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Abstract 

Robots that can adapt and perform multiple tasks promise to 
be a powerful tool with many applications. In order to 
achieve such robots, control systems have to be constructed 
that have the capability to handle real world situations. 
Robots use sensors to interact with the world. Processing 
the raw data from these sensors becomes computationally 
intractable in real time. This problem can be tackled by 
learning mechanisms for focus of attention. This paper 
presents an approach that considers focus of attention as a 
problem of selecting controller and feature pairs to be 
processed at any given point of time in order to optimize 
system performance. The result is a control and sensing 
policy that is task-specific and can adapt to real world 
situations using feedback from the world. The approach is 
illustrated using a number of different tasks in a blocks 
world domain. 

Introduction1  
AI and robotics technologies have made significant strides 
but robots that are present today are still very task specific. 
To have robots that are more useful, it is necessary that 
they perform a range of tasks. Examples of such systems 
would be robots assisting in dangerous and/or repetitive 
tasks or that can assist elderly and handicapped people by 
monitoring their surroundings. These tasks require the 
robots to deal with real world situations. In order to 
interact with humans, to interpret the state of the world, 
and to represent continuous time, robots have to process 
the huge amount of data generated by their sensor 
modalities. Representing data of this magnitude (most of 
which is irrelevant) increases the complexity of the system 
and processing huge amounts of data in real time is 
computationally intractable. This requires that robots have 
effective mechanisms to extract the relevant data from the 
raw data pool.  
 Similar mechanisms are observed in biological systems 
which can not consciously process the huge amount of data 
they get from their sensor modalities. As a result they pay 
attention only to a small subset of their perceptual data 
while ignoring the rest. This mechanism is known as 
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“Focus of Attention”. Over time, while the system learns 
complex tasks, it develops successful task-specific sensing 
strategies depending on the resources available and the 
task at hand.  
 Robot systems require the ability to learn similar 
mechanisms of task-specific focus of attention to deal with 
the vast amount of potentially irrelevant data, and to 
perform complex tasks based on the available resources. 
The focus of attention problem mainly consists of two 
parts: 

a. Knowing what things in the world could be 
important. 

b. Knowing what things we need to pay attention to 
at a particular point in time. 

  In recent years, this school of thought has attracted 
many researchers to learn task-specific attention strategies. 
(McCallum 1996) developed mechanisms for learning 
selective attention for sequential tasks. Using the U-Tree 
algorithm this work dynamically builds a state space 
representation by pruning the large perceptual state space 
and augmenting the state space with short term memory 
containing the crucial features that were missing because 
of hidden state. This mechanism has a disadvantage that it 
does not perform well in continuous state spaces. (Laar, 
Heskes and Gielen 1997) learned task dependent focus of 
attention using neural networks. This idea used a limited 
sensor modality, constructed a special computational 
mechanism and did not have any real time feedback, thus 
limiting its use in real world robotic tasks. (Goncalves et. 
al 1999) presented an approach that uses similar learning 
mechanisms as presented here to identify objects’ identities 
in an active stereo vision system. This approach introduced 
special purpose visual maps to accomplish the required 
task. (Piater 2001) presented an approach that learns a 
small number of highly useful task-specific features by 
“general-to-specific” random sampling. The system 
incrementally improves by dynamically updating the 
Bayesian network classifiers with information of highly 
distinctive features. 
 The approach to task-specific focus of attention 
presented here is aimed at finding out what we need to pay 
attention to given that we already know what things could 
be important. It considers focus of attention as a problem 
of selecting a set of features to be processed at any given 
point in time during task execution. It considers more than 



one sensor modality for identifying the various object 
identities in the world. The set of features to be processed 
at any give time is determined on-line using reinforcement 
learning. This is done by tight integration of the sensing 
policy and the control policy of the robot. The learning 
algorithm here acquires a sensing and control policy 
simultaneously by selecting the set of features and 
associated control actions. 

 Technical Background  
The approach presented here uses a control architecture 
based on hybrid discrete event dynamic system (Ramadge 
and Wonham 1989, Huber and Grupen 1997). The 
framework acts as an interface between the learning agent 
and the physical world. Figure 1 shows the basic 
organization of this framework. 
 The physical sensors and actuators are handled by the 
controller / feature pairs, the bottommost layer of this 
architecture. Here, each action that the robot system 
executes in the real world is associated with a set of 
features that form the control objective for that action. For 
example, action “Reach” “Blue” results in the robot arm 
reaching for a blue object. At each point in time the robot 
has to decide the relevant features to process in the context 
of the chosen action. This reduces the amount of raw data 

 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Figure 1. Organization of Control Architecture 

that has to be analyzed to the one required for the related 
features. The convergence of controllers represents the 
completion of a control objective and results in the 
generation of a discrete symbolic event. This symbolic 
event is used by the supervisor to generate an abstract 
state. 

 State Space Representation 
A robotic system with closed loop controllers handling a 

wide range of tasks has very complex state and action 
spaces. The exploration based technique of on-line 
learning of continuous control strategies becomes 
impractical on such systems.  
 This control architecture makes it possible to learn 
policies for such robots by using an abstract state space 
representation for the learning of control and sensing 
policies. 
 Given the set of control actions and the set of resources 
available in this system, only a finite set of closed loop 
responses are possible in the system. Each action here is 
associated with a set of features which dynamically define 
the objective of the action. The objective, in turn, defines 
the discrete states of the system. For example, “Reach” 
“Blue”, represents the action “Reach” and the feature 
“Blue” defines a location in the world where the robot arm 
has to reach. As a result of this action the robot arm enters 
a state where it is at a blue object in the world. Each of the 
discrete states is defined by a vector of predicates. These 
predicates indicate the effects of action and feature pairs in 
the world. 
 The aim of the controller is to reach an equilibrium state 
where the control objective is satisfied, thus asserting the 
related predicates of the abstract state. However the 
outcomes of these control actions at the supervisor level 
are nondeterministic due to kinematic limitations, 
controller interactions and other nonlinearities in the 
system. Therefore it may happen that the same action with 
the same set of features to be monitored from state s may 
lead to a set of different states {s1,s2,s3} at different points 
in time. Hence the supervisor forms a nondeterministic 
finite automaton that triggers transitions with the 
convergence of controllers. 

Reinforcement Learning 
Q-learning is an effective reinforcement learning 
mechanism to learn control policies for agents that have no 
prior knowledge of the world and receive feedback about 
their actions only in the form of delayed reward. However, 
reinforcement learning does not perform well for highly 
complex tasks and in continuous state spaces because of 
the size of the search space. In the approach presented here 
this problem is addressed at the supervisor level by using 
abstract states and closed loop action, resulting in a 
reduced search space. 
 In Q-learning the agent interacts with the world over a 
period of time. At each time step, t, the agent observes a 
state st, chooses an action at, and executes it. As a result 
the world reaches a new state st+1 and gives a reward rt to 
the agent. This information is used by the agent to learn a 
policy that maximizes the expected reward over time. 
The Q-function (Watkins 1989) ℜ→×AS:Q  represents 
the expected discounted sum of future rewards if action a 
is taken from state s and the optimal policy is followed 
thereafter. The Q value for the state-action pairs is learned 
iteratively through on-line exploration. Each time a state-
action pair is visited its value is updated using: 
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Q(s, a)' is the updated value of Q(s, a), r is the reward for 
reaching the new state s' by selecting action a in state s, α 
(0≤α<1) is the learning rate, and γ (0≤γ<1) is a constant 
that represents the relative value of delayed versus 
immediate rewards. Upon convergence of the algorithm 
the optimal action in each state s can be extracted from the 
value function as: 
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Convergence of this algorithm is based on a few basic 
assumptions: 

1. The problem is Markovian. 
2. Each state/action pair is updated infinitely often. 
3. There exists some positive constant c such that for 

all states s and actions a |r(s ,a)| < c. 
 During learning it also requires exploration versus 
exploitation strategies to allow the agent to explore when it 
has no knowledge of the world and exploit more when it 
does have knowledge of the world. 
 In the current architecture, Q-learning is used. Each time 
a new state is reached, the world gives feedback in the 
form of reinforcement to the learning component. This, in 
turn, is used to update the state-action pair in the abstract 
state space (a vector of predicates derived from symbolic 
events that represent whether the control objective defined 
by controller /features pairs is achieved or not).  

Experiments  
To illustrate the proposed approach, let us consider 
examples in the blocks world domain where the robot has 
to interact with objects on the table top. Our robot 
configuration consists of a robot arm, a stereo vision 
system, and feature extraction algorithms to identify visual 
features of the objects in the world, such as color, shape, 
size and texture. Through interaction with the blocks world 
the robot learns a task-specific control and sensing policy 
in order to optimize the system performance for the given 
task. 
 The robot can perform the following actions: 

1. “Reach”: This action is used by the robot arm to 
reach for an object at any given location within 
the boundaries of the blocks world. 

2.  “Pick”: This action is used to pick or drop an 
object at the current location. 

3. “Stop”: This action allows the robot to stop its 
interaction with the blocks world. This action is 
mainly used since  

 
a. The robot does not know what the task is 

and learns it from the reinforcements 
provided by the world. 

b. There are no absorbing states in the real 
world. So, the robot has to learn when to 
stop performing a task in order to 
maximize expected reward. 

 Each “Reach” or “Pick” action is associated with a set of 
features that the robot has to process in order to derive the 
goal of the action and then to complete the given task. For 
example, “Reach” “Blue” will cause the robot arm to reach 
for a blue object in the blocks world if such an object 
exists.  
 As the number of features present in the world 
increases, the complexity of the system also increases. In 
order to restrict the system complexity, the number of 
features that can be processed with each action at a given 
point in time is here limited to two. 
 The Q-learning algorithm uses an abstract state space to 
learn the sensing and control policy. Each abstract state 
can be represented as a vector of predicates. In the blocks 
world domain, the vector of predicates constituting an 
abstract state consists of: 
-  Action Taken: This indicates what action was taken  
- Action Outcome: This indicates if the action was 

successful or unsuccessful.  
- Feature 1 and / or Feature 2: These are the features that 

were chosen by the robot to determine the control 
objective of the last action. 

- Feature Successful / Unsuccessful: This represents 
whether the feature combination used by the last action 
was found. 

- Arm Holding: This indicates what the arm is holding. 
For example: if the robot is in the start state s0 { “Null”, 
“Null”, “Null”, “Null”, “Null”, “Holding Nothing”} and 
takes action “Reach” and the features that formed the 
control objectives were color “Blue”  and shape “Square” , 
then the robot tries to reach for an object that has color 
“Blue” and has a “Square” shape. If the world contains an 
object with this feature combination then this action will 
lead to a new state and the vector of predicates for this 
state will have the value {“Reach”, “Successful”, “Blue”, 
“Square”, “Successful”, “Holding Nothing”} meaning that 
the action “Reach” for an object with features “Blue” and 
“Square” was successful and the feature combination 
“Blue” and “Square” was found. By the end of this action 
the arm is “Holding Nothing”. 
 Following are example tasks that were learned in the 
blocks world domain. 

Table Cleaning Task 
In this experiment there are a number of objects on the 
table top and the robot can move or pick up only one 
object at a time. The task is to learn a sensing and control 
policy that will allow the robot to reach, and pick up 
objects (that are movable) from the table, and then reach 
and drop these objects in a box. While learning a policy for 
the task, the robot also has to learn when to stop since 



there is no explicit information or feedback as to when the 
task is completed.  
 The robot has a cost associated with each action it takes 
and receives a small positive reward each time it picks up 
and drops an object from the table into the box. 
The blocks world has the following objects and features 
present on the table (as shown in Figure 2)  

1. Object 1: Texture 1, Square, Small. 
 

 
 
 
 
 
 
 
 
 
 

 
 
 
 

 
Figure 2. Table Cleaning Task Setup 

 
2. Object 2: Texture 1, Round, Medium. 
3. Object 3: Texture 2, Square, Medium. 
4. Object 4: Texture 3, Round, Small. 
5. Object 5: Texture 3, Square, Small. 

and a box (Texture 4, Rectangle, Big) in which all the 
objects are to be dropped. All the objects on table are 
movable or unmovable. Whether an object is movable or 
unmovable can only be determined by trying to pick it up 
at least once. The objects with size “Big” in world can not 
be picked up by the robot arm.  
 Once a particular object (suppose with feature “Texture 
1”) is dropped in the box it is no longer visible. If  the 
robot in state sx {“Pick”, “Unsuccessful”, “Texture 4”, 
“Null”, “Successful”, “Holding Nothing”} again tries to 
reach for an object with feature “Texture 1”. Then the 
“Reach” action will only be successful if there is another 
object with “Texture 1” on the table. Otherwise it will be 
unsuccessful since the features of the dropped object are 
no longer accessible to the feature extraction algorithm. 
 Starting from the derived abstract state representation, 
the system uses the learning component to learn the value 
function using the reward it receives each time a transition 
from state st to st+1 takes place. The robot starts out 
exploring the world by taking random actions (100 % 
exploration) and incrementally decreases its exploration 
using the Boltzmann “soft-max” distribution until it 
reaches a stage where the exploration is about 10 %. This 
amount of exploration is maintained to allow the system to 
visit different potentially new parts of the abstract state 
space even after it achieves a locally optimal policy. This 

is done in order to improve its performance by enabling it 
to learn a more global strategy. 
For the table cleaning task, 3 possible cases were 
considered: 

1. All objects on the table are movable 
2. Not All objects on table are movable:  A few 

objects on the table are movable and a few are 
unmovable. 

3. None of the objects on the table are movable. 
Case 1. Figure 3 shows the Learning curve for the table 
cleaning task when all objects on the table are movable. 

 
 
 
 
 
 
 
 
 
 

 
Figure 3.  Learning Curve Case 1 

The learning curve is plotted as a running average over 30 
steps and depicts the average of 10 learning trials. The 
intervals indicate one standard deviation. 

State Predicate Values 
S0 {“Null”, “Null”, “Null”, “Null”, “Null”, “Holding 

Nothing”} 
S1 {“Reach”, “Success”,  “Small”, “Null”,  “Success”, 

“Holding Nothing” } 
S2 {“Pick”, “Success”, “Small”, “Null” “Success”, 

“Holding Small”} 
S3 {“Reach”, “Success”, “Texture 4”, “Null”, 

“Success”, “Holding Small” } 
S4 {“Pick”, “Unsuccessful”, “Texture 4”, “Null”, 

“Success”, “Holding Nothing”} 
S5 {“Reach”, “Unsuccessful” “Small”, “Null”, 

“Unsuccessful”, “Holding Nothing”} 
S11 {“Stop, “Successful” “Null”, “Null”, “Null”, 

“Holding Nothing”} 

Table 1. States and Predicate Values 
 
Figure 4 shows a part of the control policy learned by the 
robot for case 1 of the table cleaning task. Table 1 shows 
the states and the predicate values for some of the states 
shown in Figure 4. Each arrow in the figure represents a 
possible result of the related action in terms of a transition 
from the old state to the new state of the world. The robot 
starts in state S0 and takes actions “Reach” “Small” to 
reach the object with size “Small” on the table, leading to a 
transition from state S0 to S1. If there is more than one 
object with size “Small”, then it randomly reaches for any 
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Figure 4.  Partially Learned Policy for Case 1 

one of those objects since the objects with the same size 
look similar. Then, from state S1 it takes action “Pick” 
“Small”, resulting in successfully picking up the object 
with size “Small” , leading to state S2.The arm then reaches 
for the box where it needs to drop the object using action 
“Reach” “Texture 4”,  leading to state S3. Finally, taking 
the action “Pick” “Texture 4” it drops the held object into 
the box, thus reaching state S4. From state S4 it again tries 
action “Reach” “Small” and if there are more objects with 
size “Small” then the states S1, S2, S3, S4 are repeated until 
all objects of size “Small” are dropped into the box. Once 
all the objects of size “Small” are dropped, taking action 
“Reach” “Small” results in a transition to a state S5. This 
transition tells the robot that there are no more objects with 
size “Small” on the table and thus helps the robot to shift 
its attention from the current feature “Small” to some other 
feature that can be used as a control objective for the 
actions to further clean the table. 
 Once the table is clean all the features except those in 
the box are unsuccessful. The robot learns that taking any 
more actions in the blocks world domain once the table is 
clean results in no reward. 
 This causes the robot to learn that “Stop” is the best 
action once the table is clean, thus maximizing expected 
reward for this task. 

Case 2.  In this case the blocks world contains the same 
number of objects as in case 1, however objects 2 and 3 on 
the table are not movable. Figure 5 shows the learning 
curve for this task. 
 In this case the robot learns a policy that results in the 
robot picking and dropping all the movable objects into the 
box. It learns to stop once all movable objects are dropped 
in the box, since it receives no reward for moving and 
trying to pick up the unmovable objects. The result is a 
partial cleaning of the table. 
 

 
 
 
 
 
 
 
 
 
 
 
 

 
Figure 5.  Learning Curve Case 2 

Case 3. Figure 6 shows the learning curve for this task 
when none of the objects on the table are movable.  
 

 
 
 
 
 
 
 
 
 
 
 

 
Figure 6.  Learning Curve Case 3 

 In this case the robot starts out by randomly exploring 
the world and soon learns that none of the objects on the 
table are movable. Thus, it learns to stop immediately 
instead of taking any other actions, since in this case the 
table can never be cleaned. 

Sorting Task 
In this task the robot has to learn a policy for sorting 
objects on the table into different boxes.  
 The blocks world has the following objects in the sorting 
task (shown in Figure 7): 

1. Object 1: Texture 1, Square, Small. 
2. Object 2: Texture 1, Round, Medium. 

and a box 1 (Texture 3, Rectangle, Big), box 2 (Texture 2, 
Rectangle, Big) in which all the objects are to be dropped. 
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The robot gets a reward when it drops  
a. an object having  features “Texture 1” and 

“Small” into box 1. 
b. an object having features “Texture 1” and 

“Medium” size into box 2. 
 
 
 
 
 
 

 
 
 
 
 

 
Figure 7. Sorting Task Setup 

 
Figure 8 shows the learning curve for this task. 
 

 
 
 
 
 
 
 
 
 
 
 
 

 
Figure 8.  Learning Curve for Sorting Task 

The robot successfully learns a policy that sorts the objects 
with features “Texture 1” and “Small” into box 1, and 
other objects into box 2, and stops once all the objects on 
the table are sorted. 
 In the above experiments the learning process requires 
between 50,000 and 200,000 steps to converge to an 
optimal policy. While this number might make large tasks 
intractable if all learning steps have to be executed by the 
robot (as was done in the experiments), the number of 
physical actions required could be substantially reduced by 
using real world experiences to build a model which, in 
turn, can be used for off-line learning steps to adjust the 
policy (Sutton 1990, 1991, Moore 1993). 

Conclusions and Future Work 
The results presented here illustrate that robots can learn 
task-specific control and sensing policies. This is achieved 
by using a mechanism for focus of attention that ties 
actions to perceptual features that form their control 

objective. This reduces the search space required by an 
online reinforcement learning algorithm to learn a policy. 
Here it was assumed that the next state only depends on 
the current percepts and actions, and not on any previous 
percepts. But in the real world there are many tasks which 
cannot be completed unless knowledge about past events is 
available. To address this we are currently extending the 
approach by incorporating short term memory to remember 
past events. In order for the short term memory to work 
effectively the robot not only has to learn control and 
sensing policies, but also a memory policy. The memory 
policy tells the robot what to remember and when to 
remember in order to successfully complete a task. 
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