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Abstract

The Federal Highway Administration (FHWA) Office of
Highway Planning requires states to furnish vehicle classifi-
cation data as part of the Highway Performance Monitoring
Systems (HPMS). To comply with this requirement, most
states use the “F-Scheme” to classify vehicles. This scheme
classifies vehicles in 13 classes depending on a number of
factors, primarily the number of axles and the axle spacings
on each vehicle. Classification of highway vehicles using the
“F-Scheme” can be automated by properly using visual in-
formation of the number of axles and axle spacing; however,
this process is hindered by the absence of a suitable logic
to be used in the digital computer. Many computer software
vendors rely on sharply defined decision trees that are based
on the vehicle number of axles and axle spacing, which often
results in misclassifying some vehicles. This paper proposes
a classification approach that is based on Probabilistic Neu-
ral Networks. The paper explains the design of the neural
network for this purpose and how to condition the training
data. Field results have shown that the proposed network is
effective and can classify the majority of the vehicles as de-
fined in the “Scheme F” guidelines and it outperforms the
existing decision tree systems.

Introduction

State highway agencies, metropolitan planning organiza-
tions, and various other agencies in charge of overseeing
transportation facilities utilize vehicle classification data to
design and manage paved roads and to schedule the resur-
facing and reconstruction of these roads based on projected
remaining pavement life. Other uses of classification data
include prediction and planning for commodity flows and
freight movements, provision of design inputs relative to
the current and predicted capacity of highways, analysis of
alternative highway regulatory and investment policies, de-
veloping weight enforcement strategies; conducting envi-
ronmental impact analysis, and reviewing accident records
and mitigation strategies.

The standards for collecting and analyzing vehicle clas-
sification data vary countrywide due to the fact that vehi-
cle characteristics differ from one state to another. Truck

type patterns are heavily affected by local economic activi-
ties, weight limits, and truck size specifications imposed by
the states. For example, multi-trailer trucks are common in
most western states but make up a much smaller percentage
of the trucking fleet in many eastern states (FHWA 2001).
Also, some trucks are designed to carry specific commodi-
ties; for example, coal trucks in Kentucky and Pennsylva-
nia (FHWA 2001). The FHWA Office of Highway Plan-
ning requires states to furnish vehicle classification data
as part of the Highway Performance Monitoring Systems
(HPMS). To comply with this requirement, most states use
“F-Scheme” to classify vehicles. This scheme, which clas-
sifies vehicles in 13 classes, is essentially a visual classifi-
cation scheme based on the vehicle types.

To assign a vehicle to one of the 13 classes in “Scheme
F,” a lookup table implemented through a decision tree is
required. In Florida, different vendors supply the Florida
Department of Transportation with vehicle classification
equipment. The lookup table in each vendor’s equipment
is unique to that vendor. Each vendor has its decision tree
algorithm. Comparison of vehicle classification algorithms
used by these vendors revealed discrepancies in the deci-
sion thresholds, a factor which might be contributing to
misclassification of vehicles. For example, for class 8 vehi-
cles with 4 axles, one vendor (PAT Traffic Control Corpo-
ration, Inc.) specifies the range of the first axle spacing to
be from 6.01 to 23.0 ft, another vendor (PEEK Traffic Inc.)
specifies the same axle spacing to range from 6.0 to 20.0 ft
while the third vendor (Diamond Traffic Products) specifies
0 to 199.9 ft as the range of first axle spacing. The Florida
Department of Transportation (FDOT) decided to set the
common thresholds that could be used with any vendors’
equipment; these thresholds are shown in Table 1. How-
ever, the thresholds chosen by FDOT were non-optimally
selected and set. Field evaluation of these thresholds as
shown in the results of this paper revealed that they causes
classification errors.

This paper proposes using a Probabilistic Neural Net-
work (PNN) as a classification tool for vehicles using ob-
served patterns on the number of axles, axle spacing, ve-



hicle weights and the vehicle lengths. It documents the
method used to develop the neural network, selecting train-
ing data, and gives preliminary performance results of the
proposed network. It is hoped that the desired thresholds
can be established after the proposed neural network has
classified a relatively large number of vehicles.

FHWA Guidelines for Vehicle
Classification–“Scheme F”

The Federal Highway Administration issued guidelines for
vehicle classification in a form known as the 13-category
classification scheme. A number of schemes have been de-
veloped based on these guidelines, however the most popu-
lar is “Scheme F” which was developed by the Department
of Transportation of the State of Maine (Wyman, Braley,
& Stephens 1985). This scheme is shown in the Appendix
which is taken from (FHWA 2001).

In its basic form this scheme provides information that
cannot be quantified in a way suitable for computer appli-
cation. Therefore, it is in general very difficult to automate
the classification process using these guidelines of “Scheme
F” alone. For that reason, many software vendors have de-
veloped a decision tree that is based on the number of axles
and axle spacing. Table 1 shows such a decision tree used
by the Florida Department of Transportation. This table can
be used to automate the vehicle classification process by us-
ing a set of linked IF-THEN rules that can be programmed
into a digital computer. However, as is evident from the ta-
ble, the line of demarcation between the classes is very thin
and often has resulted in misclassifications. For example,
while the second axle spacing for classes 4 and 6 are over-
lapping, the upper limit for the first axle spacing for class 6
is 23.0 while the lower limit for class 4 is 23.01. The line
of demarcation is therefore within 0.01 ft only.

The objective of this research was, among other things,
to develop a better way of automating vehicle classification
process that satisfies the guidelines provided by “Scheme
F”. After an extensive evaluation of the problem and the
available classification tools(Michie, Spiegelhalter, & Tay-
lor 1994; Tsoukalas & Uhrig 1997), a Probabilistic Neural
Network (PNN) approach was chosen. The following sec-
tion briefly describes the principles behind PNN.

Probabilistic Neural Networks
A probabilistic neural network (Specht 1990a; 1990b) is
a pattern classification network that is believed to pro-
vide a general method for pattern classification problems
(Tsoukalas & Uhrig 1997). This neural network is based
on the classical Bayes classifier, which is statistically an
optimal classifier that seeks to minimize the risk of misclas-
sifications. Details of how this network works can be found
in many standard textbooks; however, a brief description of
this network is given below.
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Any pattern classifier places each observed vector of data
x in one of the predefined classes ci, i = 1, 2, · · · , n
where n is the number of possible classes in which x can
belong. The effectiveness of any classifier is limited by the
number of data elements that vector x can have and the
number of possible classes n. The classical Bayes pattern
classifier implements the Bayes conditional probability rule
that the probability P (ci|x) of x being in class ci is given
by

P (ci|x) =
P (x|ci)P (ci)∑n

j=1 P (x|cj)P (cj)
(1)

where P (x|ci) is the conditioned probability density func-
tion of x given set ci, P (cj) is the probability of drawing
data from class cj . Vector x is said to belong to a particular
class ci if P (ci|x) > P (cj |x), ∀j = 1, 2, · · · , n, j �= i
This classifier assumes that the probability density function
of the population from which the data was drawn is known
a priori; this assumption is one of the major limitations of
implementing Bayes classifier.

The PNN simplifies the Bayes classification procedure
by using a training set for which the desired statistical in-
formation for implementing Bayes classifier can be drawn.
The desired probability density function of the class is ap-
proximated by using the Parzen windows approach (Parzen
1962; Murthy 1965; 1966; Cacoullous 1966). In particular,
the PNN approximates the probability that vector x belongs
to a particular class ci as a sum of weighted Gaussian dis-
tributions centered at each training sample, i.e.,

P (ci|x) =
1

(2π)
N
2 σNnti

nti∑
j=1

exp

[
− (x − xi

j)
T (x − xi

j)
2σ2

]

(2)
where xi

j is the j-th training vector for the patterns in class
i, σ is known as a smoothing factor, N is the dimension of
the input pattern, and nti

is the number of training patterns
in class i. For nonlinear decision boundaries, the smoothing
factor σ needs to be as small as possible. In this work, the
shape of the decision boundary was assumed to depend on
the standard deviation of the data being classified. In partic-
ular, since a small value of the standard deviation indicates
that the data points are clustered at well defined points, then
it is associated with a decision boundary that is almost lin-
ear calling for a large value of σ. Similarly, a high value of
the standard deviation which indicates that the data points
are widely scattered calls for a nonlinear decision bound-
ary with a very small value of σ. In general, σ is inversely
proportional to the standard deviation of the data being clas-
sified. In the results reported in this paper σ was calculated
as

σ =
1

||Σ|| (3)

where ||Σ|| is the Frobenius norm of a matrix formed by
concatenating the standard deviation vectors for each train-

ing set; it corresponds to the maximum standard devia-
tion in the training patterns. Therefore, σ became auto-
matically small when the training set had large variances,
which called for nonlinear decision boundaries. The com-
putational structure of the PNN is shown in Figure 1. The
network has an input layer, a pattern layer, a summation
layer and an output layer. The input x to the network is a
vector defined as

x � [x1, x2, x3, · · · , xp]T . (4)

This input is fed into each of the patterns in the pattern
layer. The summation layer computes the probability fi(x)
of the given input x to be in each of the classes i represented
by the patterns in the pattern layer. The output layer picks
the class for which highest probability was obtained in the
summation layer. The input is then classified to belong to
this class. The effectiveness of the network in classifying
input vectors depends highly on how the training patterns
are chosen. The next section describes how the training
patterns for the vehicle classification problem were chosen.

x

Corresponding class for the given input vector

OUTPUT LAYER

LAYER
SUMMATION

LAYER
PATTERN

Patterns for Class N

INPUT LAYER

Patterns for Class 1

1 2 3 p

1 N
f  (x) f  (x)

2
f  (x)

x x x

Figure 1: Computational structure of the PNN

Choosing Training Patterns for the PNN
Field data were collected from different calibrated Weigh-
In-Motion (WIM) sites along the major highways in the
State of Florida. The WIM sites provided individual ve-
hicle records that included the number of axles, axle spac-
ing, vehicle length, and the overall vehicle weight. In addi-
tion,video data were collected at the same sites simultane-
ously. A test vehicle of known axle spacing was run over
the sensors during the time which the video was logged on
for verification of the accuracy of the axle sensors in de-
tecting axle spacing. Each monitored vehicle was visually
classified by using video data and compared to field ma-
chine classification that implements the Florida DOT axle



spacing table. Misclassified vehicles were identified and
recorded. Information for more than 4,000 vehicles was
collected.

Since the axle spacing for some vehicles were wider than
for others, certain vehicle types were represented by using
more data than others. In order to create uniformity in the
patterns, all vehicles were assumed to have 9 axles, which
is the observed maximum number of axles for all vehicles
recorded. Vehicles with less axles were assumed to have
additional fictitious axles so that the total number is 9; axle
spacings for these fictitious axles were fixed to be 0.

Some of the classes in “Scheme F” span over different
number of axles. For example, class 2 covers vehicles
with two to four axles depending on the number of axles
per trailer. It is difficult to automatically classify the two
axle vehicles in the same group as the four axle vehicles.
Because of this, such classes were broken down to simple
subclasses and redefined as shown in Table 2. A total of 28
subclasses were defined based on the 13 predefined stan-
dard classes. Therefore, the PNN patterns were drawn to
reflect these subclasses and the network was asked to clas-
sify the vehicle into one of these 28 subclasses. To reduce
chances of possible misclassification, the mean values and
standard deviations of the training patterns were carefully
controlled. Each training pattern was chosen to have a suf-
ficiently low standard deviation, and with a mean that was
sufficiently far from those of the adjacent training sets in
the Euclidean space. Classes that involved wider axle spac-
ings had more training patterns than those with narrow axle
spacings. In total, there were 147 training patterns for the
28 classes, which on average suggests that each class was
represented by about 5 patterns.

Field Performance Results

Data collected from the field were used to test the perfor-
mance of the PNN as compared to methods that follow the
FDOT decision tree. Video data were collected in the vicin-
ity of the WIM sites and used as ground truth. Individual
vehicle axle information, weight and the classes assigned
by the FDOT decision tree were obtained from the WIM
sites. The axle information and weight for each vehicle
were supplied to the neural network and the assigned class
was recorded. The classes obtained by using the PNN and
those due to the FDOT decision tree were verified using
the ground truth data. Two sets of performance for the
PNN were obtained; the first set used axle information only,
which is the same criterion used with FDOT decision tree
and the second set used both axle information and weight.
All custom made vehicles that do not fall in any of the stan-
dard classes 1 to 13 are classified as Class 15 by both the
FDOT decision tree and the PNN. The FDOT decision tree
was unable to detect all 23 vehicles that would have been in
Class 15 while the PNN was able to place some of these ve-

hicles in their correct classes. It is possible that the failure
to classify a vehicle in its correct standard class may also
result in the vehicle being misclassified as Class 15. Table
3 shows a sample of the results that were obtained. As seen
from these results, for both of its data sets the neural net-
work performs better compared to the FDOT decision tree
methods. While currently the FDOT decision tree meth-
ods are limited to axle information only, the PNN was able
to easily incorporate the vehicle weight in the classifica-
tion process. This as shown in the table of results improved
further the performance of the PNN in comparison to the
FDOT decision tree. In general, the FDOT recorded a 4.9%
misclassification rate while the PNN had a misclassifica-
tion rate of 3.0% when the vehicle weight was not used and
1.6% when vehicle weight was used as an additional clas-
sification variable. It is hoped that PNN will eventually be
adopted by FDOT as a classification tool for highway ve-
hicles, or at least the results from the PNN in the long run
will be used in setting up better thresholds for the classi-
fication decision trees.For establishment of more accurate
thresholds, it is necessary to run the network many times.
It is understood that the data used in the results reported
herein is not sufficient to justify accurate definition of the
thresholds for some subclasses; therefore more data are still
being collected and field tests are still in progress.

Conclusions

This paper presented a probabilistic neural network design
for classification of highway vehicles according to FHWA
“Scheme F”. The network accepts information about axle
spacing and vehicle weight to determine the class into
which the vehicle belongs. The proposed network can use
the vehicle axle information only or with vehicle weight.
Field results showed that the proposed network outperforms
the current FDOT decision tree methods; the difference in
performance between the proposed PNN method and the
FDOT decision tree becomes more conspicuous when the
vehicle weight is used in the classification. Accurate classi-
fication by the PNN can help the FDOT to establish better
axle spacing thresholds in the decision tree. Due to the bet-
ter performance showed by the PNN, it is hoped that after
extensive field tests and validation, the FDOT may eventu-
ally consider adopting it as a classification tool to replace
the existing classification methods in the State of Florida.
The success of the network depends on both its design (i.e.,
selection of the smoothing factor (σ)) and selection of rep-
resentative training patterns. The smoothing factor was se-
lected as a function of the variances of the training patterns,
and the pattern set for each class was chosen to have a suf-
ficiently small variance and a mean that is sufficiently far
from the mean of the pattern for the adjacent class.



Mean Axle Spacing [ft] Weight [Kips]
Class Subclass Ax.1-2 Ax.2-3 Ax.3-4 Ax.4-5 Ax.5-6 Ax.6-7 Ax.7-8 Ax.8-9

1 1 2.95 0.47

2

2a 8.50 3.00
2b 9.35 14.87 5.51
2c 9.4 18.7 2.56 8.78

3

3a 12.0 11.34
3b 11.69 16.59 11.71
3c 11.75 19.47 2.53 14.00
3d 11.60 22.33 2.63 2.70 16.25

4
4a 24.77 27.85
4b 25.40 4.06 39.87

5

5a 18.61 16.12
5b 13.80 17.10 9.18
5c 13.88 20.90 2.78 10.98
5d 13.53 24.90 2.80 2.77 20.16

6 6 18.77 4.27 30.76

7 7 12.44 4.08 5.64 39.32

8

8a 13.67 25.23 31.88
8b 17.14 4.26 31.04 21.00
8c 15.94 22.76 4.89 23.69

9
9a 15.63 4.33 27.3 4.51 53.35
9b 16.17 3.47 14.67 19.00 58.65

10
10a 17.83 4.48 29.31 4.15 4.11 61.75
10b 16.31 4.44 35.16 5.73 9.19 5.79 62.34

11 11 14.13 21.33 9.52 22.25 56.34

12 12 16.26 4.24 20.19 9.04 20.87 64.02

13

13a 16.02 4.40 18.42 23.64 5.96 4.30 74.94
13b 17.15 4.30 8.45 8.20 7.90 8.35 8.95 104.85
13c 16.30 4.07 21.13 6.60 24.63 18.58 4.55 22.00 116.05

Table 2: “Scheme F” vehicle classes and the defined subclasses.

FDOT Decision Tree PNN (Without Weight) PNN (With Weight)
Vehicle Total Total Percentage Total Percentage Total Percentage
Class Observed misclassified misclassified misclassified misclassified misclassified misclassified

3 2224 80 3.6% 50 2.2% 25 1.1%
4 29 11 37.9% 3 10% 0 0%
5 366 94 25.7% 66 18% 33 9%
6 78 4 5.1% 2 2.6% 0 0%
7 19 0 0% 0 0% 0 0%
8 112 0 0% 0 0% 0 0%
9 1395 1 0.1% 0 0% 0 0%
10 25 0 0% 0 0% 0 0%
11 25 0 0% 0 0% 0 0%
12 12 0 0% 0 0% 0 0%
13 4 0 0% 0 0% 0 0%
15 23 23 100% 10 43.5% 10 43.5%

TOTAL 4312 213 4.9% 131 3.0% 68 1.6%

Table 3: Summary of the PNN classification performance compared to the FDOT decision tree methods
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Appendix: FHWA Guidelines for Vehicle
Classification

Class 1 - Motorcycles (Optional): All two- or three-wheeled
motorized vehicles. Typical vehicles in this category have sad-
dle type seats and are steered by handle bars rather than wheels.
This category includes motorcycles, motor scooters, mopeds,
motor-powered bicycles, and three-wheeled motorcycles.This
vehicle type may be reported at the option of the State.

Class 2 - Passenger Cars: All sedans, coupes, and station wag-
ons manufactured primarily for the purpose of carrying passen-
gers and including those passenger cars pulling recreational or
other light trailers.

Class 3 - Other Two-Axle, Four-Tire, Single Unit Vehicles:
All two-axle, four-tire, vehicles other than passenger cars. In-
cluded in this classification are pickups, panels, vans, and other

vehicles such as campers, motor homes, ambulances, hearses,
carryalls, and minibuses. Other two-axle, four-tire single unit
vehicles pulling recreational or other light trailers are included
in this classification. Because automatic vehicle classifiers
have difficulty distinguishing class 3 from class 2, these two
classes may be combined into class 2.

Class 4 - Buses: All vehicles manufactured as traditional
passenger-carrying buses with two axles and six tires or three
or more axles. This category includes only traditional buses
(including school buses) functioning as passenger-carrying ve-
hicles. Modified buses should be considered to be trucks and
be appropriately classified.

Note: In reporting information on trucks the following criteria
should be used:

a. Truck tractor units traveling without a trailer will be con-
sidered single unit trucks.

b. A truck tractor unit pulling other such units in a saddle
mount configuration will be considered as one single unit
truck and will be defined only by axles on the pulling unit.

c. Vehicles are defined by the number of axles in contact
with the roadway. Therefore, floating axles are counted only
when in the down position.

d. The term trailer includes both semi- and full trailers.

Class 5 - Two-Axle, Six-Tire, Single Unit Trucks: All vehicles
on a single frame including trucks, camping and recreational
vehicles, motor homes, etc., having two axles and dual rear
wheels.

Class 6 - Three-axle Single unit Trucks: All vehicles on a sin-
gle frame including trucks, camping and recreational vehicles,
motor homes, etc., having three axles.

Class 7 - Four or More Axle Single Unit Trucks: All trucks on
a single frame with four or more axles.

Class 8 - Four or Less Axle Single Trailer Trucks: All vehicles
with four or less axles consisting of two units, one of which is
a tractor or straight truck power unit.

Class 9 - Five-Axle Single Trailer Trucks: All five-axle vehi-
cles consisting of two units, one of which is a tractor or straight
truck power unit.

Class 10 - Six or More Axle Single Trailer Trucks: All vehicles
with six or more axles consisting of two units, one of which is
a tractor or straight truck power unit.

Class 11 - Five or Less Axle Multi-Trailer Trucks: All vehi-
cles with five or less axles consisting of three or more units, one
of which is a tractor or straight truck power unit.

Class 12 - Six-Axle Multi-Trailer Trucks: All six-axle vehicles
consisting of three or more units, one of which is a tractor or
straight truck power unit.

Class 13 - Seven or More Axle Multi-Trailer Trucks: All
vehicles with seven or more axles consisting of three or more
units, one of which is a tractor or straight truck power unit.


