Complexity in CEDAR
dataset

The following figure (Figure 8) shows the improvement of
time complexity of the training dataset in percentage over
the standard EBP and the evolutionary algorithm in UCI
Machine Learning repository (Upper case) dataset
benchmark dataset. In case of EBP the improvement was
48% and in case of EA the improvement was 52%.

Improvement of Time Complexity

46

47

48

49

50

51

52

53

EBP EA

[%
]

Figure 8: Improvement of Time Complexity in UCI
Machine Learning repository (Upper case) dataset

 Conclusion

The paper has concentrated on a hybrid evolutionary
technique for offline handwriting recognition. It uses a
combination of genetic algorithm and matrix based
solution methods such as QR factorisation. The technique
produces satisfactory results with improvements in
character recognition and time complexity over the use of
a Back Propagation network and Evolutionary algorithm.
The result further improves with application of hamming
neural network as lexicon analyser.

References
Eastwoord, B., and Jennings, A., and Harvey, A. 1997. A
feature based neural network segmenter for handwritten
words. In Proceedings of the International Conference on
Computational Intelligence and Multimedia Applications,
286-290. Gold Coast, Australia.
Blumenstein, M; and Verma, B. 1999. A new segmentation
algorithm for handwritten word recognition. In
Proceedings of International Joint Conference on Neural
Networks, 872-882. Washington, U.S.A.
Blumenstein, M; and Verma, B. 1999. A Neural-based
solutions for the segmentation and recognition of difficult
handwritten word from a benchmark database. In
Proceedings of International Conference on Document analysis
and Recognition, 281-284. Bangalore, India.
Lu, Y.; and Shridhar, M. 1988. Character segmentation in
handwritten word – An overview. In Proceedings of
Pattern Recognition, 77-96.
Ghosh, R.; and Verma, B. 2003. Finding architecture and
weights for ANN using evolutionary based least square
algorithm. International Journal on Neural Systems, 13(1):
13-24.

