
Iterative Improvement of Neural Classifiers

Jiang Li, Michael T. Manry, Li-Min Liu, Changhua Yu, and John Wei
Department of Electrical Engineering, University of Texas at Arlington

Arlington, Texas 76019.
manry@uta.edu

Abstract

A new objective function for neural net classifier design is
presented, which has more free parameters than the classical
objective function. An iterative minimization technique for
the objective function is derived which requires the solution
of multiple sets of numerically ill-conditioned linear equa-
tions. An enhanced feedforward network training algorithm
is derived, which solves linear equations for output weights
and reduces a separate error function with respect to hidden
layer weights. The design method is applied to networks used
to classify aerial survey imagery from remote sensing and to
networks used to classify handprinted numeral image data.
The improvement of the iterative technique over classical de-
sign approaches is clearly demonstrated.

Introduction
Two commonly used neural network classifiers are the func-
tional link neural network (FLNN) (Pao 1989) and the mul-
tilayer perceptron (MLP) (Rumelhart & McClelland 1988).
The MLP and FLNN approximate the general Bayes dis-
criminant (Rucket al. 1990; Wan 1990). FLNNs and MLPs
are designed by minimizing the standard training error,

E =
Nc∑

i=1

E(i) (1)

where Nc is the number of classes andE(i), the mean-
squared error for theith output is

E(i) =
1

Nv

Nv∑
p=1

[tp(i)− yp(i)]2 (2)

Here tp(i) denotes theith desired output for thepth input
pattern,yp(i) denotes theith observed output for thepth
input pattern, andNv denotes the total number of training
patterns. In this paper, we assume thattp(ic) = b and
tp(id) = −b whereic denotes the correct class number for
the current training pattern,id denotes any incorrect class
number for that pattern, andb is a positive constant. If

ic = arg max
i

yp(i), (3)

This work was funded by NASA under Grant NAGW-3091, by the
NSF under grant IRI-9216545, by EPRI under grant RP 8030-09,
and by the Advanced Technology Program of the state of Texas
under grant 003656-0129-2001.

we say the network classifies the current pattern correctly.
Otherwise, a classification error is counted.

For neural network classifiers having linear output layer
activations, theith output can be written as

yp(i) =
Nu∑

j=1

wo(i, j)Xp(j) (4)

where output weightwo(i, j) denotes the weight connecting
thejth unit to theith output unit, andNu denotes the num-
ber of units feeding signals to theith output unit.Xp(j) de-
notes thejth basis function for thepth pattern. In the FLNN,
Xp(j) may represent a multinomial combination of theN
inputsxn whereas in the MLP,Xp(j) may represent an input
vector, the constant ”1” or a sigmoidal activation for a hid-
den unit. Both the MLP and the FLNN can be designed by
solving linear sets of equations. A conjugate gradient (CG)
solution to these sets of equations has been given that works,
even though the equations are ill-conditioned (Pao 1989;
Barton 1991; Sartori & Antsaklis 1991; Manryet al. 1992;
Dawsonet al. 1992).

The error functionE in (1) is too restrictive in at least two
ways if a classifier is being designed. First, if each individ-
ual output vector has a different constant bias add to it,E
could be increased or decreased, but this has no effect on
the classification error. Second, if an output has the correct
sign but a magnitude larger thanb, E will increase while
the classification error will be unaffected or decrease. In or-
der to take advantage of these facts, we have developed the
Output Reset (OR) algorithm, which uses a relaxation ap-
proach in combination with CG. First, we develop OR as a
method for updating only neural network weights connected
directly to output units. Then OR is integrated into a train-
ing algorithm that also modifies MLP hidden weights. Ex-
amples are given to show that the OR algorithm, combined
with enhanced OWO-HWO training, results in greatly im-
proved classifiers.

The Output Reset Algorithm
We first introduce OWO training and then derive the OR al-
gorithm for the fixed basis function case. For the MLP, this
corresponds to keeping the hidden weights, which feed into
the hidden units, constant.

Output Weight Optimization
Applying OWO to the three layer, fully connected MLP, the
basis functions are defined as

Xp(k) = {
xp(k) for 1 ≤ k ≤ N
1 for k = N + 1
Op(k −N − 1)for N + 2 ≤ k ≤ N + Nh + 1

(5)
whereOp(j) is thejth hidden unit output activation for the
pth pattern. Op(N + 1) = 1 to handle the hidden unit
and output unit biases. Substituting (4) into (2), the mean-
squared error for theith output can be rewritten as

E(i) =
1

Nv

Nv∑
p=1

[tp(i)−
Nu∑

k=1

wo(i, k)Xp(k)]2 (6)

whereNu = N + Nh + 1. Taking the gradient ofE(i) with
respect the output weights, we get

g(m) =
∂E(i)

∂wo(i, m)
= −2[c(i,m)−

Nu∑

k=1

wo(i, k) · r(k, m)]

(7)
where1 ≤ m ≤ Nu. The cross-correlationc(i,m) and
auto-correlationr(k, m) are defined as

c(i, m) =
Nv∑
p=1

tp(i) ·Xp(m) (8)

r(k, m) =
Nv∑
p=1

Xp(k) ·Xp(m) (9)

Settingg(m) to zero, we get
Nu∑

k=1

wo(i, k) · r(k, m) = c(i,m) 1 ≤ m ≤ Nu (10)

For each value ofi we have a set ofNu equations inNu

unknowns. Since those linear equations are generally ill-
conditioned, the conjugate gradient approach can be utilized
to get the output weights which minimizeE(i).

OWO is only adequate for generating a useful initial net-
work, after the hidden weights have been initialized. Note
that the hidden weights are not updated in OWO training .

Derivation of OR Algorithm
In the OR algorithm we (1) give each output vector the spe-
cific bias which minimizesE, and (2) set the desired output
equal to the actual output when the output has the correct
sign but is larger thanb in magnitude. The error functionE
can be modified as

E′ =
1

Nv

Nv∑
p=1

Nc∑

i=1

[t′p(i)− yp(i)]2 (11)

wheret′p(i) = tp(i) + ap + dp(i) and wheredp(i) is a func-
tion of p and i to be defined later. Our goal is to findap,
dp(i) andyp(i) that minimizeE′, under the following con-
ditions:

1. The difference|t′p(ic) − t′p(id)| must be larger than or
equal to2b. Without this condition,E′ can be mini-
mized by setting the network weights and the difference
|t′p(ic)− t′p(id)| to zero.

2. Each change made toap, dp(i) andt′p(i) (through changes
in the network weights), must reduceE′ or keep it un-
changed.

Using these two conditions the following three methods
can be used to decreaseE′.

Method 1. Changes toap In order to minimizeE′ with
respect toap, it is sufficient that the first derivative ofE′
with respect toap be zero, yielding

ap =
1

Nc

Nc∑

i=1

[yp(i)− tp(i)− dp(i)] (12)

After addingap to each desired output for thepth pat-
tern, the distances between the correct class’s output and the
others are the same as before. Therefore, the classification
performance remains the same and condition (1) is satisfied.
Sinceap is specifically found to minimizeE′, condition (2)
is also satisfied.

Method 2. Changes todp(i) Ignoring condition (1),dp(i)
can be found such that the term[tp(i)+ap +dp(i)−yp(i)]2
is zero, yieldingdp(i) = yp(i)− tp(i)− ap, which satisfies
condition (2). However, in order to satisfy condition (1), we
modify dp(i) such thatdp(ic) ≥ 0, dp(id) ≤ 0. In summary,

a If yp(ic) ≥ tp(ic) + ap, then choosedp(ic) = yp(ic) −
tp(ic)− ap

b If yp(id) ≤ tp(id) + ap, then choosedp(id) = yp(id) −
tp(id)− ap

c Otherwise, choosedp(ic) = 0 anddp(id) = 0

Method 3. Changes toyp(i) In (6), tp(i) is replaced by
t′p(i) and the errorE′ is minimized with respect to the output
weights using OWO. This requires the substitution oft′p(i)
for tp(i) in (8). The hidden weights are not updated in this
method.

Three Output Reset Algorithms
Three OR algorithms are developed by combining the dif-
ferent methods given above.

• Basic algorithm: The detailed steps are as follows:

– Find and store the desired outputstp(i)
– For each input vectorxp

∗ Calculate the network outputsyp(i) using the current
network weights

∗ Find t′p(i), using one or more methods from Subsec-
tion .

∗ Accumulate the auto- and cross-correlations needed
in Method 3 for the OWO algorithm, wheret′p(i) re-
placestp(i) in (8).

– Find the output weightswo(i, j) using OWO. Go back
to the previous step for another iteration, if desired.

0 10 20 30 40 50
7

7.5

8

8.5

9

9.5

10

10.5

11

11.5

E
rr

or
 P

er
ce

nt
ag

e

Iteration Number

OWO
Algorithm1
Algorithm2
Algorithm3

Figure 1: Performances comparison among algorithms

In algorithm 1, the desired outputst′p(i) are found using
Method 1, withdp(i) set to zero. In algorithm 2,t′p(i) is
found using Method 2, withap set to zero. In algorithm 3,
we initially use Method 1 to findt′p(i) with dp(i) set to zero.
Then we alternate between Method 1 and Method 2 for three
iterations.

Performance Comparisons of The Three
Algorithms

In this section we illustrate training performances of the
three proposed algorithms. The generalization capabilities
of the algorithms will be discussed later.

We run these algorithms on a data set generated from
handprinted numeral images using methods described by
Gong (Gong, Yau, & Manry 1994). These images were col-
lected by the Internal Revenue Service from 3,000 people.
Each digitized image belongs to one of the ten classes rep-
resenting numerals 0 to 9. We randomly chose 300 charac-
ters from each class to generate 3,000 training patterns. An
image scaling algorithm is used to remove size variation in
characters. Each image has 16 features.

A fully connected three layer feedforward neural network
with sigmoid activation function for the hidden layer was
chosen. The output layer has linear activation functions. We
chose ten hidden units for the network. The three OR algo-
rithms and the OWO algorithm alone have been utilized to
train the networks yielding the results in Fig. 1. In the figure,
the horizontal axis represents the iteration number while the
vertical axis corresponds to the classification error percent-
age for each iteration.

It is observed from Fig. 1 that Algorithms 2 and 3 gen-
erate considerably lower classification error percentage than
OWO training alone. Algorithm1 does not show any signif-
icant improvement. The third algorithm produces the lowest
error. In the remainder of this paper, algorithm 3 is referred
to as the OR algorithm. Note that only weights in the output
layer are being updated at this point.

OR Enhanced MLP Training
In this section, we discuss the integration of OR into more
advanced MLP training algorithms, in which all weights are
subject to optimization. There are many well-developed
training algorithms, including the Back Propagation (BP),
Conjugate Gradient (CG) and Levenberg-Marquardt (LM)
algorithms. Training error can be further decreased when
OR is used in most algorithms.

We are interested in an algorithm called OWO-HWO
(Yu & Manry 2002), which can be used in the training of
feed-forward neural networks such as the MLP. In OWO-
HWO, we alternately modify output weights and hidden unit
weights to reduce the training error. Since the output units
have linear activation functions, in this paper the OWO pro-
cedure is used to obtain output weights by solving linear
equations, whereas the HWO is utilized to calculate the hid-
den weight changes by minimizing a mean-square error be-
tween the desired and the actual net function.

Review of OWO-HWO
We are given a set ofNv training patterns(xp, tp) where the
pth input vectorxp and pth desired output vectortp have
dimensionN andNc, respectively. A three layer, fully con-
nected MLP networks with sigmoid activation function for
the hidden layer is used. For thepth pattern, thejth hidden
unit net and activation functions are

netp(j) =
N+1∑

k=1

w(j, k) · xp(k) (13)

Op(j) = f(netp(j)) =
1

1 + exp(−netp(j))
(14)

theith observed output is

yp(i) =
N+1∑

k=1

woi(i, k) · xp(k)+
Nh∑

j=1

woh(i, j) ·Op(j) (15)

wherewoi(i, k) andwoh(i, j) are weights connecting to the
ith output unit from thekth input andjth hidden unit re-
spectively. The output weightswoi(i, k) andwoh(i, j) can
be found using the OWO method. In the HWO procedure,
the hidden weighsw(j, k) are updated by minimizing a sep-
arate error function for each hidden unit. For thejth hid-
den unit andpth pattern, the desired net functionnetpd(j) is
constructed as (Scalero & Tepedelenlioglu 1992)

netpd(j) ∼= netp(j) + Z · δp(j) (16)

Z is the learning rate andδp(j) is the delta function of the
jth hidden unit and is defined as

δp(j) = f ′(netp(j))
Nc∑

i=1

δpo(i)wo(i, j) (17)

whereδpo(i) is the delta function of theith output layer,

δpo(i) = tp(i)− yp(i) (18)

The hidden weights are updated as

w(j, k) ← w(j, k) + Z · e(j, k) (19)

wheree(j, k) is the hidden weight change. With the basic
operations and (16-18), we can use the following equation
to solve for the changes in the hidden weights,

netpd(j) + Z · δp(j) ∼=
N+1∑

k=1

[w(j, k) + Z · e(j, k)] · xp(k)

(20)
we obtain

δp(j) ∼=
N+1∑

k=1

e(j, k) · xp(k) (21)

Before solving (21) in the least squares sense, an objective
function (Yu & Manry 2002) for thejth hidden unit is de-
fined as

Eδ(j) =
Nv∑
p=1

[
δp(j)−

N+1∑

k=1

e(j, k)xp(k)

]2

f ′(netp(j))

(22)
which is minimized with respect toe(j, i) using the con-
jugate gradient method which is similar as we did in OWO
thus we obtained the hidden weights changee(j, k), we then
update the hidden weights by performing (19).

Algorithm Description for OR Combined MLP
Training
Using both OR and OWO-HWO, we construct the following
algorithm,

1. Initialize all weights and thresholds as small random num-
bers in the usual manner. Pick a value for the maximum
number of iterations,Nit. Set the iteration numberit to
0.

2. Incrementit by 1. Stop if it > Nit.

3. Pass the training data through the network. For each input
vector, calculate the hidden unit outputsOp(j). If it = 1,
i.e., in the first iteration, accumulate the cross- and auto-
correlationc(i,m) andr(k, m) as in (8-9). Otherwise, if
it > 1, use OR algorithm to change the desired output
tp(i) to t′p(i) for each pattern and accumulate the cross-
correlationc(i, m) as in (8) withtp(i) replaced byt′p(i).

4. Using OWO, Solve linear equations for the output weights
woi(i, k) andwoh(j, k), and calculateE.

5. If E decreases, go to Step 8. Otherwise, ifE increases,
modify Z asZ = 0.5 ·Z, reload the previous best hidden
weights and go to Step 8.

6. Make a second pass through the training data. Calculate
the hidden weight changes using HWO witht′p(i) in place
of tp(i) in (4).

7. Calculate the learning factor using the method described
by Magoulas (Magoulas, Vrahatis, & Androulakis 1999).

8. Update the hidden unit weights.

9. Go to Step 2.

Theory
Theorem 1. The Output Reset (OR) algorithm leads to con-
vergence of the error functionE′.

This is clear from the facts that all three methods above
satisfy condition (2).

In the following derivation,x denotes the input feature
vector to be classified. The Bayes discriminant function is
defined asgx(i) = P (Ci|x), which is the probability that the
input patternx belongs to the classCi. An error function can
be defined as

e ≡ 4b2
Nc∑

i=1

∫

S

[F ′x(i)− gx(i)]2p(x) dx (23)

whereS is the set of all possible input patterns.F ′x(i) is
defined as

F ′x(i) ≡ 1
2b

y′p(i) +
1
2

(24)

wherey′p(i) = yp(i) − ap − dp(i). Herep(x) is the joint
probability density function of the random input vectorx.
The error functionE′ is rewritten from equation (11) as

E′ =
1

Nv

Nv∑
p=1

Nc∑

i=1

[tp(i)− y′p(i)]
2 (25)

Theorem 2. As Nv increases, the error functionE′ ap-
proachese plus a constant, i.e.

lim
Nv→∞

E′ = e + C (26)

Proof. Taking the limit ofE′/4b2, as the number of input
pattern is large,

lim
Nv→∞

E′

4b2
= lim

Nv→∞
1

Nv

Nv∑
p=1

Nc∑

i=1

[
1
2b

(tp(i)−y′p(i))]
2 (27)

Using equation (24) and the definition oftp(i),

lim
Nv→∞

E′

4b2
= lim

Nv→∞
1

Nv

(∑

x∈S1

[(1− F ′x(1))2

+
∑

j 6=1

(0− F ′x(j))2] + · · ·

+
∑

x∈SNc

[(1− F ′x(Nc))2

+
∑

j 6=Nc

(0− F ′x(j))2]

whereSi denotes the set of input vectorsx belonging to the
ith class. By following the derivation of Ruck (Rucket al.
1990) for the multiclass case, we obtain equation (26), with
the constantC defined as

C = 4b2
Nc∑

i=1

∫

S

gx(i)(1− gx(i))p(x) dx (28)

From Theorem 1 and Theorem 2, we conclude that if the
MLP is large enough, is trained properly and the training set
is large enough, the neural net is a good approximation to a
Bayes classifier.

0 5 10 15 20 25 30 35 40 45 50
5

6

7

8

9

10

11

12

Iteration Number

E
rr

or
 P

er
ce

nt
ag

e
BP Algorithm
OWO−OR
OWO−HWO
OWO−HWO−OR

Figure 2: Training performances for handprinted data

Simulations and Discussions
In this section we compare the learning and the generaliza-
tion capabilities of MLPs trained using BP, OWO-HWO,
and OWO-HWO-OR. In the first iteration of BP, all of the
output weights are initialized once by OWO in a linear out-
put activation MLP network. Then sigmoid output layer ac-
tivations are added before BP training. In the OWO-HWO
algorithm, the weights in the hidden layers are dynamically
updated by HWO while the output weights are also updated
by OWO. While in the OWO-HWO-OR algorithm, we em-
bedded the OR algorithm to the OWO-HWO to modify the
desired output. Simulations are performed on the hand-
printed numeral data set used earlier, a remote sensing data
set from an aerial survey.

Handprinted Data Set
The handprinted data set contains a training and a testing
data set of the same size. In performing these experiments,
the training data set is used for ”training” and the testing data
set is used to ”testing”. We first compare the ”Learning” ca-
pabilities of the three algorithms. We run 50 iterations for
each algorithm and plot their error percentages vs iteration
number in Fig. 2. It is observed that the OWO-HWO-OR
algorithm performs best. Algorithm 3 ranks second and the
BP algorithm ranks last. The learning capability of the pro-
posed algorithm is clearly illustrated.

In order to test the generalization capabilities of the three
algorithms, we run each algorithm 150 times on training data
with different random initial weights and apply the trained
network to testing data. Generally, one could use 10-fold
cross-validation with a statistical test (t-test) to examine the
performance of an algorithm. However, since different ini-
tial MLP weights produce different classification errors af-
ter training, we can alternately evaluate a training algorithm
by examining the classification error statistics for networks
trained with different initial weights. Consequently, we plot
the histograms of the training and testing results for all three
algorithms, for several examples. In Fig. 3, the plots show
150 training results for the three algorithms with various ini-

4 5 6 7 8 9 10 11 12 13
0

5

10

15

20

C
ou

nt

4 5 6 7 8 9 10 11 12 13
0

5

10

15

20

C
ou

nt

4 5 6 7 8 9 10 11 12 13
0

5

10

15

20

Error Percentage %

C
ou

nt

BP
Training

BP
Testing

OWO−HWO
Training

OWO−HWO
Testing

OWO−HWO−OR
Training

OWO−HWO−OR
Testing

Figure 3: Training and testing performances comparison for
handprinted data

Table 1: The Mean and Standard Deviation of Training and
Testing Results of the Three Algorithms for Handprinted
Numeral Data

Algorithm Training Error % Testing Error %
Applied mean(std) mean(std)

BP 10.462(0.3334) 12.1218(0.3812)
OWO-HWO 8.4062(0.5028) 10.5987(0.5479)

OWO-HWO-OR 5.1227(0.3328) 8.3673(0.3429)

tial weights, and 150 testing results corresponding to the
trained networks. The horizontal axis of each figure rep-
resents the classification error percentage, while the verti-
cal axis corresponds to the number of times that the classi-
fication error percentage falls into a given interval. These
results clearly demonstrate that the OWO-HWO-OR algo-
rithm is the best one for both the training and testing cases.
OWO-HWO ranks second and the BP algorithm ranks last.
The proposed algorithm shows not only its powerful learn-
ing capability but also its excellent generalization potential
for this complicated multiple class case. Table 1 lists the
means and standard deviations of the training and testing
results for each algorithm. Note that the OWO-HWO algo-
rithm improves both the training and testing performances
as compared to BP. The classification error means of BP
are 10.462% and 12.1218% for training and testing respec-
tively, while the counterparts for the OWO-HWO algorithm
are 8.4062% and 10.5987%. Unfortunately, the error percent
standard deviations increase for OWO-HWO. For example,
the standard deviation for training increases from 0.3334%
for BP to 0.5028% for OWO-HWO. By combining OWO-
HWO with the OR algorithm, however, the means as well
as the standard deviations of error percentages decrease, and
the standard deviation for testing (0.3429%) is even lower
than that of BP (0.3812%).

Aerial Survey Data Set
This data set is generated from an aerial survey and con-
tains 12392 patterns. The survey images consist of two sets
of black and white aerial images of the Dallas, Texas, area.

14 16 18 20
0

5

10

15

20

C
ou

nt

14 16 18 20 22
0

5

10

15

20

C
ou

nt

14 16 18 20
0

5

10

15

C
ou

nt

14 16 18 20 22
0

5

10

15

C
ou

nt

14 16 18 20
0

5

10

15

20

C
ou

nt

Error Percentage %
14 16 18 20 22

0

5

10

15

C
ou

nt

Error Percentage %

BP
Training

BP
Testing

OWO−HWO
Training

OWO−HWO
Testing

OWO−HWO−OR
Training

OWO−HWO−OR
Testing

Figure 4: Training and Testing performances comparison for
aerial survey data

Seventy-one images with various resolutions were used for
this test. Regions of four land use/cover types were identi-
fied in the images: urban areas, fields or open grassy land,
trees (forested land), and water such as lakes or rivers. De-
lineation and labelling of examples of each land use/cover
type was done manually in softcopy. There are 18 features
for each classification window (Baileyet al. 1993). The
aerial survey data set is randomly split into two parts-the
first part contains approximately two-thirds of the total pat-
terns. The second part represents the other one-third of the
population. In performing these experiments, the first part is
used for ”training” and the second part is used for ”testing”.
Both parts of the data sets are chosen so that they represent
the same relative proportion of the various classes as does
the entire data set.

We again run each algorithm 150 times on the training
data with different random initial weights and apply the
trained network to the testing data. Fig. 4 shows the his-
tograms of the classification error percentage of training and
testing for all three algorithms. The left column of the fig-
ure presents the training histogram with 150 different initial
weight sets. The right column lists the testing results corre-
sponding to the trained network on the left. It is the same as
before that OWO-HWO outperforms BP and OWO-HWO-
OR is the best among the three algorithms. It is also noted
that the standard deviation of the training and testing results
for the OWO-HWO-OR is the smallest.

Conclusion
In this paper, we propose some basic improvements to the
objective function used in training FLNN and MLP classi-
fiers. The method is analyzed in detail. The classifier de-
sign equations have been solved using the numerically sta-
ble OWO and HWO approaches. The OR algorithm, which
is a type of relaxation algorithm, has been detailed. It allows
us to iteratively improve our initial solution to the design
equations. In this paper, the OR approach is been used to
design MLP classifiers. It can also be used to improve the

performance of FLNNs and other classifiers having weights
connected to the output nodes. Compared to conventionally-
designed MLPs, the OR-designed networks have proved su-
perior for complicated classification problems. Additional
details of the OR algorithm are discussed in a journal ver-
sion of the paper, which is currently under preparation.

References
Bailey, R. R.; Pettit, E. J.; Borochoff, R. T.; Manry, M. T.;
and Jiang, X. 1993. Automatic recognition ofUSGSland
use/cover categories using statistical and neural network
classifiers.Proceeding of SPIE OE/Aerospace and remote
sensing12–16.
Barton, S. 1991. A matrix method for optimizing a neural
network.Neural Computation3(3):450–459.
Dawson, M. S.; Olvera, J.; Fung, A.; and Manry, M. 1992.
Inversion of surface parameters using fast learning neural
networks.Proceeding of IGARSS ’9211:910–912.
Gong, W.; Yau, H. C.; and Manry, M. T. 1994. Non-
gaussian feature analyses using a neural network.Progress
in Neural Networks2:253–269.
Magoulas, G. D.; Vrahatis, M. N.; and Androulakis, G. S.
1999. Improving the convergence of the backpropagation
algorithm using learning adaptation methods.Neural Com-
putation11:1769–1796.
Manry, M. T.; Guan, X.; Apollo, S. J.; Allen, L. S.; Lyle,
W. D.; and Gong, W. 1992. Output weight optimization
for the multilayer perceptron.Conference Record of the
Twenty-Sixth Annual Asilomar Conference on Signals, Sys-
tems, and Computers1:502–506.
Pao, Y. H. 1989.Adaptive Pattern Recognition and Neural
Networks. Addison-Wesley.
Ruck, D. W.; Rogers, S. K.; Kabrisky, M.; Oxley, M. E.;
and Suter, B. W. 1990. the multilayer perceptron as an
approximation to aBayes optimal discriminate function.
IEEE Trans. on Neural Network1(4):296–298.
Rumelhart, D. E., and McClelland, J. L. 1988.Parallel
Distributed Processing: Explorations in the Microstructure
of Cognition, volume 1. MIT Press. Foundations.
Sartori, M., and Antsaklis, P. J. 1991. A simple method to
derive bounds on the size and to train multilayer neural net-
works. IEEE Transactions on Neural Networks2(4):467–
471.
Scalero, R. S., and Tepedelenlioglu, N. 1992. A fast new
algorithm for training feedforward neural networks.IEEE
Transactions on Signal Procesing40(1):202–210.
Wan, E. A. 1990. Neural network classification: A
bayesian interpretation.IEEE Trans. on Neural Network
1(4):303–305.
Yu, C., and Manry, M. T. 2002. A modified hidden weight
optimization algorithm for feed-forward neural networks.
Thirty-Sixth Asilomar Conference on Signals, Systems &
Computers1:1034–1038.

