
A Method for Measuring Sentence Similarity
and its Application to Conversational Agents

Yuhua Li, Zuhair Bandar, David McLean and James O’Shea

Intelligent Systems Group, Department of Computing and Mathematics,
Manchester Metropolitan University, Manchester, M1 5GD, England

{y.li, z.bandar, d.mclean, j.d.oshea}@mmu.ac.uk

Abstract
This paper presents a novel algorithm for
computing similarity between very short texts of
sentence length. It will introduce a method that
takes account of not only semantic information
but also word order information implied in the
sentences. Firstly, semantic similarity between
two sentences is derived from information from a
structured lexical database and from corpus
statistics. Secondly, word order similarity is
computed from the position of word appearance in
the sentence. Finally, sentence similarity is
computed as a combination of semantic similarity
and word order similarity. The proposed algorithm
is applied to a real world domain of
conversational agents. Experimental results
demonstrated that the proposed algorithm reduces
the scripter’s effort to devise rule base for
conversational agent.

1 Introduction
Recent applications of natural language processing have a
requirement for an effective method to compute similarity
between very short texts (such as sentences). Traditionally,
techniques for detecting similarity between long texts
(documents) have centred on analysing shared words
(Meadow, Boyce and Craft 2000). Such methods are
usually sufficient for dealing with long texts, because they
contain adequate co-occurring words that are sufficient for
indicating the text similarity. However, for short texts,
word co-occurrence may be rare or not present. This is
because people tend to use different sentences to express
very similar meanings (Bates 1986). Since such surface
information in short texts is very limited, this problem
poses a tough challenge for computational methods. The
focus of this paper is on computing similarity between very
short texts, primarily of sentence length.
Sentence similarity has many interesting applications.
Examples include conversational agent with script
strategies (Allen 1995; Jurafsky and Martin, 2000) and the
Internet.
Although much research has been done on measuring long
text similarity, the computation of sentence similarity is far
from perfect(Burgess et al. 1998; Foltz et al. 1998;

Hatzivassiloglou et al.1999, Landauer et al. 1997). Because
of the growing demand from applications, this study is
concerned with the development of a method by
investigating the underlying information that contributes to
the meaning of a sentence. We compute sentence similarity
using semantic knowledge from a lexical database and
statistical information from a corpus. The impact of
syntactic information is also considered in the calculation
of similarity. The proposed algorithm differs from existing
methods in two aspects. Firstly, we strictly consider text in
sentence units, so the surface information is very limited
compared to that in document units. Secondly we
investigate a method to incorporate word order information
in the detection of syntactic similarity.
The next section presents the proposed method for
measuring sentence similarity. Section 3 carries out
experiments with a conversational agent. Section 4
concludes that the proposed method provides an efficient
technique for knowledge representation and management.

2 The Proposed Text Similarity Method

The proposed method derives text similarity from semantic
information and syntactic information that are contained in
the compared texts. A text is considered to be a sequence
of words each of which carries useful information. The
words along with their combination structure give the text
its specific meaning. Texts considered in this paper are
assumed to be very short (of sentence length). The task is
to establish a computational method that is able to measure
the similarity between very short texts (sentences).

2.1 Semantic Similarity between Sentences
Sentences are made up of words, so it is reasonable to
represent a sentence using the words in the sentence. The
most relevant research area, to our task, is information
retrieval. Classical information retrieval methods use a set
of a pre-determined index terms (words or collocations)
that are used to represent a document in the form of
document-term vector. Vector similarity is then used to
identify documents that are most related to the query.

Because the index terms are pre-determined and in large
numbers, this kind of strategy is inappropriate for
computing sentence similarity. A sentence represented
using such a large number of pre-determined terms will
result in a very sparse vector, i.e., the vector has a very
small number of non-zero elements. On the other hand,
some important words in a sentence may be missed because
of the limits of term set. Unlike classical methods our
method dynamically forms the representing semantic
vectors solely based on the compared sentences. Recent
research achievements in semantic analysis are also
adapted to accomplish an efficient semantic vector for a
sentence.

Given two sentences:
}{

1112111 mwwwT �= , }{
2222212 mwwwT �=

where wij is the jth word of Ti (i=1, 2), mi is the number of
words in Ti . A joint-word set 21 TTT ∪= is then formed
from distinct words in T1 and T2:

}{ 2121 mwwwTTT �=∪=

that has m distinct words. It is obvious that 21 mmm +≤ ,
because there may be repeated words in a text or between
texts.
The joint word set T contains all distinct words in T1 and
T2. Since inflectional morphology may make a word appear
in a sentence with different form that conveys specific
meaning for the specific context, we use word form as it
appears in the sentence. For example, boy and boys, woman
and women are considered as four distinct words and all
included in the joint word set. Thus the joint word set for
two sentences:

T1: RAM keeps things being worked with.
T2: The CPU uses RAM as a short-term

memory storage.
is: T = {RAM keeps things being worked with The
CPU uses as a short-term memory storage}

Since the joint word set is purely derived from the
compared sentences, it is compact with no redundant
information. This is similar to the index term set in
classical information retrieval methods (Meadow, Boyce
and Kraft 2000). The joint word set can be viewed as the
semantic information for the compared sentences. Overall,
the proposed method is derived based on the joint word set
of T1 and T2. Each sentence is readily represented by the
use of a joint word set as follows. The vector derived from
the joint word set is called the lexical semantic vector,
denoted by š. Each element in this vector corresponds to a
word in the joint word set, so its dimension equals the
number of words in the joint word set. The value of an
element of the semantic vector, ši(i=1,2,...,m), is
determined by the semantic similarity of the corresponding
word to a word in the sentence. Take T1 as example:

Case 1: If wi appears in T1, then ši is set to 1.
Case 2: If wi is not contained in T1, a semantic

similarity score is computed between wi and

each word in the sentence T1, using the method
presented in (Li, Bandar and McLean 2003),
see section 2.2. Thus the most similar word in
T1 to wi is that with the highest similarity score
. If exceeds a preset threshold, then ši =� ,

otherwise ši = 0.
The reason for the introduction of thresholds is two-fold.
Firstly since we use the word similarity of unmatched
words, the semantic vector may become noisy. This
introduces unwanted information to š if the maximum
similarity is very small. Secondly classical word match
methods can be unified into the proposed method by simply
setting the threshold to 1. Unlike classical methods, we also
keep all function words (Meadow, Boyce and Kraft 2000).
This is because function words carry syntactic information
that cannot be ignored if a text is very short, e.g. of
sentence length. Although function words are retained in a
joint word set, they contribute less to the meaning of a
sentence than other words. Furthermore each of the words
contributes differently to the meaning of the sentence. Thus
a scheme is needed to weight each word. We weight the
significance of a word using its information content
(Meadow, Boyce and Kraft 2000).
It is commonly accepted that frequently used words are less
informative than sparsely used ones. The information
content of a word is derived from its probability in a corpus
(Li, Bandar and McLean 2003). Each cell is weighted by
the associated information)(iwI and)~(iwI . Finally the
value of an element of the semantic vector is:

)~()(~
iii wIwIss ⋅⋅=

(1)

where wi is a word in the joint word set, iw~ is its
associated word in the sentence. The semantic similarity
between two sentences is defined as a cosine coefficient
between the two vectors:

21

21

ss
ss

⋅
⋅

=sS
(2)

2.2 Word Similarity
Given two words: w1 and w2, we need to find the semantic
similarity of sw(w1, w2) for these two words. In WordNet
(Miller 1995) words are organised into synonym sets
(synsets), with semantic and relation pointers to other
synsets (arcs). We can find the first class in the hierarchical
semantic network that subsumes the two synsets for the
compared words and take the distance in arcs traversed. It
is apparent that words at upper layers of the hierarchy have
more general semantics and less similarity between them,
while words at lower layers have more concrete semantics
and more similarity and so the depth of word in the
hierarchy is taken into account. A formula for word
similarity was proposed (Li, Bandar and McLean 2003):

hh

hh
l

w wws ββ

ββ
α

−

−
−

+
−⋅=

ee
ee

e),(21 (1)

where l is the shortest path length between w1 and w2, h is
the depth of subsumer in the hierarchy,]1,0(],1,0[∈∈ βα
are parameters scaling the contribution of shortest path
length and depth, respectively. The optimal parameters for
the proposed measure were found to be: α=0.2, β=0.45.

2.3 Word Order Similarity between Sentences
Let’s consider a particular case to illustrate the importance
of word order. For example, for two sentences:

T1: A quick brown dog jumps over the lazy fox.
T2: A quick brown fox jumps over the lazy dog.

These two sentences contain exactly the same words
and most words appear in the same order. The only
difference is that dog appears before fox in T1 and dog
appears after fox in T2. Since these two sentences contain
the same words, any methods based on “bag of word” give
a decision that T1 and T2 are exactly the same. However it
is clear for a human interpreter that T1 and T2 are only
similar to some extent. The dissimilarity between T1 and T2
is the result of the difference in word order. Therefore any
efficient computational method for sentence similarity must
take into account the impact of word order.

Sentences containing the same words but in different
orders may result in very different meanings. It is easy for
humans to process word order information. However the
incorporation of order information in to computational
methods for understanding natural language is a difficult
challenge. This may be the reason why most existing
methods do not tackle this type of information. In this
section we introduce a method that takes word order
information into account when computing sentence
similarity.

Assume that for a pair of sentences, the joint word set is
T. Recall the above two example sentences, their joint word
set is:

T = {A quick brown dog jumps over the lazy fox}
For each word in T1 and T2, a unique index number has

been assigned respectively. The index number is simply the
order number that the word appears in the sentence. For
example, the index number is 4 for dog and 6 for over in
T1. In computing word order similarity, a word order vector
r is formed for T1 and T2 respectively based on the joint
word set T. For each word wi in T, we try to find the same
or a similar word in T1 as follows:

1. If T1 contains an occurrence of the same word, we
fill the entry for this word in r1 with the
corresponding index number in T1. Otherwise we try
to find the most similar word iw~ in T1.

2. If the similarity between wi and iw~ is greater than a
pre-set threshold, the entry of wi in r1 is filled with
the index number of iw~ in T1.

3. If the above two searches fail, the entry of wi in r1 is
null.

Having applied the above procedure for T1 and T2, the word
order vectors for are r1 and r2 respectively. For the example
sentence pair, we have:

r1 = {1 2 3 4 5 6 7 8 9},
r2 = {1 2 3 9 5 6 7 8 4}

Thus a word order vector is the basic structural
information carried by a sentence. The task of dealing with
word order is then to measure how similar the word order
in two sentences is. We propose a measure for measuring
word order similarity of two sentences as:

21

211
rr
rr

+
−

−=rS
(3)

That is, word order similarity is determined by the
normalised difference of word order. The following
analysis will demonstrate Sr as an efficient metric for
indicating word order similarity. To simplify the analysis,
only one word order difference is considered in the
following example.

Given two sentences: T1 and T2, both sentences have
exactly the same words. The only difference between T1
and T2 is that a pair of words in T1 appears in the reverse
order in T2. The word order vectors are:

}{ 11 mkjj aaaa ��� +=r for T1.

}{ 12 mkjj bbbb ��� +=r for T2.

aj and aj+k are the entries for the considered word pair in T1
, bj and bj+k are the corresponding entries for the word pair
in T2 , k is the number of words from wj to wj+k. From the
above assumptions, we have:

iba ii == for i=1, 2, …, m except kjji +≠ ,

jba kjj == +

kjba jkj +==+

rrr == 21

22
21 2k=− rr

)).(2.2().2.2(2 22222
21 kkkjkkjr ++−+++=+ rr

then:

22
2

1
k

k
S r

−
−=

r
 (4)

We can also derive exactly the same formula for a sentence
pair with only one different word, the kth entry. For more
general cases with further differences in words and word
order, the analytical form of the proposed metric becomes
more complicated and we do not intend to present it in this
paper. The following features of the proposed word order
metric can be revealed:

1. Sr can represent the words shared by two sentences.
2. Sr can represent the order of a pair of same words in

two sentences. It only indicates the word order,

1. *child* bake *cake*
2. *child* baked *cake*
3. *child* baking *cake*
4. *child* cake bake*
5. *child* cake-bake*
6. *kid* bake *cake*
7. *kid* baked *cake*
8. *kid* baking *cake*
9. *kid* cake bake*
10. *kid* cake-bake*
11. *boys* bake *cake*
12. *boys* baked *cake*
13. *boys* baking *cake*
14. *boys* cake bake*
15. *boys* cake-bake*
16. *boy’s* bake *cake*
17. *boy’s* baked *cake*
18. *boy’s* baking *cake*
19. *boy’s* cake bake*
20. *boy’s* cake-bake*

21. *boy * bake *cake*
22. *boy * baked *cake*
23. *boy * baking *cake*
24. *boy * cake bake*
25. *boy * cake-bake*
26. *girls* bake *cake*
27. *girls* baked *cake*
28. *girls* baking *cake*
29. *girls* cake bake*
30. *girls* cake-bake*
31. *girl’s* bake *cake*
32. *girl’s* baked *cake*
33. *girl’s* baking *cake*
34. *girl’s* cake bake*
35. *girl’s* cake-bake*
36. *girl * bake *cake*
37. *girl * baked *cake*
38. *girl * baking *cake*
39. *girl * cake bake*
40. *girl * cake-bake*

41. *littl* bake *cake*
42. *littl* baked *cake*
43. *littl* baking *cake*
44. *littl* cake bake*
45. *littl* cake-bake*
46. *young* bake *cake*
47. *young* baked *cake*
48. *young* baking *cake*
49. *young* cake bake*
50. *young* cake-bake*
51. *cake* baked* by *child*
52. *cake* baked* by *kid*
53. *cake* baked* by *boy*
54. *cake* baked* by *girl*
55. *cake* baked* by *littl*
56. *cake* baked* by *young*

Fig. 1. Patterns of a rule <kidback-0> in InfoChatTM. The ’*’ represents a wildcard that may match against characters, words
or multiple words.

while it is invariant regardless of the location of the
word pair in an individual sentence.

3. Sr is sensitive to the distance between the two words
of the word pair. Its value decreases as the distance
increases.

4. For the same number of different words or the same
number of word pairs in different orders, Sr is
proportional to the sentence length (number of
words), its value increases as the sentence length
increases. This coincides with intuitive knowledge,
i.e. given a fixed number of different words shared
between two sentences, the number of identical
words shared increases with the length of the
sentence.

Therefore the proposed metric is strong for indicating the
word order in terms of word sequence and location in a
sentence.

2.4 Overall Sentence Similarity
Semantic similarity represents the lexical similarity. On the
other hand, word order similarity provides information
about the relationship between words: which words appear
in the sentence, and which words come before or after
which other words. Both of these semantic and syntactic (in
terms of word order) pieces of information play a role in
comprehending the meaning of sentences. Thus the overall
sentence similarity is defined as a combination of semantic
similarity and word order similarity as:

21

21

21

21

21

)1(

)1(),(

rr
rr

ss
ss

+
−

δ−+
⋅
⋅

δ=

δ−+δ= rs SSTTS

(5)

where 1≤δ decides how much semantic and how much
word order information contribute to the overall similarity
computation. Since syntax plays a subordinate role for
semantic processing of text (Wiemer-Hastings 2000), δ
should be with a value greater than 0.5, i.e.,]1,5.0(∈δ .

Apart from the factor δ, there are two other parameters
to set before the similarity can be calculated. These are, a
threshold for deriving the semantic vector and a threshold
for forming the word order vector. All parameters are
empirically set in this paper, 0.4 for word order threshold,
0.2 for semantic threshold and 0.85 for δ.

In the following experiments, we derive semantic
information using WordNet (Miller 1995) version 1.6 and
word statistical information from the British National
Corpus (British National Corpus home page).

3 Applying sentence similarity to
Conversational agents

The original motivation for the development of our
sentence similarity measure came from the design of a
more efficient conversational agent. Thus this section
presents experiment results relating to the knowledge
management for a conversational agent.
A conversational agent is a system for carrying out a
dialogue (usually in natural language) between a human
user and a computer agent. The agent usually associates a
knowledge base that contains a bank of rules. Computer
responses to user’s utterances are governed by matching
each user utterance with pattern-based rules embedded in
the system. A working rule normally consists of a rule ID, a
set of stimulus patterns, the rule's current status and a
response-pattern.

T1: My little boy loves baking cakes.
T2: All girls like to bake cakes.
T3: Girls like going to cake-bakes.
T4: Some boys enjoy baking cakes.
T5: When I was a boy I occasionally baked cakes.
T6: This little baked cake is inedible.
T7: Skidding cars bake my cakes every time.
T8: On the little hill it was baking hot and the boy was
caked in mud.

Fig.2, Some sentences that match patterns in Fig.1.

Each rule has a unique rule identification to distinguish it
from other rules and is assigned with an activation value to
indicate its current status. A rule consists of a set of
stimulus patterns as well as response patterns.
In the compilation of a useful knowledge base, all possible
stimulus patterns for a rule must be produced and included
in the pattern set. Due to the flexibility of natural
languages, the stimulus pattern sets are usually very long
and frequently contain many omissions (of realistic user
utterances, for which the response would be valid). Figure
2 shows the stimulus pattern set for a rule describing the
baking of cakes by children from InfoChatTM (Michie
2001).
There are 56 patterns in the pattern set of this rule.
Although the above pattern list is very long, it is clear that
the list can be expanded with many more word patterns that
have similar meaning to those presented. Thus, the
compilation of a stimulus pattern set is a very time-
consuming and laborious process with no way of proving
the completeness for a set. The requirement for such an
exhaustive pattern set is because the conversational agent is
using a simple pattern matching scheme, without
comprehending the meaning of the user’s utterance.
Moreover, using the pattern set of Fig.1, may cause some
unintended firing of the rule. For example consider the
following sentences:

The author of rule <kidback-0> would expect sentences
T1-4 to fire the rule, but not T5-8. Unfortunately all
utterances T1-8 would match stimulus patterns in Fig.1,
and fire the rule. As a result, unexpected sentences T5-8
would cause unwanted matches and wrongly fire the rule.
This is because the pattern matching scheme merely takes
account of the surface information of word patterns
appearing in possible user utterances.
A solution for this problem is to equip conversational
agents with a matching algorithm that is based on sentence
meaning similarity. As presented in the previous sections,
the proposed method for sentence similarity is built on the

semantic information in the sentences. Unlike simple
pattern matching schemes, it does not necessarily require
sentences with the same meaning to contain the same
words. For example, we may use a single constituent of
‘child’ to represent child, kid, boy, girl and their
inflectional forms. This would significantly reduce the size
and complexity of the stimulus pattern set necessitating
only a small number of example natural language
sentences. This overcomes the problem of omissions in the
stimulus patterns and massively reduces the workload on
the human rule author as the need for suitably placed
wildcards and permitted word permutations and
substitutions become defunct. Therefore the experiment in
this section is to investigate how the proposed sentence
similarity method can be applied to conversational agent in
the construction of a knowledge base using example human
utterances directly.
For sentences in Fig.2, rule authors (scripters) consider T1-
4 as expected sentences, while T4-8 are not. The similarity
results between these sentenecs are listed in Table 1.
It is observed that similarities in Table 1 can be clearly
distinguished in two groups, one group is presented with a
shaded background. Similarities between any two sentences
in T1-4 have large values, while similarities from a
sentence in T1-4 to a sentence in T5-8 are relatively small.
By introducing a similarity threshold in the firing scheme,
we can prevent the unwanted matches from T5-8. This
indicates that it is possible to use a single sentence to
represent T1-4. Thus we can reasonably use a sentence
from T1-4 to replace the 56 patterns of Fig.1.
Taking the above observations into account, we are
incorporating the proposed similarity method into a
conversational agent. The scripter devises one or only a
few stimulus sentence(s) conveying the meaning of
expected user utterances for each rule. The sentences are in
the form of natural language and stored in the knowledge

base. During the execution of the conversational agent, the
user's utterance is received by the agent. The agent
computes the similarity between the user's utterance and the
stimulus sentences in the knowledge base, using the
proposed sentence similarity algorithm. The similarity is
further converted to a firing strength using a strategy as
described in InfoChatTM (Michie 2001). The rule with the
greatest firing strength is then fired.
In comparison to simple pattern matching algorithms, the
immediate benefits of incorporating sentence similarity is
obvious, in that the rule is much shorter, more readable and
hence far easier to maintain. However, this does not mean

 T1 T2 T3 T4 T5 T6 T7 T8

T1 1 0.894 0.892 0.822 0.508 0.444 0.620 0.496

T2 0.894 1 0.948 0.848 0.519 0.465 0.591 0.543

T3 0.892 0.948 1 0.863 0.542 0.234 0.529 0.581

T4 0.822 0.848 0.863 1 0.514 0.429 0.637 0.474
Table 1. Similarity between sentences of Fig. 2

that it will completely remove the need for pattern
matching schemes from conversational agents. Rather the
proposed similarity method can form a complement to
existing pattern matching schemes. Pattern matching
schemes may be more reliable for irregular rules which
match against grammatically incorrect (more similar to
certain language) user utterances. Therefore, the agent’s
knowledge base may contain two distinct sets of stimulus
patterns, natural language sentences and (when
appropriate) word patterns with wildcards.

4 Conclusion
This paper presented a method for measuring sentence
similarity. The method computes sentence similarity from
semantic information and word order information shared by
the concerned sentences. Firstly, semantic similarity is
derived from a lexical knowledge base and corpus. A
lexical database describes common human knowledge
about words in a natural language, this knowledge is
usually stable across a wide range of language application
areas. The corpus represents the actual usage of language
and words. Thus our semantic similarity not only captures
common human knowledge, but is also able to adapt to a
specific application. This adaptation is achieved by using
information from an application specific corpus. Secondly,
the proposed method considers the impact of word order in
sentences. The derived word order similarity measure takes
into account the number of different words as well as the
number of word pairs in different order. The overall
sentence similarity is then defined as a combination of
semantic similarity and word order similarity. In
accordance with the view that word order plays a
subordinate role for interpreting sentences, we weight word
order similarity less in defining the overall sentence
similarity. To investigate the value of the proposed method
in real applications, it was applied to a conversational agent
to simplify the agent’s knowledge representation and
processing. A strategy for incorporating a pattern matching
scheme and sentence similarity was proposed. This results
in a conversational agent knowledge base that is easier to
compile, far shorter, more readable and much easier to
maintain.

References

Allen, J. 1995 Natural Language Understanding.
Benjamin Cummings, Redwood City
Bates, M. 1986 Subject Access in Online Catalogue: a
Design Model, J. American Society for Information
Science 11: 357-376.
British National Corpus home page:
http://www.hcu.ox.ac.uk/BNC/.
Burgess, C., Livesay, K., and Lund, K. 1998. Explorations
in Context Space: Words, Sentences, Discourse. Discourse
Processes 25: 211-257

Foltz, P.W., Kintsch, W. and Landauer, T.K. 1998. The
Measurement of Textual Coherence with Latent Semantic
Analysis. Discourse Processes 25 285-307
Wiemer-Hastings, P. 2000. Adding Syntactic Information
to LSA. In Proceedings of the twenty-second Conference
on Cognitive Science, 989-993 Mahwah, NJ: Lawrence
Erlbaum Associates
Hatzivassiloglou, V., Klavans, J., Eskin, E.1999. Detecting
Text Similarity over Short Passages: Exploring Linguistic
Feature Combinations via Machine Learning. Empirical
Methods in natural Language Processing.
Jurafsky, D. and Martin, J.H.2000 Speech and Language
Processing: An Introduction to Natural Language
Processing, Computational Linguistics, and speech
Recognition. :Prentice Hall
Kozima, H.1994 Computing Lexical Cohesion as a Tool
for Text Analysis. PhD. Diss., Graduate School of Electro-
Communications, Univ. of Electro-Communications
Landauer, T.K., Laham, D., Rehder, B.and Schreiner, M.E.
1997 How Well can Passage Meaning be Derived without
Using Word Order? A Comparison of Latent Semantic
Analysis and Humans. In Proceedings of the Nineteenth
Meeting Cognitive Science. Erlbaum, Mawhwah: 412-417
Li, Y.H., Bandar, Z. and McLean, D. 2003 An Approach
for Measuring Semantic Similarity between Words Using
Multiple Information Sources. IEEE Transactions on
Knowledge and Data Engineering . Volume 15 Number 4.,
pp871-882.
McHale, M. 1998. A Comparison of WordNet and Roget's
Taxonomy for Measuring Semantic Similarity. Proc.
COLING/ACL Workshop Usage of WordNet in Natural
Language Processing Systems. Montreal.
Meadow, C.T., Boyce, B.R. and Kraft, D.H. 2000. Text
Information Retrieval Systems. 2nd. Ed. Academic Press
Michie, D. 2001 Return of the Imitation Game, Electronic
Transactions on Artificial Intelligence 6 (2001)
Miller, G.A. 1995 WordNet: a Lexical Database for
English. Communications of the ACM 38:39-41
Radford, A., Atkinson, M., Britain, D., Clahsen, H. and
Spencer, A. 1999. Linguistics: An Introduction. Cambridge
University Press.

