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Abstract
Within the geographic domain, an important class of
problems relies on geometric abstractions in the form of lines
where, for instance, transportation networks and trajectories
of movements are typically perceived or modeled at such a
generalized geometric level. To support querying and
computational comparisons, oftentimes multi-resolution
models are needed to guide users from coarser to finer
details. Within such a setting topological properties are
coarse spatial information, whereas metric refinements offer
finer details. The 9-intersection distinguishes 33 topological
relations between two lines. This paper develops a model that
captures metric details for line-line relations through splitting
ratios, which are normalized values of lengths and areas of
intersections. These ratios apply to the 9-intersection’s non-
empty values, thereby providing refinements of topological
properties. Three such splitting ratios comprehensively refine
30 of the 33 topological relations: one for the lengths of
common paths, one for the partitioning of lines through
intersections, and another one for the areas enclosed by two
lines with two or more common components. For the
remaining three relations—disjoint, meet, and equal—no
further metric refinements based on common parts are
possible. The splitting ratios are integrated into a compact
representation of detailed topological relations, thereby
addressing topological and metric properties of arbitrarily
complex line-line relations.

Introduction
Modern GISs still rely heavily on quantitative descriptions
of spatial objects and phenomena, both for storage and
querying. There is significant evidence, however, that
people think of space and communicate about spatial
concepts using qualitative rather than quantitative terms
(Lynch 1960; Hernández 1994; Regier 1995). An example is
the approximate way in which people communicate
directions to one another (i.e., the church is inside the
square, which is a couple blocks down and to the left). The
persistence on the classic quantitative paradigm renders GIS
packages usable only by professionals or sophisticated users
who often receive extensive training so that they become
proficient in the formalizations of underlying spatial data
models and their terminology. Non-expert users typically
feel alienated, since they lack the necessary background and
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the technical jargon needed to comprehend and employ
these tools, even for relatively simple tasks such as way-
finding or spatial querying in order to find objects of interest
around them.

Recent studies addressed the lack of commonsense
formalizations of geographic knowledge in computers, by
proposing formal and sound theories that allow reasoning
about spatial relations, primarily in a qualitative manner
(Egenhofer and Franzosa 1991; Randell et al. 1992). One
such developed theory is the 9-intersection model
(Egenhofer and Herring 1990), which focuses on binary
topological relations between two regions, two lines, and a
region and a line. The 9-intersection can be seen as one of
the seminal efforts to incorporate Naive Geography
concepts and reasoning into GISs (Egenhofer and Mark
1995). The internal representations of spatial relations and
the mathematical operations that take place within this
model are transparent to users, who are able to formulate
queries by employing spatial predicates that correspond to
natural-language terms such as inside or overlap, and also
receive answers in a similar fashion.

The prominence of topology in the 9-interesection as the
most critical aspect that people refer to when assessing
spatial relationships in geographic space, has been
confirmed by experiments in psychology and cartography
(Lynch 1960; Stevens and Coupe 1978; Mark 1992). A
critical factor that reinforces this view is that errors about
spatial relations in human cognition are typically of metric,
rather than topological nature (Tversky 1981; Talmy 1983).
Despite its importance, however, topology per se is often
insufficient in addressing people’s needs. Metric
details—though considered to be of lesser importance—are
still required to capture the essence of spatial relations. Such
circumstances arise when topology-based results to
queries—even though exact—are underdetermined (i.e., do
not provide enough detail so as to help accomplish the task
at hand). Typical situations of the usefulness of metric
enhancements are exemplified by people’s tendencies to
occasionally complement qualitative with quantitative
information in order to resolve ambiguities in the
description of spatial scenes. To reflect better human
behavior, geographic information systems that rely on
models such as the 9-intersection, need to incorporate
mechanisms that will allow metric, in addition to the
topological inferences among spatial entities. We follow the
premise that topology matters, while metric refines



(Egenhofer and Mark 1995); hence, the metric
enhancements, should be viewed only as extensions and
supplements to the theory and not as the core of a qualitative
geographic information system.

This paper focuses on binary relations between linear
objects. The intent is to develop a comprehensive model for
capturing metric details about such relations. Examples of
entities that people often conceptualize as lines include road
networks, sewer systems, rivers and streams, irrigation
networks, aerial navigation routes, and satellite orbits. The
critical components for line-line relations are the interiors
and boundaries of the lines (Egenhofer 1994). When the
interior or boundary of one line interacts with either the
interior or boundary of the other line, certain metric
properties can be captured about this interaction. For
instance, a line may cross the interior of another, thus
separating it into two distinct segments, the length of which
could be measured. Purely quantitative measures, however,
are undesirable because they do not take into consideration
the relation to the objects for which they were derived. To
describe details about topological relations, we consider the
metric concept of splitting, which determines how a line’s
interior and exterior are partitioned by the other line’s
interior or boundary. Splitting ratios are normalized (i.e.,
scale-independent) values with respect to metric properties
of line relations, such as the lengths of common parts or the
area enclosed by two lines. These splitting ratios of line-line
relations complement the metric refinements identified for
region-region relations and line-region relations (Egenhofer
and Shariff 1998).

The remainder of this paper presents in detail the
topological and metric models used to specify the geometry
of spatial relations. Section 2 summarizes briefly the main
concepts of the 9-intersection model, such as intersections
and components, focusing on topological relations between
linear objects as well as topological properties that
characterize such relations. Section 3 introduces the
rationale for splitting ratios and defines three types of line-
splitting ratios: line alongness, interior splitting, and exterior
splitting. Section 4 integrates such metric information into
the same tabular representation that was used for the 9-
intersection-based detailed topological relations (Clementini
and di Felice 1998), yielding a metrically enhanced
classifying invariant. Section 5 discusses conclusions.

Topological Measures for Line-Line Relations
The 9-intersection model (Egenhofer and Herring 1990)
provides a comprehensive framework for the description of
topological relations between objects of type area, line, and
point. The topological relation between two point sets, A
and B, is characterized by the binary value (empty, non-
empty) of the set intersections of A ’s interior (

€ 

A° ),
boundary (

€ 

∂A ), and exterior (

€ 

A− ), with the interior,
boundary, and exterior of B (Equation 1).

The content of the set intersections is a topological
invariant (i.e., a topological property that is preserved under
topological transformations such as rotation, scaling, and

€ 

I (A,B) =

A°∩B° A°∩∂B A°∩B−

∂A∩B° ∂A∩∂B ∂A∩B−

A− ∩B° A− ∩∂B A− ∩B−

 

 

 
 
 

 

 

 
 
 

(1)

skewing). With nine set intersections and two possible
values for each, the model distinguishes 512 possible
topological relations, some of which cannot be realized
depending on the dimension of the objects and the
dimension of the embedding space. Those that cannot be
realized are eliminated through a set of consistency
constraints (Egenhofer and Franzosa 1991; Egenhofer
1994). One that applies to line-line relations, for example, is
that the intersection of the exteriors of two lines in R2 can
never be empty. Eliminating impossible relations through
constraints results in a set of 33 relations that can be realized
between simple linear objects in R2 (i.e., lines with exactly
two boundary nodes and without any self-intersections).
These relations are the focus of this work. The content
invariant, although attractive due to its simplicity, is a
coarse measure, incapable of differentiating situations that
people often do. For example, the two spatial configurations
in Figure 1 are distinct, while they are represented by the
same 9-intersection matrix; therefore, in order to capture
such finer details one has to consider additional invariants.
Early work for invariants of line-line relations suggested
using the type of interior intersections (touching or crossing)
as an invariant (Herring 1991). Egenhofer and Franzosa
(1995) developed a set of invariants that help establish
topological equivalence between a model representation and
a spatial configuration for region-region relations. Based on
this model, Clementini and di Felice (1998) derived a
complete set of invariants for line-line relations.

(a) (b)
Figure 1: Two configurations with different numbers of
components.

An important invariant is the number of components. A
component of a set Y is the largest connected (non-empty)
subset of Y (Egenhofer and Franzosa 1995). Whenever any
of the nine set intersections is separated into disconnected
subsets, these subsets are the components  of this set
intersection. Hence, any non-empty intersection may have
several distinct components, each of which may be
characterized by its own topological properties. The number
of components of an intersection is denoted by 

€ 

# (A∩B) .
For example, for the relation of Figure 1a, 

€ 

# (L1°∩L2°) = 1 ,
whereas for Figure 1b, 

€ 

# (L1°∩L2°) = 2 . In addition, for
Figure 1b, Co is a 0-dimensional component, whereas C1 is a
1-dimensional component. An obvious dependency between
the content and the component invariants is that any empty
intersection has zero components, and every non-empty
intersection has at least one component.



Splitting Measures
Splitting determines how a line’s interior is divided by
another line’s interior or boundary. A special case of
splitting pertains to the separation of the common exterior of
the lines into bounded and unbounded components. To
describe the degree of splitting, the metric concepts of the
length of a line and the area of a bounded exterior are used.
Among the entries of the 9-intersection for two simple lines,
there are five intersections—between two boundaries,
between boundary and interior, and between boundary and
exterior—that cannot be evaluated with a length or area
measure, because these intersections are 0-dimensional
(Table 1). The intersection of the two interiors can be
evaluated with a length measure only when it is 1-
dimensional. The two intersections of one line’s interior
with the other line’s exterior are always 1-dimensional when
not empty. The intersection of the exteriors of the lines is
always 2-dimensional.
Table 1: Area and Length Measures applied to the nine
intersections of two lines.

€ 

L2°

€ 

∂L2

€ 

L2
−

€ 

L1°

€ 

length(L1°∩L2°) —

€ 

length(L1°∩L2
− )

€ 

∂L1 — — —

€ 

L1
−

€ 

length(L1
− ∩L2°) —

€ 

area(L1
− ∩L2

− )

To normalize the length of the common interior we
compare it with the length of L1 (or the length of L 2). The
length of the intersection between L 1’s interior and L 2’s
exterior is normalized by the length of L1. Similarly, the
length of the intersection between L 2’s interior and L 1’s
exterior is normalized by the length of L 2. The area of a
bounded exterior is normalized by the area of a circle whose
perimeter is equal to the sum of the lengths of the two lines.
Such a circle encloses the largest bounded exterior area that
two lines can form.

Two simple lines may form a topological configuration of
arbitrary complexity with multiple components of the same
or different intersection types; therefore, the metric
refinements in the form of the splitting measures operate at
the component level so as to help us describe adequately the
different metric properties of each component. For instance,
for the configuration of Figure 2a we calculate the metric
properties separately for each intersection between the
interiors of the lines. A global measure that would rely on
the sum of all common interior segments would not help
distinguish between the two topologically equivalent
configurations depicted in Figures 2a and 2b.

 (a) (b)
Figure 2: A global metric measure instead of one based on
components would fail to add any refinement between the two
topologically equivalent configurations.

Line Alongness
In order to consider line alongness, the intersection of the
interiors of two lines must be non-empty (

€ 

A°∩B° = ¬∅ )
and 1-dimensional. The interior of one line interacts with
the interior of the other such that each line is separated into
two sets of line parts: line segments that are in the common
interior (i.e., common interior components) and line
segments that are in the exterior of the other line. This
separation makes a 1-dimensional object split another 1-
dimensional object into two or more 1-dimensional parts
(Figure 3).

Figure 3. Line Alongness: the common interior separates each line
into parts of inner and outer segments (more complex
configurations may have multiple components in the intersection
of the line interiors).

As the measure for the separation we employ the notion
of the line alongness ratio (LA) as the ratio between the
length of the common interior and the length of a line. There
are two possible ratios: one with respect to the length of L1
and another with respect to the length of L 2 (Equation 2).
The range of the line alongness ratio is 

€ 

0 ≤ LA ≤ 1 . When
the common interior segment degenerates to a point, LA
reaches 0. If L1 is entirely contained within the interior of L2,
then LA1 becomes 1, and the same occurs for LA2, when L2
is entirely contained within the interior of L1. If both L A1
and L A2 are 1, then the lines are equal. For arbitrarily
complex configurations with multiple interior-interior
intersections, a separate measure of line alongness is derived
for each component.

€ 

LA =
length(Li°∩L j°)

length(Li )
 

€ 

with i, j ∈ {1,2},i ≠ j (2)

Interior Splitting
If the interior or boundary of one line interacts with the
interior of the other line, it separates the interior into left and
right line segments according to some predetermined
orientation. This involves a 1-dimensional object (i.e.,
common interior segment) or a 0-dimensional object (i.e.,
interior or boundary point) splitting a 1-dimensional object
into two 1-dimensional parts, both of which intersect with
the exterior of the splitting line (Figure 4).

 (a) (b)
Figure 4. Interior Splitting: (a) one line’s interior separates the
other line’s interior into two parts (the common interior could also
be 1-dimensional) and (b) one line’s boundary separates the other
line’s interior into two parts.



In order to consider interior splitting, the intersection of a
line’s closure with the interior of another line must be non-
empty (i.e., 

€ 

A°∩B° = ¬∅  or  

€ 

∂A∩B° = ¬∅ or

€ 

A− ∩B° = ¬∅). A normalized measure for the interior
splitting is the interior splitting ratio (IS) between the line
segment of the split line located in the exterior of the
splitting line and the length of the split line (Equation 3).
This measure is evaluated separately for each applicable
component intersection. For example, in a typical cross-like
configuration (Figure 4a) there are four components.

€ 

IS =
length(component(Li °∩L j

− ))
length(Li )

€ 

with i, j ∈ {1,2},i ≠ j

(3)

The range of the interior splitting ratio is 

€ 

0 ≤ IS ≤ 1. It
would be 0 if one line was entirely contained within another,
or if the lines were equal, which means that either −∩° BA
or °∩− BA or both would be empty. It reaches 1 for the
components of one line when the interior-interior
intersection becomes empty, for instance, when the case of
Figure 4a degenerates to that of Figure 4b.

Exterior Splitting
Exterior splitting occurs if parts of the two lines (interiors or
boundaries or both) interact in such a way so as to form one
or more closed regions (Figure 5). Hence, exterior splitting
involves two 1-dimensional objects splitting a 2-
dimensional object into two or more parts. Specifically, this
type of splitting implies a partitioning of the common
exterior of the two lines into two or more components: an
unbounded exterior component and one or more bounded
exterior components. The term bounded  refers to the
exterior-exterior intersections that are completely
surrounded by the interiors of the two lines.

 (a) (b) (c) (d)
Figure 5: Exterior Splitting: a bounded exterior formed by (a) two
interior-interior intersections; (b) one boundary-interior and one
interior-interior intersection; (c) one boundary-boundary and one
boundary-interior intersection; and (d) two boundary-boundary
intersections.

A normalized measure for this property is the exterior
splitting ratio (ES) as the ratio between the area of the
bounded exterior that is formed by the two lines and the
maximum bounded exterior that could possibly be formed
by the same lines (Equation 4).

€ 

ES =
4π (area(boundedComponent(L1

− ∩L2
− ))

(length(L1) + length(L2))
2 (4)

The area of the maximum possible bounded exterior is
equal to the area of a circle with perimeter equal to the sum
of the lengths of the two lines. The range of the exterior
splitting ratio is 

€ 

0 < ES ≤ 1. It would reach zero if the

bounded area were nonexistent. It becomes 1 if the two lines
form only one bounded area, and there are two non-empty
boundary-boundary (

€ 

∂A∩∂B ) intersections (Figure 5d).

Representations for
Arbitrarily Complex Line-Line Relations

For a complex configuration, with many intersections of the
same or different type between two simple lines, all of the
measures developed may apply one or multiple times,
depending on the number of existing components. In such a
case one needs to develop a complete and efficient
representation for all metric details that apply to the spatial
scene such that it allows a smooth transition from the
representation of simple to arbitrarily complex line-line
relations. Completeness requires that all applicable
measures be encoded. Efficiency requires that the form of
representation be organized such that it can be easily
understood. In the context of efficiency, it is also desirable
to combine the topological and metric properties for a scene
into a single form of representation. We base our
representation technique on the concept of the classifying
invariant (Clementini and di Felice 1998). The classifying
invariant captures in a matrix the values of the topological
properties needed to describe a scene involving two simple
lines. In this section we extend this matrix to include the
quantitative values of the metric details in addition to the
qualitative values of the topological invariants. We call the
resulting matrix a metrically enhanced classifying invariant.

The general structure of the classifying invariant for two
simple lines, denoted as 

€ 

Cl(L1 ,L2) , is a matrix of four
columns and m rows (Table 2). Each row defines an
interior-interior, interior-boundary, or boundary-boundary
intersection between the two lines. These are the most
essential intersections since they determine how the two
lines interact. The four columns give the qualitative values
of several topological properties which are the intersection
sequence 

€ 

S(L2) , the collinearity sense 

€ 

CS , the intersection
type T, and the link orientation 

€ 

LOL2 . The generic entry ki
represents the label of the intersection component. This set
of topological invariants has been proven sufficient and
necessary in order to establish topological equivalence with
any configuration for a pair of simple lines.
Table 2: Representation of the classifying invariant in tabular form.

€ 

S(L2)

€ 

CS

€ 

T

€ 

LOL2

€ 

k0

€ 

CS(k0)

€ 

T (k0)

€ 

LOL2 (k0 ,k1)

€ 

k1

€ 

CS(k1)

€ 

T (k1)

€ 

LOL2 (k1 ,k2)
… … … …
… … …

€ 

LOL2 (km−2 ,km−1)

€ 

km−1

€ 

CS(km−1)

€ 

T (km−1) -

The intersection sequence describes the order in which
the various components occur. One first follows line L1 from
its first point and assigns numeric labels to the intersections



until the last point is reached. The intersection sequence is
then the sequence of numbers established by traversing line
L2 and recording the labels that were previously assigned to
L1. For example, the intersection sequence in Figure 6 is
[0,1,3,2].

First establishing a clockwise orientation and then
recording at the intersection node the sequence of incoming
and outgoing arcs, starting from the boundary of one line,
defines the intersection type. For instance, for Intersection 0
in Figure 6 the sequence is 

€ 

< i1,i2,o1 ,o2 > , assuming that we
record the arcs starting from the incoming arc of the black
line. The number of arcs in the sequence can be less than
four. For example, for Intersection 2 in Figure 6 the
sequence is 

€ 

< i1,o1,i2 > . Although the choice of the first arc
to start the sequence is arbitrary, their order must be
preserved as it implicitly stores information about whether
the intersections are crossing or touching (Herring 1991).

For 1-dimensional intersections, the collinearity sense
distinguishes whether the segments that make these
components are traversed following the same or the reverse
orientation in the two lines. If the former is true the value of
the collinearity sense is 1, if the latter holds it is -1, whereas
for 0-dimensional intersections it takes the value of 0. For
instance, since the 1-dimensional Intersection 2 (Figure 6) is
traversed in reserve orientation, its collinearity sense is –1;
Intersections 0, 1, and 3, however, are 0-dimensional,
therefore, their collinearity sense is 0.

The link orientation depends on the notion of a link,
which is the part of line L2 located between two consecutive
intersections (h,k). If the cycle obtained by traversing the
link 

€ 

L2 (h,k)and coming back to h traversing the line L1 has
a clockwise orientation, the link orientation value becomes r
(i.e., right), otherwise l (i.e., left). Because the link
orientation invariant depends on two consecutive
intersections, its value is undefined for the last row of the
classifying invariant matrix. Figure 6 demonstrates how
these concepts apply for a complex configuration of two
simple lines and the construction of its classifying invariant
(Table 3).

For the last three invariants, there appears to be a one-to-
one correspondence with the three metric ratios. The first
correspondence is between the collinearity sense and the
line alongness measure. Instead of using 1 and –1 to denote
whether the segments along the common interior have the
same or reverse orientation, we use a positive or negative
value between 0 and 1, equal to the line alongness ratio. We
arbitrarily choose the ratio with respect to L 2. For 0-
dimensional intersections, the value of the collinearity

Figure 6: A complex configuration with four interior-interior
intersection components formed by two simple lines.

Table 3: Tabular representation of the classifying invariant.

€ 

S(L2) CS T

€ 

LOL2

0 0 (i1, i2, o1, o2) l
1 0 (i1, o2, o1, i2) r
3 0 (i1, i2, o1, o2) r
2 -1 (i1, o1, i2) -

sense remains 0 and represents the extreme case of the line
alongness measure, where the common segment degenerates
to a single point.

The second correspondence is between the intersection
type and the line splitting ratio. The encoding sequence of
the arcs can be extended with numeric information that
relates each arc to a line splitting ratio measure between 0
and 1. The line splitting ratio for each arc is derived by
dividing the length of the arc through the length of the line
that contains it. The length of each arc is taken equal to the
length of the line between the intersection which is being
recorded and the immediate previous intersection or starting
boundary of the line for inputting arcs, or the immediate
next intersection or finishing boundary of the line for
outputting arcs. The labels of the arcs (i.e., i1, i2, o1, o2) must
also be recorded, because they may occur at different orders
depending on the intersection type. Such information must
be maintained so as to be able to distinguish different
topological relations.

The third correspondence between a topological invariant
and a splitting measure is between the link orientation and
the exterior splitting ratio. The link orientation describes the
orientation of the circular section between two consecutive
intersections. This circular section, however, forms always a
bounded exterior; therefore, one could combine the link
orientation and the exterior splitting measure by recording
only the value of the exterior splitting ratio for each
bounded exterior component. The value is preceded by a
plus sign if the link orientation is clockwise and by a minus
sign if it is counter-clockwise. The topological configuration
between two simple lines (Figure 6) is annotated with metric
details (Figure 7). Table 4 displays the matrix for this
scene’s metrically enhanced classifying invariant.

Figure 7: A complex configuration with four intersection
components enhanced with metric details. Numbers in black
represent the interior splitting ratio for each segment (bold for
segments of L1 and italics for segments of L2). Numbers in red
represent the line alongness measure. Numbers in blue represent
the exterior splitting ratio for each bounded exterior component.



Table 4: Metrically enhanced classifying invariant matrix for the
configuration of Figure 7.

€ 

S(L2) CS T

€ 

LOL2

0 0 (i1, i2, o1, o2)
(0.18, 0.10, 0.16, 0.23) -0.05

1 0 (i1, o2, o1, i2)
(0.16, 0.37, 0.17, 0.23) 0.14

3 0 (i1, i2, o1, o2)
(0.23, 0.37, 0.15, 0.21) 0.11

2 -0.09 (i1, o1, i2)
(0.17, 0.23, 0.21) -

Conclusions
This paper introduced a computational model that extends
topological information about binary relations between
simple lines, based on the 9-intersection, with metric
information in terms of splitting ratios. Three splitting ratios
were derived: line alongness, which applies for 19 of the 33
relations; interior splitting, which applies for 30 relations;
and exterior splitting, which can be applied to 23 relations.
They all take values between 0 and 1 and grow linearly with
the size of the intersection component that they measure. To
encode splitting ratios we converted Clementini’s and di
Felice’s (1998) matrix, which stores values of topological
properties for detailed topological relations between lines,
into the metrically enhanced classifying invariant . Such
metric details of line-line relations may complement both
coarse and detailed relations in spatial similarity retrieval in
order to sort query results; they may help correct overshoots
in sketched queries, restoring the proper topology for a
query; and may guide the selection of appropriate
terminology for spatial relations (Shariff et al. 1998).
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