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Abstract

We extend the basic axiomatization of interval convex rela-
tions by Allen and Hayes with unbounded intervals. Un-
bounded intervals include since intervals with a finite begin-
ning point and infinite ending point, until intervals with an in-
finite beginning point and finite ending point and the constant
alltime representing the whole time line, with both extreme
points being infinite. A number of results show the adequacy
of the axiomatization proposed; in particular, unbounded in-
tervals are proven to contain unbounded sequences of meet-
ing intervals extending towards the past and/or the future. Im-
portantly, the theory is proven to be consistent.

Introduction
The notion of time is inherent in many activities which
involve intelligence. Areas where time and, in particu-
lar, temporal repetition, are fundamental components in-
clude medical diagnosis, scheduling of classes and ecologi-
cal modeling. In particular, much work is devoted to deal-
ing with time where the intent is to formalize temporal ob-
jects, such as time intervals or points, and how they re-
late, often independent from what occurs during the ob-
jects themselves. Influential proposals of modelings for tem-
poral objects include (Allen 1983; Vilain & Kautz 1986;
Ladkin 1987; Ligozat 1991). A fundamental and inspiring
work about temporal intervals is that of Allen (Allen 1983;
Allen & Hayes 1989), which has given rise to very ex-
tensive research in temporal reasoning. Here we extend
the axiomatization of Allen’s interval algebra presented in
(Allen & Hayes 1989) with unbounded (or infinite) intervals.
Unbounded intervals increase expressibility in an interval-
based temporal theory; for example in the time theory de-
veloped in (Cukierman 2003) unbounded intervals are the
convexification of (i.e. they minimally cover) temporal ob-
jects representing infinite repetition. Thus, unbounded inter-
vals allow to refer to the interval covering the whole extent
of an infinite or non-ending process. More precisely, un-
bounded intervals allow that the convexification operation
be total and thus defined for both finite and infinite temporal
objects. For an intuitive example of expressiveness gained
with unbounded intervals, consider the sentence “The sun
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rises every day”. Assuming that there was one “first sun
rise” (after the Big Bang and the creation of the Earth) and
assuming that the sun will keep rising forever, the whole pe-
riod during which the sun rises over and over again would
be represented as a since interval. Very recently (Bouzid &
Ladkin 2002) suggests the inclusion of half infinite intervals
(corresponding to our unbounded intervals) in an algebra of
union of convex intervals. Infinite intervals are conceived
in the referred work for different reasons than the ones pre-
sented here. Furthermore, they do not deepen into how such
intervals would relate with others with Allen’s relations, and
rather, they are doubtful about such an extension. Here we
fully add unbounded intervals to the axiomatization of tem-
poral relations. Hence the two researches are complemen-
tary, while their research provides another example of an
area where our results are of interest. What we present in
this article is a sub-theory of a time theory developed in
(Cukierman 2003). In such theory structured temporal ob-
jects are defined, during which atemporal assertions are true
or false. The building blocks of the temporal terms are con-
vex intervals, unbounded intervals and qualitative convex
interval relations extending the axiomatization in (Allen &
Hayes 1989). In the present paper we define and character-
ize unbounded intervals and how they behave with respect to
all the basic convex interval relations. Several results show
the adequacy of the axiomatization proposed; the theory is
proven to be consistent. It is not a complete theory, inherit-
ing such characteristic from the axiomatization it is extend-
ing (Allen & Hayes 1989). We further analyze this below.

One can imagine that since and until intervals present a
“specular symmetry”; until intervals extend towards the past
and have a finite ending, since intervals have a finite begin-
ning and extend towards the future. The symmetry these two
type of unbounded intervals have is present in their axioms
and associated theorems. Due to space limitations and based
on this specular symmetry we mainly include results involv-
ing since intervals. Results about until intervals are specu-
larly symmetric. Also due to lack of space we only outline
some proofs of theorems and metatheorems. Full detailed
proofs of all the results included in this paper are developed
in (Cukierman 2003). We first present the axiomatization,
then results which follow from it and conclude with a dis-
cussion.



The axiomatization
We propose that when one (at least) in a pair of intervals
is unbounded, then only a subset of all possible Allen’s re-
lations is possible between the two. The definition of un-
bounded intervals and a characterization of such subset of
relations are specified in the axiomatization and explained
in detail next. The representation formalism used is first or-
der logic (FOL) with equality; sorts are identified with unary
predicates (referred to as sortal predicates). The logical con-

nectives have the usual precedence rules, where
∨

is used
for exclusive or. Convex (bounded) intervals are considered
as primitive objects; the sortal predicate identifying interval
terms is interval( ). We include within the interval sort three
kinds of unbounded intervals: the (one) constant alltime and
since and until intervals. The unary sortal predicates since( )
and until( ) respectively identify these (sub)-sorts of inter-
vals. The basic Allen’s convex interval relations are written
.b.,.m.,.s.,.d.,.o.,.f. and .eq. for before, meets, starts, dur-
ing, overlaps, finishes and equals respectively; inverse rela-
tions are written for example .b−1. for the inverse of before
(i.e. after). A set of relations represents the disjunction of
those relations in the set. For any single basic relation r, r
abbreviates {r} and for any set of basic relations S, not[S]
abbreviates its complement set with respect to all basic rela-
tions. The sortal predicate identifying Allen’s convex inter-
val relations is written as allen( ).

The time theory in (Cukierman 2003) includes reified
temporal relations. Syntactically, an expression which
would normally be regarded as propositional obtains the sta-
tus of term when reified in a first order theory, and it can
therefore be an argument to a predicate and/or be quantified.
Semantically, when a concept is reified it becomes an en-
tity. For the present (sub-)theory, reification is not strictly
needed. Hence, reification in this case should be only con-
sidered as an abbreviation of the non-reified notation. For
example, to express that the interval i is before or finishes
j we write related(i, j, {.b., .f.}) instead of something like
Before(i, j)

∨
Finishes(i, j). In passing, this provides a

more concise notation when we want to express disjunctions
like related(i, j, {.b., .m., .f., .s., .d.}).

The meets relation: Axioms M
′.1 to M

′.5.1

Our axiomatization is based on that of the relation meets and
the ordered sum of intervals (Allen & Hayes 1989), extended
to unbounded intervals. Axioms M ′.1, M ′.2, M ′.3, M ′.4
and M ′.5.1 correspond to axioms [M1],[M2], [M3], [M4]
and [M5.1] respectively in the referred publication; i.e., as
a naming convention our corresponding axioms add a prime
symbol. Axiom [M5.1] is a functional restatement of the ex-
istential form in Axiom [M5]. The choice between these two
forms of axioms is extensively discussed in (Ladkin 1987).
We include the functional version in our theory. This makes
our theory non-complete, but non-completeness also follows
from other more essential design decisions, as discussed be-
low, hence we keep the functional version [M5.1] for clarity
reasons. Axioms M ′.3 and M ′.5.1 include a variation with
respect to their corresponding Axioms [M3] and [M5.1] ex-
cluding unbounded intervals. Axioms M ′′.3 and M ′′.5.1

below (with two prime symbols in their names) constitute
the corresponding axioms for the unbounded interval cases.
Axioms M ′.1, M ′.2 and M ′.4 are a straightforward transla-
tion from their corresponding axioms [M1],[M2] and [M4];
in these axioms unbounded intervals falsify some condition
in the implication antecedents, making the whole formula
trivially true for those cases. The corresponding concepts to
axioms [M1],[M2] and [M4] for unbounded intervals follow
from Axioms i.1 to i.4 presented below.

All the basic Allen convex interval relations are express-
ible in terms of the meets relation, and this applies to un-
bounded and bounded intervals. This is proven in (Allen
& Hayes 1989) for bounded intervals and we prove it for
unbounded intervals. For example, the case of two since in-
tervals where one finishes the other is as follows1:

(since(s)
∧

since(s′)
∧

related(s, s′, .f.)) ⇔
(∃k, q. interval(k)

∧
interval(q)

∧

related(q, s′, .m.)
∧

related(q, k, .m.)
∧

related(k, s, .m.)∧
(∀i. interval(i) ⊃ ¬related(s, i, .m.))∧
(∀i. interval(i) ⊃ ¬related(s′, i, .m.)))

This case is illustrated in Figure 1.
Thus, given that all the axioms ultimately are express-

ible with the meets relation and that such relation is axiom-
atized for both unbounded and bounded intervals (with ax-
ioms named M ′, M ′′ and i), so are all Allen’s basic relations
in this axiomatization.

q sk

q s’

Figure 1: Expressing the finishes relation between two since in-
tervals in terms of meets.

Axioms [M.1] to [M.5.1] and their translations follow.
The notation from (Allen & Hayes 1989) is kept when refer-
ring to their axioms, where “:” represents the relation meets,
except that we write “

∧
” instead of “&” for conjunction.

Axiom [M1] states (where i, j, k, l are intervals):
[M1] ∀i, j, k, l. ((i : j)

∧
(i : k)

∧
(l : j)) ⊃ (l : k).

The intuition of this axiom is that the “place” where two
intervals meet is unique. In the present formalization this
axiom is expressed as:

M
′.1 ∀i, j, k, l. (interval(i)

∧
interval(j)

∧
interval(k)∧

interval(l)
∧

related(i, j, .m.)
∧

related(i, k, .m.)∧
related(l, j, .m.)) ⊃ related(l, k, .m.)

Given that unbounded intervals may not meet or be met by
other intervals this translation does not apply to unbounded
intervals extreme points (although this axiom is trivially
true in the case of unbounded intervals because of a false
antecedent). Yet, uniqueness of such infinite points (even
though they are not directly formalized) is a consequence of
Axioms i.1 to i.4 presented below.

Axiom [M2] ensures that meeting places are totally or-
dered. The exclusive-or connective is used in the referred

1Notice that this is not one of the axioms we have chosen for
our system (although it is consistent with them). Rather, this is
one formula showing how the relation finishes is expressible purely
based on the meets relation, when involving unbounded intervals.



publication (⊕, their notation). The intent is that exactly one
of three possibilities is true for the meeting points of inter-
vals i and j, and k and l. We straightforwardly translate
this axiom in two axioms: Axiom M’.2 and Axiom M’.2.1.
Only Axiom M’.2 is included here2. Similarly to Axiom
M ′.1, this translation does not apply to unbounded intervals
extreme points (although this axiom is trivially true in such
case). The ordering of such infinite points with respect to fi-
nite points is a consequence of Axioms i.1 to i.4, see below.
[M2] ∀i, j, k, l. ((i : j)

∧
(k : l)) ⊃ ((i : l) ⊕ (∃q. (i : q :

l)) ⊕ (∃r. (k : r : j))).

M
′.2 ∀i, j, k,l. (interval(i)

∧
interval(j)

∧

interval(k)
∧

interval(l)
∧

related(i, j, .m.)
∧

related(k, l, .m.)) ⊃
(related(i, l, .m.)

∨

(∃q. (interval(q)
∧

related(i, q, .m.)
∧

related(q, l, .m.)))
∨

(∃r. (interval(r)
∧

related(k, r, .m.)
∧

related(r, j, .m.))))

Axiom [M3] in (Allen & Hayes 1989) specifies that given
any interval, there is always an interval immediately before
and an interval immediately after such any interval. Un-
bounded intervals may not have an interval immediately be-
fore nor immediately after like any “normal” interval does.
Hence the translation of Axiom [M3] must take this into ac-
count. We do this in two “steps”. We exclude unbounded
intervals from the otherwise straightforward translation of
Axiom [M3] (Axiom M ′.3) and we add an additional ax-
iom (Axiom M ′′.3 below) to specify how each type of un-
bounded interval is restricted with respect to the meets re-
lation (this technique is also used for the translation of Ax-
iom [M5.1] below). Axiom [M3] is as follows:
[M3] ∀i.∃j, k. (j : i : k), which we translate (excluding
unbounded intervals) as:

M
′.3 ∀i. (interval(i)

∧
¬unbounded interval(i)) ⇔

∃j, k. (interval(j)
∧

interval(k)
∧

related(j, i, .m.)
∧

related(i, k, .m.)).

Axiom [M4] in (Allen & Hayes 1989) specifies the
uniqueness of meeting points.
[M4] ∀j, k. ∃i, l. ((i : j : l)

∧
(i : k : l)) ⊃ j = k. The

translation is not included here due to space limitations but
it is analogous to the translation of Axiom [M1].

Similarly to Axioms M ′.1 and M ′.2, Axiom M ′.4 does
not apply to unbounded intervals since they may not have a
meeting or met by interval. Again, in such cases this axiom is
trivially true. On the other hand, equality among unbounded
intervals (or their corresponding extreme points) is not left
undefined and it follows from Axioms i.3 and i.4.

Axiom [M5] in (Allen & Hayes 1989) guarantees the
existence of a union or ordered sum interval of two meeting

2Substituting the or connective (
∨

) in Axiom M
′
.2 by an ex-

clusive or would not accomplish expressing disjointedness; the ex-
clusive or connective will accomplish this in the case of two logi-
cal subformulas, but not when the formula involves more than two
subformulas. Hence we propose separate axioms to this effect.
For example, to express that exactly a or b or c is true we have
(a

∨
b
∨

c) and (a ⇔ (¬b
∧

¬c)) and so on.

intervals. Axiom [M5.1] (also in the referred publication) is
the corresponding functional version, including the union or
ordered sum functor (written +).

[M5] ∀i, j. (i : j) ⊃ (∃k. ∀m, n. (m : i : j : n)
∧

(m : k : n))
[M5.1] ∀i, j. (i : j) ⊃ (∃m, n. (m : i : j : n)

∧

(m : (i + j) : n))

These axioms make use of auxiliary intervals which are
guaranteed to exist in case of “normal” (i.e. bounded) in-
tervals by Axiom [M3]. Given the restrictions with respect
to the meets relation for unbounded intervals, we need to
consider the ordered sum of intervals only for those cases
when unbounded intervals meet or are met by other intervals
and without using such auxiliary intervals. Hence, we trans-
late Axiom [M5.1] straightforwardly into Axiom M ′.5.1,
but similarly to Axiom [M3] we exclude unbounded inter-
vals. Axiom M ′′.5.1 below additionally specifies how the
ordered sum is defined when involving unbounded intervals.

Composition of relations holds in our axiomatization
analogously as it holds in Allen and Hayes’ axiomatization.
For example from related(i, j, .m.)

∧
related(j, k, .b.) it

follows that related(i, k, .b.). Some cases of composition
will not be possible when involving unbounded intervals,
but this only is falsifying antecedents in implications, hence
there is no special consideration needed for unbounded in-
tervals in these cases. The equality relation (.eq.) can be
considered as the logical symbol “=” (for which the equal-
ity axioms hold) and it can also be defined for bounded in-
tervals by Axiom [M4] (whose corresponding translation is
M ′.4 here) if strengthened to a biconditional (see (Allen &
Hayes 1989), page 228). Equality of unbounded intervals is
axiomatized as part of Axioms i.1 to i.4, M ′′.3 and M ′′.5.1.

Unbounded intervals axioms

Axiom names prefixed with “i”, i.1 to i.4 below axiomatize
unbounded intervals with respect to the start and finishes re-
lations (.s., .f.). We use these relations to make it more intu-
itively clear how the infinite points where unbounded inter-
vals start or finish are involved (even though such points are
not explicitly defined). Recall however that all of Allen’s
relations are expressible in terms of the meets relation, re-
gardless of the intervals being unbounded or not, hence these
axioms could be so expressed.

As well, we include axioms whose names are prefixed
with “M ′′”, M ′′.3 and M ′′.5.1. These axioms correspond
to unbounded intervals as they relate with the meets rela-
tion and ordered sum, and thus they complement the ax-
iomatization of unbounded intervals. They also complement
the meets relation axioms above (Axioms M ′.1 to M ′.5.1)
which were restricted to apply to bounded intervals.

Axioms i.1.a and i.1.b define unbounded intervals as
three different (and disjoint) terms: a constant alltime and
two sub-sorts of unbounded intervals: since and until.
(The two axioms, a and b, are imposed given the nature of
exclusive disjunction, only axiom a is included here.)



i.1 unbounded intervals

a. ∀w. unbounded interval(w) ⇔ (interval(w)
∧

(w = alltime
∨

since(w)
∨

until(w))).

Axiom i.2.a states that every interval is .in. alltime, and
that “.in.” is the only relation any interval may relate with
this unbounded interval, where .in.= {.d.,.eq.,.s.,.f.}. Ax-
iom i.2.b states that the only intervals that finish (.f.) alltime
are since intervals and the only intervals that start (.s.) all-
time are until intervals. See Figure 2 for a graphic illustra-
tion. Axioms i.2.a and i.2.b are not included here due to lack
of space.

alltime
i

k1
since1

since2
k2

until1
q1

until2

until1+q1

until1+since1

q2

k1+since1

Figure 2: Graphical layout of one consistent scenario involving
unbounded intervals.

Axiom i.3.a states that those intervals that finish, are fin-
ished by or equal a since interval are since intervals and
since intervals finish alltime. Axiom i.3.b states that two
since intervals only relate with the relations finish, finished
by or equal. Intuitively, they have the same infinite ending
point and may or may not have the same beginning point.
Axiom i.3.c states that since intervals and alltime are the
only intervals to relate with the relations finish, finished by
or equal with a since interval. Refer to Figure 2. Symmet-
rically to Axiom i.3, Axiom i.4 specifies how until intervals
relate. Axiom i.3.a is included next.

i.3 since

a. ∀w, j. (since(w)
∧

interval(j)) ⊃
((related(j, w, .f.) ⊃ since(j))

∧

(related(j, w, .f−1.) ⊃ (since(j)
∨

j = alltime))
∧

(related(j, w, .eq.) ⇔ j = w))

Axiom M ′′.3.a states that there exists an interval meeting
any since interval and there exists an interval met by any
until interval. Axiom M ′′.3.b states that no interval is met
by a since interval and that no interval can meet an until
interval. Note that the intervals meeting a since interval or
those met by an until interval may be unbounded or not.
Observation 1 then shows that no interval can meet or be
met by alltime. Hence we have completely described how
unbounded intervals behave with respect to the relation
meets (.m.).

M′′.3 unbounded intervals and meets
a. ∀s, u. (since(s)

∧
until(u)) ⊃

∃k. interval(k)
∧

related(k, s, .m.)
∧

∃q. interval(q)
∧

related(u, q, .m.)
b. ∀s, u, i. (since(s)

∧
until(u)

∧
interval(i)) ⊃

related(s, i, not[.m.])
∧

related(i, u, not[.m.]))

A note about unboundedness Axiom M ′′.3 states that
since intervals are bounded towards the past and unbounded
towards the future and symmetrically until intervals are
bounded towards the future and unbounded towards the past.
This notion of boundedness is based on the existence or not
of a meeting or met by interval. It is akin to the notion of
number sequences being bounded by a number in the math-
ematical analysis realm.

The next observation follows from Axiom i.2: alltime is
unbounded towards both the future and the past:

Observation 1 (Alltime and meets) ∀i. interval(i) ⊃
¬related(i, alltime, {.m., .m−1.})

The ordered sum involving unbounded intervals is re-
stricted to those cases where unbounded intervals can meet
(according to Axiom M ′′.3 and Observation 1). Hence the
ordered sum involving unbounded intervals is defined when
an until interval meets a since interval (Axiom M ′′.5.1.a), an
until interval meets a bounded interval, and when a bounded
interval meets a since interval (Axioms M ′′.5.1.b and c re-
spectively). Axioms a and b are presented next.

M′′.5.1 unbounded intervals ordered sum
a.since and until
∀i,j. (until(u)

∧
since(s)) ⊃

(related(u, s, .m.) ⊃ u + s = alltime)
b. since and bounded
∀i,j. (since(s)

∧
interval(i)

∧
¬unbounded interval(i)) ⊃

(related(i, s, .m.) ⇔
(∃w. interval(w)

∧
w = i + s

∧
since(w)

∧

(∀q. (interval(q)
∧

related(q, i, .m.)) ⊃
related(q, i + s, .m.))))

Results
We include some of the results proven in this theory. The
next theorem intuitively states that the (infinite) ending point
of since intervals and of alltime is unique. It essentially fol-
lows from Axioms i.2 and i.3. Symmetrically the (infinite)
beginning point of until intervals and of alltime is unique 3.

Theorem 1 (Infinite ending point of unbounded intervals)

∀w1, w2, w3. ((since(w1)
∨

w1 = alltime)
∧

interval(w2)
∧

interval(w3)) ⊃
((related(w1, w2, {.f., .f−1., .eq.})

∧

related(w1, w3, {.f., .f−1., .eq.})) ⊃
related(w2, w3, {.f., .f−1., .eq.}))

The next theorem states that no unbounded interval can
start nor be started by a since interval. Recall that an interval
starts another (.s.) when they have the same beginning point

3Recall that two intervals related with the finishes or equality
relations have the same ending point.



and the former ends before the latter. The proof relies of
Axioms i.1 to i.4.

Theorem 2

∀i, w. (unbounded interval(i)
∧

since(w)) ⊃
¬related(i, w, {.s., .s−1.})

Proof outline If i is a unbounded interval, it can be alltime,
an until or a since interval (those are the only three possibil-
ities for a unbounded interval, Axiom i.1). Alltime cannot
start nor be started by a since interval: given Axiom i.3
any since interval finishes alltime. An until interval cannot
possible either start nor be started by a since interval: given
Axiom i.4 an until interval only starts another until interval
and alltime. The only possibility left is that i is a since
interval. But a since interval finishes, is finished by or is
equal to a since interval (Axiom i.3.b). Hence i cannot be a
unbounded interval and also start or be started by a since
interval

We next introduce the concept of a temporal term sub-
component. More results about unbounded intervals involve
their subcomponents and are presented after this definition.
We refer to those intervals “in” an interval as subcomponents
of the interval maintaining the terminology from the whole
theory in (Cukierman 2003). We write subc(t′, t) when t
and t′ are intervals and t′ is a subcomponent of t.

Definition 1 (Interval subcomponents)
∀i, i′. (interval(i)

∧
interval(i′)) ⊃ (subc(i′, i) ⇔

related(i′, i, .in.)).

Unbounded intervals are related to their subcomponents
next. What we prove is essential in the sense that it reflects
the very nature of unbounded intervals and thus confirms the
adequacy of our theory. We first show that every interval is
a subcomponent of alltime, whereas any bounded interval is
strictly contained in alltime. As a corollary we prove that
the ordered sum of two bounded intervals is contained in
alltime. This corollary intuitively proves that any finite point
(meeting point of two bounded intervals) is after the infinite
point beginning alltime and before the infinite point ending
alltime.

The next theorem follows from Axiom i.2.a and it outlines
an essential result: those intervals whose existence is guar-
anteed (meeting or met by any interval subinterval of all-
time) are also subintervals of alltime, thus reflecting that all-
time extends towards “the future”. Symmetrically we prove
that alltime extends towards the past. With an analogous for-
mulation we also prove that since intervals extend towards
the future and until intervals extend towards the past.

Theorem 3 (Alltime - extending towards future)

∀i. (interval(i)
∧
¬(unbounded interval(i))) ⊃

(∃j. (interval(j)
∧

subc(j, alltime)
∧

related(i, j, .m.)))

More about unboundedness The previous theorem
(Theorem 3) and the analogous for alltime extending to-
wards the past and those for since and until intervals re-
flect unboundedness of the intervals based on containing un-
bounded sequences of meeting intervals. However a distinc-
tion should be made in this respect. In the case of discrete

models there are intervals which are non-decomposable (re-
ferred to as time moments in (Allen & Hayes 1989)), there-
fore an infinite sequence of such meeting intervals is un-
bounded. An infinite sequence of meeting intervals in a
continuous model could be such that the length of intervals
shortens as it “evolves” towards the future, and hence there
would exist a bound to such sequence (an interval which
is after all those intervals). Certainly, as the previous the-
orem shows, in both cases all the intervals in the meeting
sequences are contained in the unbounded interval. Further-
more, the case when the sequence of meeting intervals may
be bounded does not contradict the fact that unbounded in-
tervals are indeed unbounded (which is guaranteed by Ax-
iom M ′′.3). This rather indicates that these theorems do not
necessarily reflect unboundedness (of sequences) but rather
containment of any sequence of intervals extending towards
the past and/or future, as explained.

The next two theorems summarize how since intervals can
relate with respect to another interval (unbounded or not),
considering all the 13 Allen basic relations. Theorem 4 es-
tablishes that a since interval can only be after, met by or
overlapped by an until interval. Theorem 5 shows how a
since interval relates with a bounded interval. Symmetric
results are proven for until intervals. See Figure 2.

Theorem 4 ∀u, s. (until(u)
∧

since(s)) ⊃
related(u, s, {.b., .m., .o.})

Theorem 5 (since and bounded interval)

∀w, i. (since(w)
∧

interval(i)
∧
¬unbounded interval(i)) ⊃

(related(i, w, {.b., .m., .o., .s., .d.})
∧

¬related(i, w, not[{.b., .m., .o., .s., .d.}]))

Consistency of the theory
We prove the consistency of the whole theory in (Cukierman
2003) in two separate parts. This proof applies to the sub-
theory presented here. The first part proves the consistency
of all axioms based on the PC-transform method (Hughes &
Cresswell 1968). The second part of the proof deals with the
subset of axioms and definitions involving reified relations,
which given the nature of the PC-transform method are not
checked to be consistent in the general proof.

In (Hughes & Cresswell 1968) a method is presented to
check consistency of propositional and predicate modal sys-
tems. The method is based on PC-transforms. For every
formula in the language it is possible to construct its asso-
ciated PC-transform such that the detail of modal operators,
quantifiers and predicates arguments is lost. The mentioned
method applies to us in the following way: the classic first
order inference rules are already proven to be preserved with
the transformation in (Hughes & Cresswell 1968). Using
Allen’s constraint propagation algorithm (which we use in
our theorems proofs) amounts to applying first order classi-
cal inference rules. In (Cukierman 2003) we prove that the
PC-transformed axioms are consistent, thus our (original)
system is proven to be consistent.

Our theory also includes axioms dealing with reified re-
lations, but the consistency proof loses the information nec-
essary to check their consistency as it eliminates the predi-
cates arguments. Hence, additionally and independently of



the general PC-transform based proof we prove the consis-
tency of those axioms involving reified propositions (i.e. in-
volving the related predicate). We use an interval constraint
propagation algorithm to do this. We input the intervals and
relations involved in those axioms to a constraint propaga-
tion algorithm (Kautz 1991). This problem is of a very small
size (13 intervals), where for example 1 interval represents
a generic bounded interval. Allen’s (polynomial run time)
propagation algorithm is not complete for the full interval
algebra if relations involve more than three intervals (Allen
1983). However, since the problem size is very small, we
graphically represented a consistent scenario given the re-
sults from the propagation algorithm, and indeed found a
consistent scenario. Thus we corroborated the correctness of
the result provided by the algorithm and hence the correct-
ness of the proof. We do not claim that this problem belongs
to any specific tractable sub-algebra, but again, this is not
affecting us given the size of the problem. See Figure 2.

Models for the theory

Axioms [M1] to [M5] (and [M5.1]) characterize (convex
finite) intervals and Allen’s relations and allow for both dis-
crete and continuous models (Allen & Hayes 1989). With
such axioms, moments are not formally distinguished as dif-
ferent from intervals, but they would intuitively correspond
to some intervals in discrete models, such that they are non-
decomposable or likewise they are of the minimal length
possible in the model. This is what we opt for as well,
by translating axioms [M1] to [M5] in the referred publi-
cation and then adding axioms applying to unbounded in-
tervals. In choosing this axiomatization and having both
continuous and discrete models our theory inherits the non-
completeness of Allen’s and Hayes axiomatization. There
are models to their and our theory which are not isomorphic
differing in the density property. (Ladkin 1987) extensively
deals with this issue and proposes a complete theory as well
as a completion of Allen and Hayes’ theory having only con-
tinuous models. We have chosen to extend Allen and Hayes
for expressivity reasons and leave for future work extending
a complete theory such as what is proposed by Ladkin.

One discrete model of our theory and including un-
bounded intervals would have intervals interpreted as pairs
of integers n1, n2 ∈ Z, 〈n1, n2〉, where n1 < n2. When
n2 = n1 + 1 the interval is non-decomposable. 〈n1, n2〉
meets 〈n2, n3〉. The constant alltime is interpreted as the in-
terval 〈−∞,∞〉, a since interval is interpreted as 〈n,∞〉 for
some integer number n and 〈−∞, n〉 is the interpretation
of an until interval. A continuous model would be analo-
gous to the previous one except that the interval extremes are
for example rational numbers and there would not be non-
decomposable intervals. Certainly these models also show
the consistency of the sub-theory presented in this article.

Points are defined in (Allen & Hayes 1989) based on Ax-
ioms [M1] to [M5] with additional definitions. We do not
include such in this theory nor do we include axioms about
moments comparable to Allen and Hayes’ Axiom [M6]. We
leave this as future work.

Discussion
We have extended the basic axiomatization of interval con-
vex relations (as presented in (Allen & Hayes 1989)) to take
unbounded intervals into account. We use finite convex in-
tervals as primitive objects. Unbounded intervals are de-
fined; they include until intervals, since intervals and the
constant alltime. A number of results show the adequacy
of the axiomatization proposed; in particular, unbounded in-
tervals are proven to contain unbounded sequences of meet-
ing intervals extending towards the past and/or the future.
Furthermore, in (Cukierman 2003) unbounded intervals are
proven to be the limit of some temporal terms representing
repetition, paralleling the notion of limit of unbounded num-
ber series in the Mathematical Analysis realm.

Very recently, (Bouzid & Ladkin 2002) suggest the in-
clusion of half infinite intervals in an algebra of union of
convex intervals. These half infinite intervals correspond to
our since and until intervals. However, they do not deepen
into how such intervals would relate with others with Allen’s
relations, and rather, they are doubtful about such an exten-
sion. Here we fully add unbounded intervals to the axioma-
tization of temporal relations. Hence their and our research
are complementary, while their research provides an exam-
ple of an area where our results are of interest.

Future work includes studying the minimality of the ax-
iomatization. It would also be interesting to explore other
possible models, applications and parallels to other for-
malisms aside from the intended models which inspired it.
As well, an analogous extension with unbounded intervals to
the (complete) theory for convex interval relations presented
in (Ladkin 1987) would be interesting to pursue.
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