
Adaptive K-Means Clustering

Sanjiv K. Bhatia
Department of Mathematics & Computer Science

University of Missouri – St. Louis
St. Louis, MO 63121

sanjiv@acm.org

Abstract

Clustering is used to organize data for efficient retrieval. One
of the problems in clustering is the identification of clusters
in given data. A popular technique for clustering is based on
K-means such that the data is partitioned into K clusters. In
this method, the number of clusters is predefined and the tech-
nique is highly dependent on the initial identification of ele-
ments that represent the clusters well. A large area of research
in clustering has focused on improving the clustering process
such that the clusters are not dependent on the initial identi-
fication of cluster representation. In this paper, I advance an
adaptive technique that grows the clusters without regard to
initial selection of cluster representation. As such, the tech-
nique can identify K clusters in an input data set by merging
existing clusters and by creating new ones while keeping the
number of clusters constant. The technique has been used to
achieve an impressive speedup of a search process when other
efficient search techniques may not be available.

Introduction
Clustering is a technique that is used to partition elements
in a data set such that similar elements are assigned to same
cluster while elements with different properties are assigned
to different clusters. Clustering is used to perform efficient
search of elements in a data set. Clustering is particularly
effective in multi-dimensional data that may be otherwise
difficult to organize in an effective manner. An example of
such data can be spectral reflectance and emittance proper-
ties of materials used in computation of their spectral signa-
ture. Such data is typically represented as a floating-point
number for each property such that different properties may
be represented on vastly different scales. The number of
properties and the use of different scale for each property
make it extremely hard to organize such data by conven-
tional means. The problem is harder if the search is ex-
pected to return a data item that is closest in properties to
the item being searched for, in case the item does not ex-
ist in the search space. We cannot use any of the conven-
tional data structures such as a sorted array or a hash table to
solve this search problem. We cannot use sorted arrays due
to multidimensional nature of data. Hash tables cannot be

Copyright c© 2004, American Association for Artificial Intelli-
gence (www.aaai.org). All rights reserved.

used because we may want to retrieve an item that is clos-
est in properties to a specified item when the specified item
does not exists in the data set. Clustering provides an ele-
gant solution to this problem while providing a fast search
capability for the same.

One of the earliest clustering techniques in the litera-
ture is the K-means clustering method (Anderberg 1973;
Romesburg 1984). In this technique, clustering is based on
the identification of K elements in the data set that can be
used to create an initial representation of clusters. These K
elements form the cluster seeds. The remaining elements in
the data set are then assigned to one of these clusters. Even
though the method seems to be straightforward, it suffers
from the fact that it may not be easy to clearly identify the
initial K elements, or the seeds for the clusters. This draw-
back led the researchers to look into alternative methods that
provide an improvement over K-means. Some of these tech-
niques include genetic algorithm based clustering (Bandy-
opadhyay & Maulik 2002) and fuzzy clustering (Belacel,
Hansen, & Mladenovic 2002).

In this paper, I have presented a technique that allows the
partitioning of a given data set without having to depend
on the initial identification of elements to represent clus-
ters. The technique is based on rearranging the clusters to
better reflect the partitions when new elements are added.
In addition, some clusters may be merged and new clusters
are created as needed. I also describe a technique where
the clustering can be based on a specified threshold in which
case the number of clusters is unknown until all the elements
have been clustered. Both the techniques are adaptive in na-
ture and have been inspired by clustering of documents pro-
posed in the realm of information retrieval (Yu, Wang, &
Chen 1985; Bhatia & Deogun 1998).

This paper is organized as follows. In the next section, I
present the algorithm for adaptive K-means clustering. This
is followed by another section to describe a second clus-
tering algorithm that is based on specification of threshold.
Then, I present the asymptotic analysis of search based on
clustered data. This is followed by an application where I
have been able to successfully generate a perceptually uni-
form color table under a specified set of constraints.



Algorithm for Adaptive K-Means Clustering
The adaptive K-means clustering algorithm starts with the
selection of K elements from the input data set. The K ele-
ments form the seeds of clusters and are randomly selected.
The properties of each element also form the properties of
the cluster that is constituted by the element.

The algorithm is based on the ability to compute distance
between a given element and a cluster. This function is also
used to compute distance between two elements. An im-
portant consideration for this function is that it should be
able to account for the distance based on properties that have
been normalized so that the distance is not dominated by one
property or some property is not ignored in the computation
of distance. In most cases, the Euclidean distance may be
sufficient. For example, in the case of spectral data given
by n-dimensions, the distance between two data elements
E1 = {E11, E12, . . . , E1n} and E2 = {E21, E22, . . . , E2n}
is given by
√

(E11 − E12)2 + (E12 − E22)2 + · · · + (E1n − E2n)2

It should be pointed out that for performance reasons, the
square root function may be dropped. In other cases, we
may have to modify the distance function. Such cases can be
exemplified by data where one dimension is scaled different
compared to other dimensions, or where properties may be
required to have different weights during comparison.

With the distance function, the algorithm proceeds as fol-
lows:

Compute the distance of each cluster from every other
cluster. This distance is stored in a 2D array as a triangu-
lar matrix. We also note down the minimum distance dmin

between any two clusters Cm1
and Cm2

as well as the iden-
tification of these two closest clusters.

For each unclustered element Ei, compute the distance of
Ei from each cluster. For assignment of this element to a
cluster, there can be three cases as follows:

1. If the distance of the element from a cluster is 0, assign
the element to that cluster, and start working with the next
element.

2. If the distance of the element from a cluster is less than
the distance dmin, assign this element to its closest cluster.
As a result of this assignment, the cluster representation,
or centroid, may change. The centroid is recomputed as
an average of properties of all elements in the cluster. In
addition, we recompute the distance of the affected clus-
ter from every other cluster, as well as the minimum dis-
tance between any two clusters and the two clusters that
are closest to each other.

3. The last case occurs when the distance dmin is less than
the distance of the element from the nearest cluster. In
this case, we select the two closest clusters Cm1

and Cm2
,

and merge Cm2
into Cm1

. Also, we destroy the cluster
Cm2

by removing all the elements from the cluster and
by deleting its representation. Then, we add the new el-
ement into this now empty cluster, effectively creating a
new cluster. The distances between all clusters are recom-
puted and the two closest clusters identified again.

The above three steps are repeated until all the elements
have been clustered. There is a possibility that the algorithm
identifies a number of singletons or single-element clusters
if the distance of some elements is large from other ele-
ments. These elements are known as outliers and can be ac-
counted for by looking for clusters with an extremely small
number of elements and removing those elements from clus-
tering consideration, or handled as exceptions.

Threshold-Based Clustering Algorithm
In the threshold-based clustering algorithm, the number of
clusters is unknown. However, two elements are classified
to the same cluster if the distance between them is below a
specified threshold. The algorithm proceeds as follows:

• Select an element from the give data set. This element is
assigned as the seed of a cluster by itself.

• For every unclassified element, find its distance from the
centroid of the existing clusters. If the distance is less
than the threshold, assign the element to this cluster. Re-
compute the centroid of the cluster as the average of all
properties of all elements in the cluster. If no such cluster
can be found after examining all current clusters, assign
the element as the seed for a new cluster.

• If, as a result of the above step, the distance of new clus-
ter to another cluster is smaller than the threshold, merge
the two close clusters together, and recompute the cluster
distances.

• The algorithm stops after all the elements have been as-
signed to one or the other cluster.

It is easy to see that if the threshold is small, all the ele-
ments will get assigned to different clusters. If the thresh-
old is large, the elements may get assigned to just one clus-
ter. Thus, this algorithm is sensitive to the specification of
threshold. The threshold can be reduced or increased to get
an appropriate number of clusters by repeated iterations.

Analysis of Clustering Algorithms
The two clustering algorithms presented in this paper are
easy to analyze. The adaptive K-means algorithm is ana-
lyzed first.

In the adaptive K-means algorithm, the number of ele-
ments in each cluster decides the number of comparisons for
each search. Since there are K clusters, we have to perform
K comparisons to find the most promising cluster for further
exploration. In the worst case, all the clusters except one are
single-element clusters. If the cluster with N − K elements
is selected for further exploration, the algorithm performs
K comparisons to get the appropriate cluster, and N − K
comparisons to look for the appropriate element within that
cluster. Thus, the algorithm results in O(N) comparisons
which makes it perform just like linear search.

In the best case, the data elements are distributed uni-
formly across clusters. In such a case, each cluster contains
N/K elements. A search in this case will take at most K
comparisons to determine the appropriate cluster, and N/K
comparisons to determine the appropriate element. Thus,



the number of comparisons is given by O(K + N/K). If
K =

√
N , the number of comparisons equals O(

√
N).

In the average case, the data is distributed across the clus-
ters such that some clusters will have a number of elements
while some other clusters may contain few elements. The
analysis of such a case is more complex but lies between
O(N) and O(

√
N), as shown below in three cases with

search in sparse cluster, dense cluster, and averaging over
sparse and dense clusters.

Sparse Cluster. If the element is in a sparse cluster, we
can safely assume a constant number of comparisons for
search. Thus, for elements in i sparse clusters, the number
of comparisons is K · i, with K comparisons to identify
the cluster to which the element belongs and almost negli-
gible (constant number) of comparisons to actually search
within clusters.

Dense Cluster. For elements in dense clusters, we make the
assumption that elements are uniformly distributed across
the dense clusters. Obviously, the number of dense clus-
ters is small compared to the number of sparse clusters.
As an example, if there are two dense clusters, we can
assume that each of the two dense clusters has N/2 el-
ements each. Thus, search of N − i elements in K − i
clusters requires the number of comparisons given by

(N − i)

(

K +
N

K − i

)

with K comparisons to determine the cluster and N

K−i

comparisons to search within the dense clusters.

Averaging Over Sparse and Dense Clusters. The average
number of comparisons over all the elements is given by

1

N

[

K · i + (N − i)

(

K +
N

K − i

)]

=
1

N

[

K · i + (N − i)K +
N(N − i)

K − i

]

=
1

N

[

KN +
N(N − i)

K − i

]

= K +
N − i

K − i

= K +
K2 − i

K − i
Substituting N = K2

It is easily proved by induction that (K2 − i) < (K − i)2.
Therefore, the above expression can be changed to

< K +
(K − i)2

K − i
= K + (K − i)

< 2K Since i < K

= O(
√

N) Substituting N = K2

From the above analysis, it is clear that the search takes
O(

√
N) comparisons on an average. However, the major

advantage of the algorithm is when an exact match is not

found and the algorithm needs to return the closest match.
In such a case, the algorithm still performs O(

√
N) compar-

isons while the linear search needs O(N) comparisons in
case of multi-dimensional data. Furthermore, the algorithm
can be used to determine the kth closest match by rejecting
a number of elements in a cluster, or by selecting a cluster
that may contain the kth closest element.

The analysis of threshold-based algorithm proceeds in a
similar manner. In case the threshold is too small, the num-
ber of clusters will be large, resulting in a linear search for
an element. In case the threshold is too large, the number of
clusters will be small, resulting in an almost linear behavior
for search again. The best search performance is achieved
when the number of clusters is such that the elements are
evenly distributed across clusters. If the number of clusters
is K =

√
N , the performance of the algorithm is the same

as the adaptive K-means algorithm. This algorithm requires
a careful assignment of threshold, either by examination of
data to be clustered or by repeated iterations.

Application: Creation of Perceptually Uniform
Colors

In this section, I’ll describe the task of generating a set of
n colors that are uniformly distributed in perceptual color
space (Poynton 1995). A color space is defined as the set of
possible colors in a given color representation. For exam-
ple, an RGB color is defined as a tuple with three values for
red, green, and blue components. Each of these values can
change from 0 to 255 to account for 8-bit components. The
RGB color space is made up of all possible colors with dif-
ferent combinations of values of the three components. RGB
color space is not perceived uniformly by humans because
different colors are perceived with different weights by the
eye.

The task to determine perceptually uniform distribution
of colors was simple on first look with the knowledge that
a perceptual color space is defined by CIE as L*a*b* space
(Ald 1992) and it is a simple matter of converting L*a*b*
colors to RGB color space using standard techniques. How-
ever, the n desired colors were constrained to be inside a
gamut specified by a triangle in xyY color space which made
the problem more interesting.

I solved the problem by iterating over all the colors in
L*a*b* space and ignoring the colors that are not inside the
specified color gamut. After the colors were plotted in xyY
space (with Y kept as 1 for maximum brightness), we no-
ticed a concentration of colors near the triangle edges. This
happened because L*a*b* colors are being forced into an
xyY gamut; with colors in L*a*b* that have plenty of space
between them, resulting in colors very close together in xyY
space. I solved the problem by generating a table of 2n col-
ors in L*a*b* space, and then clustering the resulting colors
in xyY space.

In L*a*b* space, the value of L ranges from 0 to 100,
while a and b range between −128 to +127. I worked with
floating point values incrementing the counters by 1 for each
of L, a, and b, resulting in 64 million colors. When I con-
strained the colors in the given gamut, I ended with a little



more than 55,000 colors in perceptual space that needed to
be uniformly distributed. I wanted to generate a color table
of 4,096 colors. Therefore, I clustered the constrained col-
ors into 8,192 clusters in L*a*b* space, and clustered the
resulting elements into 4,096 colors in xyY space.

The color distribution in L*a*b* space is shown in Figure
1. The ring results because of reclustering of colors in xyY
space constrained to the triangular gamut shown in Figure
2. In Figure 3, I show the distribution of the same colors in
RGB color space, and the final color palette is presented in
Figure 4.

Figure 1: Color distribution in L*a*b* space

Conclusion

In this paper, I have presented an algorithm to perform K-
means clustering that is adaptive in nature, and is not de-
pendent on the selection of K seeds to initialize the clus-
ters. The algorithm has been successfully tested in multiple
application where it has performed very well, resulting in
good data partitioning and impressive speedup of search in
the resulting data structures. I have described the applica-
tion of creating perceptually uniform color distribution table
in detail. Another application where I could achieve a seven
fold speedup is in the assignment of infra-red material codes
to composite materials created from a set of specified mate-
rials. I am currently working on the application of this al-
gorithm in creating a hierarchical index to perform efficient
storage and retrieval of images using the JPEG 2000 standard
and wavelets.

Figure 2: Color distribution in xyY space

Acknowledgement
The work reported in this paper was performed at Visual
Simulation Systems Division of FlightSafety International.
Andrew Lindberg created the figures used in this paper.

References
Aldus Corporation, Seattle, WA. 1992. TIFF Revision 6.0.
Anderberg, M. R. 1973. Cluster Analysis for Applications.
New York, NY: Academic Press.
Bandyopadhyay, S., and Maulik, U. 2002. Generic cluster-
ing for automatic evolution of clusters and applications to
image classification. Pattern Recognition 35:1197–1208.
Belacel, N.; Hansen, P.; and Mladenovic, N. 2002. Fuzzy
J-means: A new heuristic for fuzzy clustering. Pattern
Recognition 35:2193–2200.
Bhatia, S. K., and Deogun, J. S. 1998. Conceptual cluster-
ing in information retrieval. IEEE Transactions on Systems,
Man, and Cybernetics 28(3):427–436.
Poynton, C. 1995. A guided tour of color space. In
New Foundations for Video Technology: Proceedings of
the SMPTE Advanced Television and Electronic Imaging
Conference, 167–180.
Romesburg, H. C. 1984. Cluster Analysis for Researchers.
Belmont, CA: Lifetime Learning Publications.
Yu, C. T.; Wang, Y. T.; and Chen, C. H. 1985. Adaptive
document clustering. In Proceedings of the Eighth ACM
SIGIR, 197–203.



Figure 3: Color distribution in RGB space

Figure 4: Color palette of final color table


