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Abstract 
In this paper we define the notion of causal chains. Causal 
chains are a particular kind of sequential patterns that reflect 
causality relations according to background knowledge. We 
also present an algorithm for mining causal chains from a 
collection of action traces. We run this algorithm on a real-
world domain and observe that causal chains can be 
computed efficiently by quickly identifying inter-related 
actions. 

Introduction  
Developing algorithms for mining sequential patterns over 
a collection of data has been the subject of an increasing 
research effort (e.g., (Agrawal & Srikant, 1995; Faloutsos et 
al., 1994; Zaki et al., 1998; Han et al., 1999; Zaki, 2001)). In 
these approaches, patterns consist of sequences of events, 
where the order of these events reflects the order in which 
they frequently occur in the input data.   
We present a new kind of sequential patterns called causal 
chains. Like sequential patterns, events in causal chains 
reflect the order in which they frequently occur in the 
action traces. The key characteristic of casual chains is that 
each event causes the event that immediately follows it in 
the pattern. These cause-effect relations are determined by 
background information. 
 Causal chains are motivated by work on plan recognition 
(e.g., (Kautz, 1991)). Plan recognition aims at predicting 
goals, actions or plans from a set of observed actions 
performed by an observing agent. The particular kind of 
plan recognition necessary for computing causal chains is 
the so-called “keyhole” recognition since the observed 
actions are independent of the observing agent  (e.g., 
(Albrecht et al, 1997)). The causal chains can be seen as 
plans that occur frequently in traces of actions. As such, 
causal chain can be used to predict goals (i.e., the resutls of 
the plans), and thus, provide a global picture of the actual 
intention of the actions in the target domain. 
In this paper, we make the following contributions: (1) 
formally define causal chains, (2) present an algorithm for 

discovering causal chains from input action traces, (3) 
present results of experiments with a real-world complex 
domain illustrating that causal chains can be mined 
efficiently, and (4) observe that sequential patterns are a 
worst-case scenario for causal chains where every action 
causes every other action. In realistic situations, however, 
the number of causal chains is substantially less than the 
number of sequential patterns.  

Target Domain 
 Although our algorithm for extracting causal chains is 
domain-independent, we selected the domain of UNIX 
command traces to focus our experiments for several 
reasons: (1) it is a complex domain yet the actions (i.e., the 
UNIX commands) are well defined. (2) It is a realistic 
domain. UNIX is a wide spread multi-tasking operating 
system with a broad range of users and commands, and (3) 
large, realistic data sets are available.  
We used the collection of UNIX command traces collected 
reported in (Greenberg, 1988). It contains command 
histories of 168 users, totaling thousands commands. Each 
trace is divided in one of four categories depending on the 
expertise of the user: novice programmer, experienced 
programmer, computer scientists and non-programmers. We 
used the operator definitions for UNIX commands reported 
in (Golden, 1997). Although these definitions by no means 
cover the whole spectrum of UNIX commands, it does 
show that it is feasible to represent the conditions and 
effects of UNIX commands in a formal language. We did 
some variations of these commands and added definitions 
for several that were unavailable. 
                                                 
Copyright © 2002, American Association for Artificial Intelligence  
 (www.aaai.org). All rights reserved.  
 



Problem Formulation 

Background Knowledge 
In our framework the background knowledge is a list of 
operators. An operator consists of (1) a name, (2) a list of 
arguments, (3) a list of preconditions and (4) a list of effects. 
The preconditions are a list of literals indicating the 
conditions that must be valid for the operator to be 
applicable. The effects are a collection of literals to be 
added or deleted; they indicate the changes in the 
conditions as a result  of applying the operator. Table 1 
shows the definition of the operator rm, which indicates the 
effects of removing one or more files. The name of each file 
is an argument. The preconditions indicate that the 
existence of each file. The effect of rm is to delete the 
condition about existence of the file . We use brackets in 
Table 1 to represent that the number of arguments, 
preconditions and effects is not fully known until the 
operator is matched against a command in the traces. we 
adopted the principles of the SADL language (Golden, 
1997). SADL was conceived for expressing actions whose 
conditions and effects may only be known during the 
execution of the action. We define an action as an instance 
of an operator. We view an action trace as an ordered 
collection of actions. For the UNIX command traces data, 
we refer to the actions as commands  

Table 1: Example of the operator rm 

Operator: rm                  
    Arguments: [<filename><type = file>]    
    Precondition: 
            [<filename><type = file><status = exists>]    
    Effects:  
            [<filename><type = file><status = not exists>]    

Causal chains  
Given a sequence of elements A = (a1 … an), a subsequence 
of k elements in A, (a1, … ak), is a k-subsequence of A if 
each aj occurs before aj+1 in A. 
An action trace T = (a1 … an) supports a sequence of 
actions P = (b1, … bm) if there is a m-subsequence S = (a 1 … 
am) of T such that there is a mapping from the arguments of 
each b j in P to the arguments of each aj in S such that if the 
mapping is applied to P, P and S are identical. In this 
situation, we say that S is a sequence supporting P. 
An action trace (b1 … bm) is a Causal chain if: 
(b1 … bm) is supported by at least a certain predefined 
percentage, called the minimum support, of the input 
action traces. 
The m-subsequence (a 1 … am) of each supporting action 
trace (a1 … an) meets the following conditions: 
At least one of the effects of ai

 is a literal li that is present in 
the preconditions of ai+1. 

There is no action ak in the action trace that is clobbering 
the literal li linking aj and aj+1. That is, there is no ak between 
aj and aj+1deleting li.  
The first requirement ensures that the Causal chain and 
each of its supporting sequences are equivalent 
applications of the same operator. It is not sufficient to 
require actions in the pattern and the supporting sequences 
to be instances of the same operators. The reason is that 
operators have a variable number of arguments, 
preconditions and effects. Thus, two instances of the same 
operator may result in actions that do not match. The next 
two conditions ensure the causality relation between the 
actions in the Causal chain. In particular, it is crucial that no 
actions are clobbering these causality relations. We refer to 
the m-subsequence (a 1 … am) of the definition of Causal 
chain as a chain. The requirement for these causality 
relations is typical for plan recognition. 
Our definition of Causal chain follows the principle for 
mining sequential patterns stated in (Agrawal & Srikant, 
1995) and others (e.g., (Zaki, 2001)) of counting support 
from each trace once even if the same pattern appears more 
than once. Also from (Agrawal & Srikant, 1995; Zaki 2001), 
we will identify Causal chains that are maximal: A Causal 
chain, C, of length k is a maximal if there is no other Causal 
chain, C’, of size h, such that C is a k-subsequence of C’ 
and h > k.  

Example of a Causal Chain 
Table 2 presents two sample action traces. The first trace 
consists of 4 commands: (1) the file thesis is renamed as 
thesis.bak , (2) a symbolic link, by the name thesis, is made 
to the file thesis contained in the directory docs, (3) the 
contents of docs are listed, and (4) the file thesis in the 
directory docs (pointed by the symbolic link) is copied into 
the file named thesis1 . The second trace consists of two 
commands: (1) a symbolic link, by the name paper, is made 
to the file paper contained in the directory papers, and (2) a 
copy of the file paper in the directory papers (pointed by 
the symbolic link) is made into the file named paper1 . 
Table 2: Two samples of action traces 

1 (mv thesis thesis.bak, ln –s docs/thesis, ls docs, 
cp thesis thesis1) 

2 (ln –s papers/paper, cp paper paper1) 

If the minimum support is 100%, the only Causal chain is (ln 
–s papers/paper, cp paper paper1). This pattern is 
supported by the 2-sequence (ln –s docs/thesis, cp thesis 
thesis1) of the first trace and the 2-sequence (ln –s 
papers/paper, cp paper paper1) of the second trace. The 
pattern (ln –s docs/ thesis, cp thesis thesis1) is considered 
equivalent to (ln –s papers/paper, cp paper paper1) since 
there is the mapping of their arguments, {docs à papers, 
thesis à paper, thesis1 à paper1}, making these two 
patterns identical. 



Algorithm for mining causal chains 
We refer to the m-subsequence (a1 … am) of the definition 
of Causal chain in Section 3.2 as a chain. A maximal Causal 
chain can be seen as a chain that is maximal (i.e., the chain 
is not a k-subsequence of another chain with more than k 
elements) and that has the minimum required support. The 
idea of the algorithm is to follow a bottoms -up process 
whereby chains are constructed for each action trace 
independently and then chains from different traces are 
matched to find those that have the required minimum 
support. 
The algorithm for mining maximal Causal chains begins by 
processing the input action traces to instantiate the 
commands with their corresponding operators (Section 4.1). 
The next step is where the chains are identified for each 
trace (4.2). To improve efficiency and remove redundancy 
we perform a cleansing step where equivalent chains are 
detected and removed (4.3). Finally, maximal Causal chains 
are mined by determining which maximal chains have the 
required minimum support (4.4). 

Action Traces Instantiation 
The data files contain the input action traces. In this phase, 
these files are parsed. During parsing, each command is 
instantiated with its matching operator to determine the 
arguments, preconditions and effects. The output of this 
phase, are the traces consisting of the instantiated 
operators.  

Table 3: Example of a command in input traces 

C rm sam 
D /user/grads/xxx 
A NIL 
H NIL 
X NIL 
 

 
Table 3 shows an example of a UNIX command entry in the 
input action traces as they appear in (Greenberg, 1988). 
Every command is annotated with 5 fields labeled with 
initials C, D, A, H and X. The field C corresponds to the 
command as typed by the user. In this example the 
command type is remove sam (rm sam). D indicates the 
current directory where the command was executed 
(/user/grads/xxx). A indicates the alias of the command 
(NIL indicates that no alias was used). H indicates if the line 
was retrieved through history.  X indicates if the command 
was executed successfully (anything different than NIL 
indicates failure). Thus, the reading of the command in 
Table 3 is that the file sam was removed from the directory 
/user/grads/xxx 
 
 

Table 4: Instantiated operator rm 

Name: rm 
---Arguments:--- 
Name: sam; Type: F 
---Preconditions:--- 
Name: /user/grads/xxx; Type: P; Status: E 
Name: sam; Type: F; Status: E 
---Effects:--- 
Name: sam; Type: F; Status: NE 
 

 
Our program parsing the commands first checks if there is 
no error. If no error occurs, we lookup (1) the command 
name (e.g. rm), (2) any command options (i.e., labeled by a 
- sign following the command name), and (3) the number of 
arguments. These three elements determine what the 
command is actually doing and how the matching operator 
instantiates the command. For example, the move command 
(mv) has different effects if called with two arguments than 
if called with more than two arguments; when called with 
two arguments, the first one is renamed to the second. But 
when called with more than two arguments e.g. “mv f1 f2 … 
fn d”, the last argument, d, is a directory to which the files 
f1 … fn are moved.   
The arguments and the directory field (labeled D in Table 3) 
are used to instantiate the arguments, preconditions and 
effects of the operator. Each instantiated operator is added 
to the traces. The traces containing the sequence of 
instantiated operators are the output of this phase. Table 4 
shows the instantiated operator for the command shown in 
Table 3 and the operator shown in Table 1. The label F in 
Type indicates that the argument is a file (other possibilities 
include D for directory, P for the current path of the user, 
SL for soft link). The status can be E meaning that the file 
exists or NE meaning that the file does not exists. 
An issue in this phase is when parsing commands where no 
operator definition is available. A typical example of such a 
command is the UNIX command make. This command 
executes a script issuing other commands typically used in 
connection with compiling pieces of a code. We currently 
ignore these commands but we acknowledge that this is a 
limitation and intend to address this in the next phase of 
our research. One possibility is to assume that any 
command for which no operator definition is known can 
cause any subsequent command. 

 Identification of Chains  
This phase receives as input traces of instantiated 
operators. The goal of this phase is to identify chains for 
each trace. For each command, C, we construct what we 
called a chain-set for C. The chain-set for a command C, is 
the set of all chains that start with C.  
We perform this chain identification process for each trace 
independently. The basic algorithm for our implementation 
is presented below: 



1. For each command Cj (1≤ j < N) in the trace we 
construct a chain-set, initially consisting of a single 1-
sequence containing Cj. Then for each Chain Set we 
perform Step 2. 
2. For each command Nj occurring after Cj (i.e., i+1 ≤ j 
≤ N) we perform Steps 3 and 4 
3. Compare Nj with the last command L of each chain 
CHm in the chain-set of Cj. If any effect e of L is a 
precondition of Nj and e is not clobbered between L 
and Nj then create a new chain, CHm + Nj, and add it to 
the chain-set of Cj.  
 

The algorithm will basically create a chain-set for each 
command. We only create chain-sets for new commands 
(i.e., there are no two chain-sets for the same command). 
Given a trace of instantiated operators, the cause-effect 
relations define a partial order between the actions in the 
trace. Algorithms have been proposed in the AI planning 
literature to compute such partial order for an input plan 
(e.g., (Veloso and Carbonell, 1993)). The chain identification 
process computes all total ordered subsequences. 

Removing Equivalent Chains  
In this phase we remove equivalent chains from each of the 
k-Chain Sets (1≤ k < N). A chain C = (a1 … ak) is equivalent 
to another chain C’ = (b1 … bk) if there is a mapping from 
the arguments of each ai in C to the arguments of each bi

 in 
C’ such that if the mapping is applied to C, then C and C’ 
are identical. When an equivalent chain is removed its 
predecessor chains are removed as well. The reason for this 
is that, any h-subsequence of C (with h < k) must be 
equivalent to a h-subsequence of C’.  

Determining Support for Maximal Chains  
In the final stage of our algorithm, the maximal chains for 
the different traces are compared looking for equivalent 
chains. If for a given chain (a1 … an), the required minimum 
support is not met, the algorithm tries with the predecessor 
chain (a1 … an-1) and continues until 20 chains (a1 a2).  
We now give a concrete equivalent example of equivalent 
chains. Suppose that the following chains from two 
different traces are being compared: 
     mv file1 file2 [pre1/eff1], cp file2 file3 [pre2/eff2], rm file3 
[pre3/eff3] 
     mv file40 file23 [pre4/eff4], cp file23 file33 [pre5/eff5], rm 
file33 [pre6/eff6] 
Where pre i/effi are the preconditions and effects of each 
command according to the background knowledge. For 
example: 
      eff3 = [Name: file3; Type: F; Status: NE; Tag: d] 
      eff6 =[Name: file33; Type: F; Status: NE; Tag: d] 
These two chains are equivalent with the mapping:  
    {file1 à file40, file2 à file23, file3 à file 33} 

Experiment 
To evaluate our algorithm for extracting causal chains we 
performed experiments with the UNIX user command traces.  
The purpose of our experiments was to find all maximal 
Causal chains for non synthetic domain.  

Sequential Mining 
A sequential pattern is a sequence of actions P = (b 1 … bm) 
for which a certain predefined percentage of the input 
action traces (i.e., the minimum support) meet the following 
condition: there is a m-subsequence S = (a 1 … am) of the 
action trace such that the action names, options and the 
number of arguments of each b i and ai are the same. 
 For the experiment we implemented a simple-minded 
algorithm for mining sequential patterns that is correct (i.e., 
it finds sequential patterns only) and complete (i.e., it 
doesn’t leave out any sequential pattern). The purpose is 
to have a baseline for comparing the number of patterns 
that can be found with the CES approach.  
The algorithm for mining sequential patterns begins with 
the action traces instantiation process (See Section 4.1). 
But for sequential mining we only take into account the 
command names, options and the number of arguments. 
That is, we don’t consider the actual arguments, the 
preconditions and the effects. The reason is that sequential 
patterns are mined without the system having the 
background knowledge. Hence, the comparison between 
any two sequences is simply done by verifying that they 
have the same command name, the same option and the 
same number of arguments. We make sure that there are no 
repeated sequences. For doing this, we have to check for 
an exact match in the arguments. 
 
Table 5: User categories for input traces 

Categories Input 
Action 
Traces  

Trace 
Length 
(average) 

Computer scientists  17 586.35 
Experience 
Programmers 

34 691.41 

Novice Programmers 55 348.90 
Non-Programmer 25 472.96 

 

Experimental Setup 
The experiments were performed on a single Pentium 4 
1.6GHz machine with 512MBytes of RAM. Table 5 
summarizes the input action traces used in the experiments. 
The first column describes the user categories. The second 
column the number of traces for each category and the third 
column the average size of the traces (number of 
commands). 



We ran experiments for computing Causal chains and 
sequential patterns for each of the four user categories. For 
each run we computed the number of maximal Causal chains 
and sequential patterns. We ran the experiments for 
support percentages of 100, 70, 40 and 10, for a total of 16 
runs. 
 

Users / Support (%) 100 70 40 10 
Computer Scientists 31 29 28 26 
Experience 
Programmers 

90 80 77 64 

Novice Programmer 70 68 65 55 
Non-Programmer 40 38 37 33 

Table 6: Time (in seconds) for finding the causal chains 
 
 The readings for mining sequential patterns were taken for 
a  1-hour run because of the combinatorial factor would 
require too much time and resources to compute all 
sequential patterns. We also mined the Causal chains first. 
Thus, we knew the length of the maximal patterns for each 
user category. When running the sequential mining 
approach we stopped the sequential pattern mining process 
when we reached sequences of length larger than the 
length of the maximal Causal chain length. In most runs 
however, we reach the 1-hour limit before being able to 
compute all sequence patterns of the maximal length. Thus, 
the total number of sequential patterns computed is a lower 
bound for the total number of possible sequential patterns. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Results 
Table 6 shows the run times for the different users and 
support percentages for mining Causal chains. The support 
percentages, 100, 70, 40 and 10, are spaced to cover a wide 
support range. Despite that we didn’t emphasize efficiency 
in our implementation of the algorithm for mining Causal 
chains, the time that it took for each run was relatively low 
for the hardware we used and the size of the input data. The 
worst time was 1.5 minutes but more than half of the runs 
took less than a minute. Our strategy of constructing 

chains for each trace independently and then comparing 
the chains seem to have worked well for this particular 
input data. In this data (see Table 6), there are relatively few 
traces considered in each run (up 20) but the traces 
contained a large number of commands (up to 691). 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figures 1-4 show the total number of Causal chains found 
for each of the four user categories on the logarithmic scale. 
These figures also show the number of sequential patterns 
for the same input data and support. As explained before, 
the sequential patterns found is a subset of the sequential 
patterns that can potentially be mined from this data. Still, 
from these readings we observe that the number of Causal 
chains is substantially less than the number of sequential 
patterns. Sequential patterns are a worst-case scenario for 
Causal chains where every action can cause another action. 
As expected, the number of Causal chains is several orders 
of magnitude less than the number of sequential patterns 
for this domain. This illustrates that is feasible to learn all 
Causal chains even for very large data sets. The crucial 
point being that non relevant data from the point of view of 
the cause-effect relationships can be quickly discarded 
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Figure 2: Results for experienced programmers 
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Figure 3: Results for novice programmers 
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Figure 1: Results for computer scientists 



allowing the learning algorithms to concentrate on inter-
related actions. 

 

 

 

 

 

Discussion and Final Remarks 
Sequential patterns are a worst-case scenario for Causal 
chains where every action can cause another action. In our 
experiments, the number of Causal chains is several orders 
of magnitude less than the number of sequential patterns. 
Mining causal chains is motivated by plan recognition work 
where the aim is to predict goals. In a collection of traces, 
the goals are the effects of the causal chains. We saw that 
even for a real-world domain such as UNIX command traces, 
the number of chains generated is relatively small. Thus, 
they provide a global picture of the actual intend (i.e., all of 
the resulting goals) of the traces. 
Mining Causal chains can have important applications. 
Particularly, Causal chains can be used to find patterns 
from a collection of intrusion logs. These patterns can be 
used to detect security flaws in a system. Since Causal 
chains describe structural patterns reflecting causal 
relations, inter-related actions can be rapidly identified. As 
a result, Causal chains can be computed efficiently for large 
collections of input data. 
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