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Abstract

We present a single-layer recurrent neural network that im-
plements novelty detection for spatiotemporal patterns. The
architecture is based on the structure of region CA3 in the
hippocampus, which is believed to implement this function.
Through analysis and numerical simulation we generate the-
orems that constrain the operation of this network. We show
that once a pattern has been encoded, it will never be miscat-
egorized as novel. We also show that the upper bound on the
network capacity is equal to the number of connections. We
discuss the tradeoff between generalization and total perfor-
mance in the architecture.

Introduction
We present a single-layer recurrent neural network that im-
plements novelty detection for spatiotemporal patterns. The
architecture and its behavior are based on region CA3 (cor-
nus ammoni 3) of the hippocampus, which is believed to
implement this function. We present a set of theoretical re-
sults that constrain this and more elaborate models, includ-
ing an analysis of the tradeoffs between generalization and
total performance. We conduct a set of simulations to inves-
tigate scenarios with random pattern selection. We conclude
with a comparison to other work and some ways to increase
the sophistication of the architecture.

A general problem in the design of intelligent agents with
memory is the determination of which events in the environ-
ment should be stored for future reference. It has long been
recognized that the memory system of humans and other an-
imals is selective in nature (James 1890). In particular, or-
ganisms preferentially select to encode new or unexpected
stimuli (von Restorff 1933). The goal of this selection is
to maximize the accuracy of the organism’s internal model
of the external world by encoding those events that the in-
ternal model does not already predict (Sokolov 1960). The
advantage of a selective memory can also be phrased statis-
tically as reducing sampling artifacts. The frequency of an
event in the natural world does not necessarily correlate with
its importance to survival, and the repeated encoding of fa-
miliar events skews distributions used for decision-making
away from more rare but potentially more relevant events
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(Marsland 2001). Equivalently, the repeated encoding of fa-
miliar data points leads to the formation of large, degenerate
representations in neural networks (Kali & Dayan 2000), an
example of “catastrophic forgetting”.

In our search for optimal artificial architectures that im-
plement selective memory, it is natural to investigate the
ways in which organisms may implement it. In this paper we
focus on one component of a selective memory, the detection
of novel stimuli. It is important to note that the physiologi-
cal responses associated with the presentation ofunexpected
stimuli are the same as for completely new stimuli (see re-
view in Ranganath & Rainer, 2003). Novelty detection is a
dynamic procedure: rather than passively categorizing stim-
uli as new or old, animals actively generate internal predic-
tions for external events and evaluate whether or not they are
accurate. When a mismatch occurs, novelty is detected and
the animal encodes the new information.

Cellular recordings from region CA3 in the rabbit hip-
pocampus reveal changes in the spike rate contingent upon
the presentation of novel stimuli (see review in Vinogradova,
2001). Specifically, most cells in this region decrease their
firing rate when a novel stimulus is presented. It is be-
lieved that this region is where the novelty computation
takes place, since areas “upstream” to it (e.g. entorhinal
cortex) do not respond differently to novel stimuli and ar-
eas “downstream” from it (e.g. the septum) do respond dif-
ferently. The hippocampus is generally recognized as im-
plementing a memory system in a “loop” of which CA3 is
one of the initial stages (O’Keefe & Nadel 1978). CA3 di-
rectly and indirectly projects to areas of the brain typically
associated with increases in arousal (Swanson 1978). Thus,
CA3 seems ideally suited both physiologically and anatom-
ically to act as a novelty detector for a selective memory.
The most pronounced architectural feature of CA3 is that the
principal cells exchange multiple recurrent connections with
one another. It is known that these connections implement
temporally-asymmetric learning rules, i.e., connections are
strengthened when a postsynaptic cell fires after a presynap-
tic cell, but are weakened if the reverse relationship occurs
(Bi & Poo 1998).

To a first approximation CA3 can be abstracted as a
single-layer recurrent neural network, commonly referred to
as a “Hopfield” or “Willshaw” network (Willshaw, Bune-
man, & Longuet-Higgins 1969; Hopfield 1982). However,



CA3 neurons can exchange multiple connections with vari-
able transmission delays. A single-layer recurrent neural
network architecture generalized to include multiple con-
nections with different delays has been referred to as a “res-
onance network”. When a learning algorithm strengthens
connections with delays matching the firing delays of the
units they connect (Equation3 in this paper), the network is
trained toresonatewith input patterns (Toulouse, Dehaene,
& Changeux 1986; Dehaene, Changeux, & Nadal 1987).
In a recent theoretical study it was shown that temporally
asymmetric learning rules of the sort found in CA3 can ap-
proximate the learning algorithms used by resonance net-
works (Senn, Schneider, & Ruf 2002). Thus, resonance net-
works may offer a better approximation of CA3 than Hop-
field / Willshaw networks.

We will demonstrate how resonance networks can imple-
ment novelty detection in a manner consistent with the phys-
iology of CA3.

Network Design
The network is very simple in structure. This simplicity will
support a set of theorems that give key intuitions applicable
to more elaborate architectures. We conduct a set of simu-
lations that reveal the expected performance of the network
under conditions of random pattern selection.

The architecture consists of a single layer of intercon-
nected units. Each unit computes a unit step function de-
notedΨ(...):

Ψ(x) =
{

1 if x ≥ 0
0 if x < 0 (1)

We refer to the set of allN units in the network asK.
Units in the network receive binary “feedforward” input
from an external population. We denote the external input
to unit k in the network at timet by ik(t) ∈ {0, 1}. We
identify a pattern presented to the network by the set of net-
work units that receive positive external input at different
times. PatternF1 of lengthT consists of a set of snapshots
F1(1), F1(2), ..., F1(T ); whereF1(t) = {k ∈ K|ik(t) =
1}. We impose the constraint that the size of each snapshot
is the same, i.e., that the input spike density is some constant
X =

∑
k∈K ik(t) for every moment in timet.

To compute on the time domain, a network needs an inter-
nal temporal structure. We provide this structure in the trans-
misson delays of connections between units. Every unit in
the network projects to every other unitS connections, each
with a unique transmission delays ∈ [slo, shi], with slo = 1.
We write the strength (weight) of the connection from unit
j to unit k with delays at timet aswkjs(t). Weights only
take values of−1 or 0 and can be modified during training.
All weights are initialized to−1. Figure1 illustrates the
network architecture.

The output of unitk at timet is calculated according to
Equation2:

ak(t) = Ψ

ik(t)− 1 +
∑

s

∑
j∈K

wkjs(t)aj(t− s)

 (2)
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Figure 1: The network architecture. Depicted are units1 and2
with shi = 3. Each unitk receives an external input at timet de-
notedik(t). Each unit output is computed by summing the external
input, a bias of−1, and the recurrent input and passing the result
through a unit step function. Every unit in the network projects
S connections with unique delays to every other unit in the net-
work including itself. Each delay boxD imposes a delay of one
timestep. Self-coupling connections (e.g., from unit1 to 1) are not
shown, but take the same form as cross-coupling connections.

Thus, the output of unitk at timet is 1 (unit k is active)
if and only if it receives positive external input and every
unit with positive output at timet − s projects a connection
with a delays and a weight equal to0 to k. We separate
the operation of the network into two phases: encoding and
evaluation. During an encoding phase we calculate weight
changes according to Equation3:

wkjs(t + 1) = wkjs(t) + ik(t) · ij(t− s) (3)

With the constraint that weights saturate at a maximum of0.
Weight changes are applied at the end of the encoding phase.
During an evaluation phase, weights do not change. We in-
terleave encoding and evaluation phases to evaluate network
performance (patterns correctly categorized as novel / famil-
iar) as a function of the number of stored patterns.

The network categorizes a pattern as novel when∑
k∈K ak(t) < X at any timet, i.e., the actual number

of units active is less than the expected numberX. As in
the hippocampus, novelty is signaled by a decrease in the
number of units that are active.

Analysis
There are two theorems that constrain the behavior of these
networks. The first theorem proves that after a pattern is



stored, it will never be miscategorized as novel. The second
theorem proves that for no generalization to occur, each pat-
tern must be different from all stored patterns by at least one
three-tuple of a projecting unit, receiving unit, and delay.

Let G = {F1, F2, ..., Fp} be the set of distinct patterns
that have been stored in the network.

Definition A new patternFh 6∈ G is correctly categorized
as novel if at some timet there is at least one unitk where
k ∈ Fh(t) andak(t) = 0.

Definition A patternFi ∈ G is correctly categorized as fa-
miliar if for all times t there is no unitk wherek ∈ Fi(t)
andak(t) = 0.

We first show that all stored patterns will be correctly cat-
egorized as familiar.

Theorem 1 If pattern Fi has been stored in the network,
then it will never be categorized as novel.

Proof. Assume for contradiction that patternFi has been
stored in the network but is categorized as novel. Then there
must be some timet and unitk wherek ∈ Fi(t) butak(t) =
0. For ak(t) to equal0, either ik(t) = 0 or there exists
somej ands such thataj(t − s) = 1 andwkjs(t) = −1.
k ∈ Fi(t) implies thatik(t) = 1, so the latter must be true.
aj(t − s) = 1 implies thatij(t − s) = 1. Then because
ik(t) = ij(t−s) = 1 and patternFi has been stored,wkjs(t)
must equal0, which contradicts the earlier conclusion that
wkjs(t) = −1.

As is the case with most neural networks, this simple de-
sign generalizes across patterns (i.e., it may categorize a
novel pattern as familiar). To illuminate where and when
generalization occurs in our network design, we present the
conditions that must be met for no generalization to occur.

Theorem 2 PatternFh 6∈ G is (correctly) categorized as
novel if and only if there is at least one three-tuple(k, j, s)
unique to patternFh such thatk ∈ Fh(t) andj ∈ Fh(t− s)
for some timet and there does not exist a patternFi ∈ G
and timet′ such thatk ∈ Fi(t′) andj ∈ Fi(t′ − s).

Proof. To prove the forward implication, assume for con-
tradiction thatFh 6∈ G is categorized as novel but there does
not exist a distinct three-tuple meeting the above criteria.
SinceFh is categorized as novel, there is at and unitk such
that k ∈ Fh(t) but ak(t) = 0. It follows that there must
be some unitj and delays such thatj ∈ Fh(t − s) but
wkjs(t) = −1. But because no three-tuple exists, there must
be some timet′ and patternFi ∈ G such thatk ∈ Fi(t′) and
j ∈ Fi(t′ − s). However, this fact implies thatwkjs(t) = 0,
a contradiction of the conclusion thatwkjs(t) = −1.

To prove the reverse implication, assume for contradic-
tion that at least one distinct three-tuple exists butFh 6∈ G
is categorized as familiar. ForFh not to be categorized as
novel, for every timet and unitk ∈ Fh(t) it must be the
case thatak(t) = 1. For the output of these units to be1, it
must be the case thatwkjs(t) = 0 for every delays and unit
j ∈ Fh(t−s), that is, there must be some timet′ and pattern
Fi ∈ G such thatk ∈ Fi(t′) andj ∈ Fi(t′ − s). However,
the assumption that a distinct three-tuple exists implies that
for at least one three-tuple a patternFi and timet′ cannot be
found that satisfies this relation, a contradiction.

F1(1) = {1, 2} F1(2) = {1, 2}
F2(1) = {1, 2} F2(2) = {3, 4}
F3(1) = {3, 4} F3(2) = {1, 2}
F4(1) = {3, 4} F4(2) = {3, 4}

Table 1: Only four patterns of length2 are necessary to set
all of the weights to0 whenN = 4 andshi = 1. After
these four patterns are stored, all36 possible patterns will
be categorized as familiar.

Thus, for every pattern to be categorized correctly before
and after it is stored it must include at least one distinct
three-tuple of(k, j, s), that is, it must change at least one
weight when it is stored. There are two corollaries that are
generated from Theorems1 and2:

Corollary 3 The upper bound on the number of patterns
that can be stored in the network while no generalization
occurs is the number of weights in the network, i.e.,SN2.

We will refer to this number as the upper bound on the
network capacity. Intuitively, for no generalization to occur
patterns must be orthogonal in anSN2-dimensional space
defined by weights and their delays. The mapping between
the population producing the external input and the network
population does not affect the upper bound. Thus, making
the feedforward connections adaptable cannot improve per-
formance past this point. However, adaptable feedforward
weights and preprocessing layers can help performance ap-
proach the upper bound on capacity. It is important to
note that such an augmentation would be necessary to max-
imize performance. Theorem2 states that any pattern to be
stored must use a distinct three-tuple, and Corollary3 con-
cludes that onlySN2 unique three-tuples can exist. Clearly

SN2 ≤
(
N
X

)T
, the number of possible patterns of length

T when inputs are independent of one another. A prepro-
cessor is necessary to ensure all unstored patterns will map
to a (potentially not unique) unallocated three-tuple prior to
storage. Intuitively, once a pattern is stored it removes at
least1 three-tuple from theSN2 we have available to allo-
cate. Once we have storedSN2 patterns, we will run out of
unique three-tuples to represent any unstored pattern.

Corollary 4 A minimum of(N/X)2 patterns of lengthshi+
1 need to be stored to maximize generalization.

Generalization is maximized when all weights are set to0
by the minimum number of stored patterns. We refer to the
strategy that accomplishes this goal as an “adversary”. The
strategy is to divide the network units into unique clusters
of sizeX and store patterns only using these clusters. For
example, ifX = 2 and there are four units in the network,
the adversary could parse units1 and2 and units3 and4
together. All weights in the network can be set to0 for shi =
1 by storing the four patterns listed in Table1.

(N/X)2 patterns are required to change the weights of
every connection with the maximum delay, which is the lim-
iting factor. At mostX2 of these can be changed for each
pattern, but for weights with lesser delays more thanX2 can
be changed per pattern. Once all weights have been changed,

all
(
N
X

)S+1
possible patterns will be categorized as familiar.



We can control generalization in the network by control-
ling the input spike density (i.e.,X). This feature is not
unique to the function of novelty detection or our particu-
lar architecture (cf. McClelland, McNaughton, & O’Reilly,
1995). It is a general property of neural networks: sparse
patterns are more likely to be orthogonal in theSN2-
dimensional weight space. However, asX is decreased,
the number of possible patterns also decreases (assuming
X < N/2). Thus, a network using sparse patterns has a
lower initial performance (total number of patterns correctly
categorized) than a network using distributed patterns. The
advantage of distributed patterns is that they allow us to en-
code a larger set of external events. So if generalization is
highly undesireable and relatively few external events need
to be encoded,X should be relatively low. However, if gen-
eralization is desireable and many external events need to be
encoded,X should be relatively high.

Numerical simulations are conducted to confirm our anal-
yses and investigate network performance under conditions
of random and adversarial pattern selection for patterns of
lengthS + 1. In applications where pattern length is greater
thanS + 1, a single pattern of lengthT is equivalent to stor-
ing 1 + T − (S + 1) (potentially unique) patterns of length
S + 1. After each pattern is stored, we test the network on
the range of all possible patterns and record how many are
correctly categorized. We plot this number as a function of
the total number of patterns stored to visualize the impor-
tance of different network parameters and pattern selection
conditions. Thus, we pair a single encoding phase (for each

new pattern) with
(
N
X

)S+1
evaluation phases (all possible

patterns).
Figure 2 displays the results forN = 6, N = 8, and

N = 10, whereX is either1 or 2. The right plots are
magnifications of the bottom portions of the left plots. The
six plots illustrate the tradeoff between larger values ofX
and miscategorizations of unstored patterns as familiar. The

number of possible patterns is
(
N
X

)S+1
, and we are inter-

ested in the biologically plausible range whereX << N
and N >> 1. In this range an increase in eitherX or
N produces an exponential increase in the number of pos-
sible patterns, and therefore the number of events that can
be presented to the network (in our simple example where
X ∈ {1, 2} it is only quadratic with respect toX). However,
increasingX also increases the average number of weights
that are set to0 by each pattern. This fact leads to a quicker
decrease in the number of patterns accurately categorized
with respect to the number of stored patterns. The intersec-
tion point between theX = 1 andX = 2 conditions gives
the point of the tradeoff, where selectingX = 1 would pro-
duce better results if more than this many patterns must be
stored in the network. With larger values ofN theX = 1
curve becomes increasingly shallow, making the intersection
point more favorable to theX = 1 condition. However, with
larger values ofN the potentially exponential scaling of the
number of patterns vs.X becomes more significant.

Because patterns are encoded regardless of whether they
are categorized as novel, performance (temporarily) in-
creases linearly from minima as patterns that were (erro-

neously) categorized as familiar are stored. Performance
(permanently) increases linearly once all weights are set to
0.

Discussion
The primary advancement of this study is the design of a
simple model that gives the basic intuitions for how a partic-
ular biological structure implements its function. However,
we have also provided a foundation on which a series of ar-
tificial neural networks that dynamically compute the nov-
elty of spatiotemporal patterns can be built. We begin this
section by comparing and contrasting our design with exist-
ing solutions to the problem of novelty detection. We con-
clude the section with some possible elaborations of the de-
sign that either improve performance and/or make the model
more biologically realistic.

The Kohonen-Oja filter is an early example of a novelty
detector (Kohonen & Oja 1976). It consists of a feedforward
architecture with single linear unit (i.e., a linear perceptron)
that uses an anti-Hebbian or decorrelative rule to train the
feedforward weights. Because weights decrease when a pat-
tern is presented, the output is positive if and only if a new
pattern differs significantly from all previous patterns. How-
ever, these networks are not designed to use spatiotemporal
patterns. Adaptive Resonance Theory (ART) networks also
contain components designed to detect novelty in input pat-
terns (e.g., Carpenter & Grossberg, 1987; 1990). They use a
module that determines the distance between a new pattern
and the closest matching stored pattern. However, ART net-
works have not been designed to compute on spatiotemporal
patterns. There have been several proposals of networks of
Self-Organizing Feature Maps (SOFMs) designed for nov-
elty detection (e.g., Muruźabal, 1998). These networks use
competitive algorithms to train individual units in the net-
work to recognize areas of the input space (where each in-
put unit is a dimension). Novelty is detected when a new
pattern is not recognized by any existing unit in the network.
The Grow-When-Required (GWR) variant of the SOFM can
compute on spatiotemporal input patterns (Marsland 2001).
However, it does not use recurrent connections between net-
work units to dynamically compute novelty in the way we
have designed, which we see as more closely approximating
the behavior of biological novelty detectors.

The most similar approach to our design is from Bogacz,
Brown, and Giraud-Carrier, who use the Lyapunov energy of
a Hopfield network as a measure of the novelty of a pattern
(Bogacz, Brown, & Giraud-Carrier 1999). Intuitively, en-
ergy is proportional to the summed mismatches of unit states
and predictions of those states based on states of other units
in the network and the connecting weights. The number of
units active in our network is proportional to the summed
matches of unit states and the predictions of those states
based on unit states at timest−s and the connecting weights
with delays. Thus, a decrease in the total number of units
active in the network is intuitively equivalent to a rise in en-
ergy. Our architecture can be considered a variant of this
proposal where energy is computedinternal to the network,
i.e., without using some peripheral device with access to all
weights and states that computes the energy. Biologically,
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Figure 2:Results forN ∈ {6, 8, 10}, X ∈ {1, 2}, andshi = 3. The independent variable is the number of stored patterns, the dependent
variable is the number of patterns of lengthS + 1 that are categorized correctly by the network (familiar if they are stored, novel if they are
not). In the Adversary condition, patterns are selected to set all of the weights to0 as quickly as possible (worst-case performance). In the
Random Pattern conditions, patterns were randomly selected from a uniform distribution. The right plots magnify the bottom portions of the
left plots, showing more clearly the difference between theX = 1 andX = 2 conditions. Note that each curve begins at the maximum

accuracy, which is
(

N
X

)S+1
. The initial difference between theX = 1 andX = 2 curves is attributable to there being fewer possible patterns

in theX = 1 case.



the strength of a synapse is a local and not global variable,
and so our design computes novelty in a more biologically
realistic way.

We conclude with two ways to make the architecture more
sophisticated and give intuitions as to how they will change
the performance of the network.

We have shown that the upper bound on the capacity of
the network isSN2. Randomly generated patterns do not
reach this upper bound because it is rare that each pattern
changes at most one weight. However, in natural applica-
tions, the encoding of a pattern in the network will be con-
tingent upon whether or not it has been detected as novel.
This would allow us to construct a preprocessor that orthog-
onalizes patterns in the network weight spaceprovidedthat
they have been detected as novel. Once novelty is detected,
the goal of the preprocessor is to identify at least one un-
used three-tuple ofk, j, ands and allocate it to the pattern
when it is presented again for encoding. An ideal candidate
area for such a preprocessor in the hippocampus is the den-
tate gyrus, which receives direct and indirect output from
CA3 (communicating when a pattern has been categorized
as novel) and is also upstream from CA3 (i.e., closer to the
inputs of the hippocampus).

The primary cost of the network in implementation is the
number of weights. It may be the case that some connec-
tions in the network can be removed without severely harm-
ing performance. In the present design, a removed connec-
tion is equivalent to setting the weight equal to0. Thus,
we would expect networks with sparse connectivity to have
increased generalization and therefore a lower capacity. Al-
ternatively, we might separate each connection into two con-
nections, one that is excitatory and one that is inhibitory. If
we fix inhibitory weights to−1 and allow excitatory weights
to range from0 to 1, the new architecture produces equiva-
lent output to the current model but does so in a more biolog-
ically realistic way (inhibitory connections representing the
output of interneurons in the hippocampus). Changing the
architecture in this way also would allow us to remove the
excitatory connections and leave the inhibitory connections
intact.
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