

Developing Task Specific Sensing Strategies
Using Reinforcement Learning

Srividhya Rajendran and Manfred Huber

Department of Computer Science Engineering
University of Texas at Arlington

Arlington, TX 76019-0015
{rajendra, huber} @ cse.uta.edu

Abstract

Robots that can adapt and perform multiple tasks promise to
be a powerful tool with many applications. In order to
achieve such robots, control systems have to be constructed
that have the capability to handle real world situations.
Robots use sensors to interact with the world. Processing
the raw data from these sensors becomes computationally
intractable in real time. This problem can be tackled by
learning mechanisms for focus of attention. This paper
presents an approach that considers focus of attention as a
problem of selecting controller and feature pairs to be
processed at any given point of time in order to optimize
system performance. The result is a control and sensing
policy that is task-specific and can adapt to real world
situations using feedback from the world. The approach is
illustrated using a number of different tasks in a blocks
world domain.

Introduction1
AI and robotics technologies have made significant strides
but robots that are present today are still very task specific.
To have robots that are more useful, it is necessary that
they perform a range of tasks. Examples of such systems
would be robots assisting in dangerous and/or repetitive
tasks or that can assist elderly and handicapped people by
monitoring their surroundings. These tasks require the
robots to deal with real world situations. In order to
interact with humans, to interpret the state of the world,
and to represent continuous time, robots have to process
the huge amount of data generated by their sensor
modalities. Representing data of this magnitude (most of
which is irrelevant) increases the complexity of the system
and processing huge amounts of data in real time is
computationally intractable. This requires that robots have
effective mechanisms to extract the relevant data from the
raw data pool.
 Similar mechanisms are observed in biological systems
which can not consciously process the huge amount of data
they get from their sensor modalities. As a result they pay
attention only to a small subset of their perceptual data
while ignoring the rest. This mechanism is known as

Copyright © 2004, American Association for Artificial Intelligence
 (www.aaai.org). All rights reserved.

“Focus of Attention”. Over time, while the system learns
complex tasks, it develops successful task-specific sensing
strategies depending on the resources available and the
task at hand.
 Robot systems require the ability to learn similar
mechanisms of task-specific focus of attention to deal with
the vast amount of potentially irrelevant data, and to
perform complex tasks based on the available resources.
The focus of attention problem mainly consists of two
parts:

a. Knowing what things in the world could be
important.

b. Knowing what things we need to pay attention to
at a particular point in time.

 In recent years, this school of thought has attracted
many researchers to learn task-specific attention strategies.
(McCallum 1996) developed mechanisms for learning
selective attention for sequential tasks. Using the U-Tree
algorithm this work dynamically builds a state space
representation by pruning the large perceptual state space
and augmenting the state space with short term memory
containing the crucial features that were missing because
of hidden state. This mechanism has a disadvantage that it
does not perform well in continuous state spaces. (Laar,
Heskes and Gielen 1997) learned task dependent focus of
attention using neural networks. This idea used a limited
sensor modality, constructed a special computational
mechanism and did not have any real time feedback, thus
limiting its use in real world robotic tasks. (Goncalves et.
al 1999) presented an approach that uses similar learning
mechanisms as presented here to identify objects’ identities
in an active stereo vision system. This approach introduced
special purpose visual maps to accomplish the required
task. (Piater 2001) presented an approach that learns a
small number of highly useful task-specific features by
“general-to-specific” random sampling. The system
incrementally improves by dynamically updating the
Bayesian network classifiers with information of highly
distinctive features.
 The approach to task-specific focus of attention
presented here is aimed at finding out what we need to pay
attention to given that we already know what things could
be important. It considers focus of attention as a problem
of selecting a set of features to be processed at any given
point in time during task execution. It considers more than

one sensor modality for identifying the various object
identities in the world. The set of features to be processed
at any give time is determined on-line using reinforcement
learning. This is done by tight integration of the sensing
policy and the control policy of the robot. The learning
algorithm here acquires a sensing and control policy
simultaneously by selecting the set of features and
associated control actions.

 Technical Background
The approach presented here uses a control architecture
based on hybrid discrete event dynamic system (Ramadge
and Wonham 1989, Huber and Grupen 1997). The
framework acts as an interface between the learning agent
and the physical world. Figure 1 shows the basic
organization of this framework.
 The physical sensors and actuators are handled by the
controller / feature pairs, the bottommost layer of this
architecture. Here, each action that the robot system
executes in the real world is associated with a set of
features that form the control objective for that action. For
example, action “Reach” “Blue” results in the robot arm
reaching for a blue object. At each point in time the robot
has to decide the relevant features to process in the context
of the chosen action. This reduces the amount of raw data

Figure 1. Organization of Control Architecture

that has to be analyzed to the one required for the related
features. The convergence of controllers represents the
completion of a control objective and results in the
generation of a discrete symbolic event. This symbolic
event is used by the supervisor to generate an abstract
state.

 State Space Representation
A robotic system with closed loop controllers handling a

wide range of tasks has very complex state and action
spaces. The exploration based technique of on-line
learning of continuous control strategies becomes
impractical on such systems.
 This control architecture makes it possible to learn
policies for such robots by using an abstract state space
representation for the learning of control and sensing
policies.
 Given the set of control actions and the set of resources
available in this system, only a finite set of closed loop
responses are possible in the system. Each action here is
associated with a set of features which dynamically define
the objective of the action. The objective, in turn, defines
the discrete states of the system. For example, “Reach”
“Blue”, represents the action “Reach” and the feature
“Blue” defines a location in the world where the robot arm
has to reach. As a result of this action the robot arm enters
a state where it is at a blue object in the world. Each of the
discrete states is defined by a vector of predicates. These
predicates indicate the effects of action and feature pairs in
the world.
 The aim of the controller is to reach an equilibrium state
where the control objective is satisfied, thus asserting the
related predicates of the abstract state. However the
outcomes of these control actions at the supervisor level
are nondeterministic due to kinematic limitations,
controller interactions and other nonlinearities in the
system. Therefore it may happen that the same action with
the same set of features to be monitored from state s may
lead to a set of different states {s1,s2,s3} at different points
in time. Hence the supervisor forms a nondeterministic
finite automaton that triggers transitions with the
convergence of controllers.

Reinforcement Learning
Q-learning is an effective reinforcement learning
mechanism to learn control policies for agents that have no
prior knowledge of the world and receive feedback about
their actions only in the form of delayed reward. However,
reinforcement learning does not perform well for highly
complex tasks and in continuous state spaces because of
the size of the search space. In the approach presented here
this problem is addressed at the supervisor level by using
abstract states and closed loop action, resulting in a
reduced search space.
 In Q-learning the agent interacts with the world over a
period of time. At each time step, t, the agent observes a
state st, chooses an action at, and executes it. As a result
the world reaches a new state st+1 and gives a reward rt to
the agent. This information is used by the agent to learn a
policy that maximizes the expected reward over time.
The Q-function (Watkins 1989) ℜ→×AS:Q represents
the expected discounted sum of future rewards if action a
is taken from state s and the optimal policy is followed
thereafter. The Q value for the state-action pairs is learned
iteratively through on-line exploration. Each time a state-
action pair is visited its value is updated using:

Reinforcement

Physical
Actuators

Physical
Sensors

Control
Activation

Symbolic
Events

Control /
Sensing

Policy
Supervisor

Controller / Feature
Pairs

Learning Component

State
Information

a))Q(s,)a',Q(s'maxα(ra)Q(s,a)'Q(s,
Aa'

−++=
∈

γ

Q(s, a)' is the updated value of Q(s, a), r is the reward for
reaching the new state s' by selecting action a in state s, α
(0≤α<1) is the learning rate, and γ (0≤γ<1) is a constant
that represents the relative value of delayed versus
immediate rewards. Upon convergence of the algorithm
the optimal action in each state s can be extracted from the
value function as:

b)Q(s,maxarga max
Ab∈

=

Convergence of this algorithm is based on a few basic
assumptions:

1. The problem is Markovian.
2. Each state/action pair is updated infinitely often.
3. There exists some positive constant c such that for

all states s and actions a |r(s ,a)| < c.
 During learning it also requires exploration versus
exploitation strategies to allow the agent to explore when it
has no knowledge of the world and exploit more when it
does have knowledge of the world.
 In the current architecture, Q-learning is used. Each time
a new state is reached, the world gives feedback in the
form of reinforcement to the learning component. This, in
turn, is used to update the state-action pair in the abstract
state space (a vector of predicates derived from symbolic
events that represent whether the control objective defined
by controller /features pairs is achieved or not).

Experiments
To illustrate the proposed approach, let us consider
examples in the blocks world domain where the robot has
to interact with objects on the table top. Our robot
configuration consists of a robot arm, a stereo vision
system, and feature extraction algorithms to identify visual
features of the objects in the world, such as color, shape,
size and texture. Through interaction with the blocks world
the robot learns a task-specific control and sensing policy
in order to optimize the system performance for the given
task.
 The robot can perform the following actions:

1. “Reach”: This action is used by the robot arm to
reach for an object at any given location within
the boundaries of the blocks world.

2. “Pick”: This action is used to pick or drop an
object at the current location.

3. “Stop”: This action allows the robot to stop its
interaction with the blocks world. This action is
mainly used since

a. The robot does not know what the task is

and learns it from the reinforcements
provided by the world.

b. There are no absorbing states in the real
world. So, the robot has to learn when to
stop performing a task in order to
maximize expected reward.

 Each “Reach” or “Pick” action is associated with a set of
features that the robot has to process in order to derive the
goal of the action and then to complete the given task. For
example, “Reach” “Blue” will cause the robot arm to reach
for a blue object in the blocks world if such an object
exists.
 As the number of features present in the world
increases, the complexity of the system also increases. In
order to restrict the system complexity, the number of
features that can be processed with each action at a given
point in time is here limited to two.
 The Q-learning algorithm uses an abstract state space to
learn the sensing and control policy. Each abstract state
can be represented as a vector of predicates. In the blocks
world domain, the vector of predicates constituting an
abstract state consists of:
- Action Taken: This indicates what action was taken
- Action Outcome: This indicates if the action was

successful or unsuccessful.
- Feature 1 and / or Feature 2: These are the features that

were chosen by the robot to determine the control
objective of the last action.

- Feature Successful / Unsuccessful: This represents
whether the feature combination used by the last action
was found.

- Arm Holding: This indicates what the arm is holding.
For example: if the robot is in the start state s0 { “Null”,
“Null”, “Null”, “Null”, “Null”, “Holding Nothing”} and
takes action “Reach” and the features that formed the
control objectives were color “Blue” and shape “Square” ,
then the robot tries to reach for an object that has color
“Blue” and has a “Square” shape. If the world contains an
object with this feature combination then this action will
lead to a new state and the vector of predicates for this
state will have the value {“Reach”, “Successful”, “Blue”,
“Square”, “Successful”, “Holding Nothing”} meaning that
the action “Reach” for an object with features “Blue” and
“Square” was successful and the feature combination
“Blue” and “Square” was found. By the end of this action
the arm is “Holding Nothing”.
 Following are example tasks that were learned in the
blocks world domain.

Table Cleaning Task
In this experiment there are a number of objects on the
table top and the robot can move or pick up only one
object at a time. The task is to learn a sensing and control
policy that will allow the robot to reach, and pick up
objects (that are movable) from the table, and then reach
and drop these objects in a box. While learning a policy for
the task, the robot also has to learn when to stop since

there is no explicit information or feedback as to when the
task is completed.
 The robot has a cost associated with each action it takes
and receives a small positive reward each time it picks up
and drops an object from the table into the box.
The blocks world has the following objects and features
present on the table (as shown in Figure 2)

1. Object 1: Texture 1, Square, Small.

Figure 2. Table Cleaning Task Setup

2. Object 2: Texture 1, Round, Medium.
3. Object 3: Texture 2, Square, Medium.
4. Object 4: Texture 3, Round, Small.
5. Object 5: Texture 3, Square, Small.

and a box (Texture 4, Rectangle, Big) in which all the
objects are to be dropped. All the objects on table are
movable or unmovable. Whether an object is movable or
unmovable can only be determined by trying to pick it up
at least once. The objects with size “Big” in world can not
be picked up by the robot arm.
 Once a particular object (suppose with feature “Texture
1”) is dropped in the box it is no longer visible. If the
robot in state sx {“Pick”, “Unsuccessful”, “Texture 4”,
“Null”, “Successful”, “Holding Nothing”} again tries to
reach for an object with feature “Texture 1”. Then the
“Reach” action will only be successful if there is another
object with “Texture 1” on the table. Otherwise it will be
unsuccessful since the features of the dropped object are
no longer accessible to the feature extraction algorithm.
 Starting from the derived abstract state representation,
the system uses the learning component to learn the value
function using the reward it receives each time a transition
from state st to st+1 takes place. The robot starts out
exploring the world by taking random actions (100 %
exploration) and incrementally decreases its exploration
using the Boltzmann “soft-max” distribution until it
reaches a stage where the exploration is about 10 %. This
amount of exploration is maintained to allow the system to
visit different potentially new parts of the abstract state
space even after it achieves a locally optimal policy. This

is done in order to improve its performance by enabling it
to learn a more global strategy.
For the table cleaning task, 3 possible cases were
considered:

1. All objects on the table are movable
2. Not All objects on table are movable: A few

objects on the table are movable and a few are
unmovable.

3. None of the objects on the table are movable.
Case 1. Figure 3 shows the Learning curve for the table
cleaning task when all objects on the table are movable.

Figure 3. Learning Curve Case 1

The learning curve is plotted as a running average over 30
steps and depicts the average of 10 learning trials. The
intervals indicate one standard deviation.

State Predicate Values
S0 {“Null”, “Null”, “Null”, “Null”, “Null”, “Holding

Nothing”}
S1 {“Reach”, “Success”, “Small”, “Null”, “Success”,

“Holding Nothing” }
S2 {“Pick”, “Success”, “Small”, “Null” “Success”,

“Holding Small”}
S3 {“Reach”, “Success”, “Texture 4”, “Null”,

“Success”, “Holding Small” }
S4 {“Pick”, “Unsuccessful”, “Texture 4”, “Null”,

“Success”, “Holding Nothing”}
S5 {“Reach”, “Unsuccessful” “Small”, “Null”,

“Unsuccessful”, “Holding Nothing”}
S11 {“Stop, “Successful” “Null”, “Null”, “Null”,

“Holding Nothing”}

Table 1. States and Predicate Values

Figure 4 shows a part of the control policy learned by the
robot for case 1 of the table cleaning task. Table 1 shows
the states and the predicate values for some of the states
shown in Figure 4. Each arrow in the figure represents a
possible result of the related action in terms of a transition
from the old state to the new state of the world. The robot
starts in state S0 and takes actions “Reach” “Small” to
reach the object with size “Small” on the table, leading to a
transition from state S0 to S1. If there is more than one
object with size “Small”, then it randomly reaches for any

-40
-35
-30
-25
-20
-15
-10

-5
0
5

10
15

0 50000 100000 150000 200000
Learning Steps

A
ve

ra
ge

 R
ew

ar
d

Small

Medium

Big

Size

Texture 4

Texture 2
Texture 3

Texture 1 Square

Round

Rectangle

Shape Texture

Figure 4. Partially Learned Policy for Case 1

one of those objects since the objects with the same size
look similar. Then, from state S1 it takes action “Pick”
“Small”, resulting in successfully picking up the object
with size “Small” , leading to state S2.The arm then reaches
for the box where it needs to drop the object using action
“Reach” “Texture 4”, leading to state S3. Finally, taking
the action “Pick” “Texture 4” it drops the held object into
the box, thus reaching state S4. From state S4 it again tries
action “Reach” “Small” and if there are more objects with
size “Small” then the states S1, S2, S3, S4 are repeated until
all objects of size “Small” are dropped into the box. Once
all the objects of size “Small” are dropped, taking action
“Reach” “Small” results in a transition to a state S5. This
transition tells the robot that there are no more objects with
size “Small” on the table and thus helps the robot to shift
its attention from the current feature “Small” to some other
feature that can be used as a control objective for the
actions to further clean the table.
 Once the table is clean all the features except those in
the box are unsuccessful. The robot learns that taking any
more actions in the blocks world domain once the table is
clean results in no reward.
 This causes the robot to learn that “Stop” is the best
action once the table is clean, thus maximizing expected
reward for this task.

Case 2. In this case the blocks world contains the same
number of objects as in case 1, however objects 2 and 3 on
the table are not movable. Figure 5 shows the learning
curve for this task.
 In this case the robot learns a policy that results in the
robot picking and dropping all the movable objects into the
box. It learns to stop once all movable objects are dropped
in the box, since it receives no reward for moving and
trying to pick up the unmovable objects. The result is a
partial cleaning of the table.

Figure 5. Learning Curve Case 2

Case 3. Figure 6 shows the learning curve for this task
when none of the objects on the table are movable.

Figure 6. Learning Curve Case 3

 In this case the robot starts out by randomly exploring
the world and soon learns that none of the objects on the
table are movable. Thus, it learns to stop immediately
instead of taking any other actions, since in this case the
table can never be cleaned.

Sorting Task
In this task the robot has to learn a policy for sorting
objects on the table into different boxes.
 The blocks world has the following objects in the sorting
task (shown in Figure 7):

1. Object 1: Texture 1, Square, Small.
2. Object 2: Texture 1, Round, Medium.

and a box 1 (Texture 3, Rectangle, Big), box 2 (Texture 2,
Rectangle, Big) in which all the objects are to be dropped.

“Pick”

“Medium”

“Reach”

“R
each
”“R

each
”

“Medium”
“Reach”

“Reach”
 “Small”

“Texture 4”

“Pick”

“Sm
all”

“R
each
”

“R
each
”

“Texture 4”

“Pick”

“Small”

“Reach”

“Small”
S0 S1 S2

S4 S3

S5 S6 S7

S9 S8

“Pick”

“B
ig”

“Big”

“M
edium

”

S10

“Stop”

S11

Successful Action

Unsuccessful Action

-30
-25
-20
-15
-10

-5
0
5

10
15

0 20000 40000 60000 80000 100000 120000 140000

Learning Steps

A
ve

ra
ge

 R
ew

ar
d

-18
-16
-14
-12
-10
-8
-6
-4
-2
0

0 20000 40000 60000 80000 100000
Learning Steps

Av
er

ag
e

R
ew

ar
d

The robot gets a reward when it drops
a. an object having features “Texture 1” and

“Small” into box 1.
b. an object having features “Texture 1” and

“Medium” size into box 2.

Figure 7. Sorting Task Setup

Figure 8 shows the learning curve for this task.

Figure 8. Learning Curve for Sorting Task

The robot successfully learns a policy that sorts the objects
with features “Texture 1” and “Small” into box 1, and
other objects into box 2, and stops once all the objects on
the table are sorted.
 In the above experiments the learning process requires
between 50,000 and 200,000 steps to converge to an
optimal policy. While this number might make large tasks
intractable if all learning steps have to be executed by the
robot (as was done in the experiments), the number of
physical actions required could be substantially reduced by
using real world experiences to build a model which, in
turn, can be used for off-line learning steps to adjust the
policy (Sutton 1990, 1991, Moore 1993).

Conclusions and Future Work
The results presented here illustrate that robots can learn
task-specific control and sensing policies. This is achieved
by using a mechanism for focus of attention that ties
actions to perceptual features that form their control

objective. This reduces the search space required by an
online reinforcement learning algorithm to learn a policy.
Here it was assumed that the next state only depends on
the current percepts and actions, and not on any previous
percepts. But in the real world there are many tasks which
cannot be completed unless knowledge about past events is
available. To address this we are currently extending the
approach by incorporating short term memory to remember
past events. In order for the short term memory to work
effectively the robot not only has to learn control and
sensing policies, but also a memory policy. The memory
policy tells the robot what to remember and when to
remember in order to successfully complete a task.

Acknowledgements
This work was supported in part by UTA REP-14748719

References
Andrew McCallum R. (1996). Hidden state and
reinforcement learning with instance-based state
identification. IEEE Transactions on Systems, Man and
Cybernetics, 26B (3):464 -473.
Goncalves L.M.; Giraldi G.N.; Oliveira A.A. and Grupen
R.A. (1999). Learning Policies for Attentional Control.
IEEE International Symposium on Computational
Intelligence on Robotics and Automation (CIRA 1999).
Huber M. and Grupen R.A. (1997). “A Feedback Control
Structure for On-line Learning Tasks”, Robotics and
Autonomous Systems, Volume 22, Issues 3-4.
Andrew W. Moore and Christopher G. Atkeson (1993).
Prioritized sweeping: Reinforcement Learning with less
data and less real time. Machine Learning (13).
Justus H. Piater (2001). Visual Feature Learning. Ph.D.
dissertation, Dept. of Computer Science, Univ. of
Massachusetts, Amherst.
Peter J.G. Ramadge and W. Murray Wonham (1989). The
control of discrete event systems. Proceedings of the IEEE,
77(1):81-97.
Richard S. Sutton (1990). Integrated architectures for
learning, planning, and reacting based on approximating
dynamic programming. In Proceedings of the Seventh
International Conference on Machine Learning, Austin,
TX.
Richard S. Sutton (1991). Planning by incremental
dynamic programming. In Proceedings of the Eighth
International Workshop on Machine Learning, 353-357.
Van de Laar P.; Heskes T. and Gielen S. (1997). Task-
Dependent Learning of Attention. Neural Networks,
10(6):981-992.
Watkins, C. J. C. H. (1989). Learning from delayed
rewards. Ph.D. thesis, Psychology Department, Univ. of
Cambridge.

-15

-10

-5

0

5

10

0 20000 40000 60000 80000 100000 120000
Learning Steps

A
ve

ra
ge

 R
ew

ar
d

Round

Square

Rectangle

Shape

Big

Medium

Small

Size Texture

Texture 2

Texture 1

Texture 3

