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Abstract 
Recurrent (neural) networks have been deployed as models 
for learning musical processes, by computational scientists 
who study processes such as dynamic systems. Over time, 
more intricate music has been learned as the state of the art 
in recurrent networks improves. One particular recurrent 
network, the Long Short-Term Memory (LSTM) network 
shows promise as a module that can learn long songs, and 
generate new songs. We are experimenting with using two 
LSTM modules to cooperatively learn several human 
melodies, based on the songs’ harmonic structures, and the 
feedback inherent in the network. We show that these 
networks can learn to reproduce four human melodies. We 
then introduce two harmonizations, constructed by us, that 
are given to the learned networks. i.e. we supply a 
reharmonization of the song structure, so as to generate new 
songs. We describe the reharmonizations, and show the new 
melodies that result. We also use a different harmonic 
structure from an existing jazz song not in the training set, 
to generate a new melody. 

LSTM Networks as Modules in a Music 
Learning System   

Recurrent neural networks are artificial neural networks 
that have connections from the outputs of some or all of 
the network’s nonlinear processing units back to some or 
all of the inputs. These networks are trained by repeatedly 
presenting inputs and target outputs and iteratively 
adjusting the connecting weights so as to minimize some 
error measure. The advantage of recurrent neural networks 
is that outputs are functions of previous states of the 
network, and sequential relationships can be learned. 
However, this very facet causes the weight update 
equations to be much more complex than simple non-
recurrent neural networks, to correct for using erroneous 
outputs in previous time steps. And it is difficult to design 
a stable network that can learn long sequences. Yet, this is 
necessary for musical learning systems.  
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In recent publications (Franklin 2004a, Franklin 2004b, 
Franklin and Locke 2005a), we have shown that a 
particular recurrent neural network, the long short-term 
memory network (LSTM), can learn to distinguish musical 
pitch sequences, and can learn long songs. Here we present 
a two-module LSTM system that can learn both pitch and 
duration of notes in several long songs, and can 
subsequently be used to generate new songs. While we 
have developed systems before based on similar ideas, the 
LSTM-based system is much more precise and stable, and 
can learn much longer songs. Figure 1 shows our two-
module LSTM configuration for learning songs. This 
configuration is inspired by Mozer’s (1994) CONCERT 
system that uses one recurrent network, but with two sets 
of outputs, one for pitch and one for duration. It is also 
inspired by Eck and Schmidhuber’s (2002) use of two 
LSTM networks for blues music learning, in which one 
network learns chords and one learns pitches; duration is 
determined by how many network iterations a single pitch 
remains on the output.   
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Figure 1. The two-module LSTM system. One LSTM module 
learns pitches. The other learns note durations. The recurrence in 
each LSTM network is shown internally. 
 
Each LSTM module contains an LSTM neural network. 
An LSTM neural network is a kind of recurrent neural 
network with conventional input and output units, but with 
an unconventional, recurrent, hidden layer of memory 
blocks (Hochreiter and Schmidhuber 1997, Gers et al. 
2000). Each memory block contains several units (see 
Figure 2). First there are one or more self-recurrent linear 



memory cells per block. The self-recurrence on each cell 
enables it to accumulate numerical values over a series of 
iterations of the network. The accumulated data (cell 
output) is passed through a nonlinear function. Second, 
each block contains three gating units that are typical 
sigmoid units, but are used in the unusual way of 
controlling access to the memory cells. One gate learns to 
control when the cells’ outputs are passed out of the block, 
one learns to control when inputs are allowed to pass in to 
the cells, and a third one learns when it is appropriate to 
reset the memory cells. LSTM's designers were driven by 
the desire to design a network that could overcome the 
vanishing gradient problem (Hochreiter et al. 2001). Over 
time, as gradient information is passed backward to update 
weights whose values affect later outputs, the 
error/gradient information is continually decreased by 
weight update scalar values that are typically less than one. 
Because of this, the gradient vanishes. Yet the presence of 
an input value way back in time may be the best predictor 
of a value far forward in time. LSTM offers a mechanism 
where linear units can accumulate and hold important data 
without degradation, and release it many iterations later. 

 
Figure 2. An LSTM network, and an enlargement of a memory 
block containing one memory cell, and the three gating units. 
 
The complete equations for the LSTM network are beyond 
the scope of this paper. Hochreiter and Schmidhuber 1997 
provide the detailed derivation., Gers et al. 2000 add the 
forget gates, and also provide detailed pseudo-code that is 
very valuable for implementation. However, a brief 
summary of the algorithm is given in Figure 3. 
 
As shown in Figure 1, one LSTM network learns to 
reproduce the pitches of one or more songs, and a second 
one learns to reproduce the corresponding durations. The 
dual system contains recurrence in three places: the inter-
recurrence at the network level, the recurrence of the 
hidden layer of memory blocks, and the self-recurrence of 
each memory cell. We showed in previous work (Franklin 
2005b) that a similar system, with two LSTM networks 
that are not inter-recurrent, can learn both a human 
rendition of the song “Afro Blue”, as well as a score-based 
version.  
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 3. Synopsis of forward and backward pass of the LSTM 
algorithm. 
 
The two networks can also learn Afro Blue with and 
without the harmonic structure (the chords) given as input. 
To expand the system to be able to generate music, we 
now tie the pitch and duration networks together, so each 
network receives the outputs of the other network, for the 
previous note. We also present the harmonic structure 
corresponding to the example song to be learned to each 
network’s input units. These inputs are the chord over 
which the current melody notes are played. The 
representations for duration, pitch, and chords are 
described in a later section. A small amount of beat 
information is given to the networks as one input with 
value 1 only if the beginning of a new measure has passed. 
Another set of inputs not shown in the diagram are a 
binary encoding of the number of the song being learned; 
one binary input for each of the four songs, that is 1 only if 
that song is the current training example. 



The Four Songs  
The songs learned by the two-module system are 
“Summertime”, “Watermelon Man”, “Blue Bossa”, and 
“Cantaloupe Island.” Each song is presented here, as a 
musical score of a human rendition of the melody, with the 
chord structure. Figures 4 and 5 show the songs 
Summertime and Watermelon Man. The human renditions 
were obtained from MIDI files found on the web. The 
chords for the songs are provided by (Aebersold 2000). 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 4. Summertime score, showing human rendition and 
harmonic structure. 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 5. Watermelon Man score, showing human rendition and 
harmonic structure. 
 
Figures 6 and 7 show the other two of the four songs, Blue 
Bossa, and Cantaloupe Island. Each song has a different 
harmonic structure, although there is some overlap in the 
individual chords that appear. Each song is in 4/4 time, 
with four beats per bar, and each has 16 bars. Three of the 
songs have lead-in notes before the first bar. The 

presentation of the songs as examples includes one lead-in 
measure so as to include the lead-in notes. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 6. Blue Bossa score, showing human rendition and 
harmonic structure. 
 
 
 
 

 

 

 

 

 

 
Figure 7. Cantaloupe Island score, showing human rendition and 
harmonic structure. Notice that the melody does not contain any 
notes in the last four bars of the song, although the song has a 16-
bar harmonic structure. 

Experimental Details 
This section describes the representation of pitch and 
duration, as well as the learning parameters for the 
experiments. 

Pitch Representation 
The pitch of the note corresponds to the note’s semi-tone, 
from Western tonal music. Pitch must be represented 



numerically, and there are many ways to do this from a 
musicological point of view (Selfridge-Field 1998).  Since 
our melody sources are MIDI-based, we often think of 
pitches as having an integer value, one value for each 
semi-tone, with 60 representing middle-C. But the pitch 
must be represented in a way that will enable a recurrent 
network to easily distinguish pitches. We have developed 
one such representation called Circles of Thirds. We have 
experimented with this representation on various musical 
tasks, with successful results (Franklin 2004a, Franklin and 
Locke, 2005) and have compared it to others such as those 
found in (Todd 1991, Mozer 1994, Eck and Schmidhuber 
2002). 
 
Figure 8 shows the four circles of major thirds, a major 
third being 4 half steps, and the three circles of minor 
thirds, a minor third being 3 half steps. 

Figure 8. At top, circles of major thirds. At bottom, circles of 
minor thirds. A pitch is uniquely represented via these circles, 
ignoring octaves. 
 
The representation consists of 7 bits. The first 4 indicate 
the circle of major thirds in which the pitch lies, and the 
second 3, the circle of minor thirds. The number of the 
circle the pitch lies in is encoded. C’s representation is 
1000100, indicating major circle 1 and minor circle 1, and 
D’s is 0010001, indicating major circle 3, and minor circle 
3. D# is 0001100. Octave information is indicated by two 
additional bits, one for octave C2-B2 and one for octave 
C4-B4. Only one of these bits would be nonzero at a time. 
If both are zero, then octave C3-B3 is indicated. 
 
Because the 7th chord tone is so important to jazz, our 
chords are the triad plus 7th.  In using Circles of Thirds to 
represent chords, we could represent chords as four 
separate pitches, each with seven bits for a total of 28 bits. 
However, it would be left up to the network to learn the 
relationship between chord tones. We borrowed from 
Laden and Keefe’s (1991) research on overlapping chord 
tones as well as Mozer’s (1994) more concise 
representation for chords. The result is a representation for 
each chord that is 7 values. Each value is the sum of the 
number of on bits for each note in the chord. For example, 
a C7 chord in a 28 bit Circles of Thirds representation is 

 1000100   1000010   0001010   0010010  
  C            E               G           B-flat 
The overlapping representation is: 1000100     (C) 
      1000010    (E) 
   0001010     (G) 
    + 0010010     (B-flat) 
      2011130  (C7 chord) 
This is scaled to produce seven input values between zero 
and one: 0.6, 0, 0.3, 0.3, 0.3, 0.9, 0. 

Duration Representation 

We have also experimented with duration representations 
(Franklin 2004b). In our system, the entire note duration is 
the output of one LSTM module on one iteration. In our 
Modular Duration representation, beat length is divided by 
96 giving 96 clicks per quarter note, 48 per eighth note, 32 
per eighth note triplet note, etc. We can represent triplets 
and swing, and duration variations that occur in human 
MIDI performance (Thomson 2004), a step toward 
interpreting expressive MIDI performances. Our 
representation is a set of 16 binary values. Given a 
duration value, dur, the 16th bit is 1 if dur/384 >= 1, where 
384 = 96*4, is the duration in clicks of a whole note. Then 
the 15th bit is 1 if (dur%384)/288 >= 1. In other words if 
the remainder after dividing by 384 and then dividing by 
288 is greater than or equal to 1. The 14th bit is 1 if 
(dur%384%288)/192 >= 1. The modulo dividers are 384, 
288, 192, 96, 64, 48, 32, 24, 16, 12, 8, 6, 4, 3, 2, and 1, 
corresponding to whole note, dotted half, half, quarter, 
dotted eighth, eighth, eighth triplet, sixteenth, sixteenth 
triplet, thirty-second, and then 6, 4, 3, 2, and 1 for 
completeness. Any duration that exactly matches, in clicks, 
one of these standard score-notated durations can be 
represented, as can combinations of them, or human–
performed approximations to them.  

Two example durations (in clicks) from Summertime are 
86 and 202. The duration 86 is 64+16+6, represented as 
0000100010010000, and the representation of 202 is 
192+8+2, or 0010000000100010. 

Experimental Results 

We base the choice of parameters for the two LSTM 
modules on those values that worked best in the past on 
specific musical tasks and on the learning of the pitch and 
duration of the melody of Afro Blue. Consequently, both 
of the two LSTM modules contain 20 memory blocks, with 
four cells each. The set of four songs is presented for 
15000 epochs. The two-module network learns to 
reproduce the four songs exactly, with a learning rate of 
0.15 on the output units, and a slower rate of 0.05 on all 
other units. A larger rate on the output units produces 
consistently stable and accurate results in our previous 
experiments as well. Once the four songs were learned, we 
began experimentation with generating new melodies. In 
this network configuration, a straightforward way to do 



this is to give the networks a whole new chordal structure. 
We keep the inter-recurrent connections and set the four 
song inputs all equal to one (all on).  

 

 

 

 

 

 

 

 

 

 

Figure 9. The melody generated by the dual-network system, 
over a complex chord structure. 

We show melodies that are generated over three different 
harmonic structures, in Figures 9-11. The figures also 
show the harmonic structure as before. One bar of a pick-
up or lead-in chord is given in each chord structure, since 
three out of four training songs had lead-in notes. Figure 9 
shows a melody generated over a fairly complex harmonic 
structure that we derived from the structures of the four 
learned songs. There is a new chord in every bar except for 
the occurrence of F-minor (shown as Fm) two bars in a 
row in the second line. The melody depicted is a close 
approximation of the actual melody output by the 
networks. The approximation is made by the software 
used, Band-in-a-Box (PG Music 2004), to enter in the 
chords, to import the MIDI file, and to generate the scores 
as shown in the figures. 

 

 

 

 

 

 

 

 

 

 

Figure 10. The melody generated by the dual-network system, 
over a simpler chord structure. 

Figure 10 shows a much simpler chord structure also 
derived from the four original songs. All chords are carried 
over two bars (except the lead-in). The simpler chord 
structure results in a melody that is more rhythmic, and 
contains more notes.  Note the use of grace note-like 
triplets that is an influence of the human musicians’ style 
of playing. While there are a couple of notes out of place, 
such as the initial A on the G7alt chord in the lead-in bar, 
and the F# on the G7alt four bars later, the melody notes 
are derived from the scales one might associate with the 
chords when improvising, and the rhythm is quite 
reasonable. 

Figure 11 shows the melody generated over a chord 
structure of an existing jazz composition, Song for My 
Father. This melody is by far the most pleasing to the ear, 
due in part to Horace Silver’s (composer of Song for My 
Father) experienced use of the F-minor blues chords. But 
also, since these chord changes follow patterns and 
sequences that occur in the training songs, the network 
should be more likely to generate a better melody on them. 
We note two bars with a flurry of musical activity, the Eb7 
in line 3 where the flurry is rhythmic, and on the Gminor 
chord in line 4. These are attractive because human 
musicians will often play such riffs in an improvised solo, 
but also because they occur within smoother, more melodic 
contexts. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 11. The melody generated by the dual-network system, on 
the AB part of the AAB structure of Song For My Father. 

 



Discussion 

The melodies generated by the trained network are 
interesting and for the most part pleasant. However, there 
are several “rough spots” that reveal the inexperience of 
the dual LSTM system, in which it “finds itself” in 
unknown musical territory. Two possible ways to decrease 
these rough spots are 1) to train the network on more 
songs, and 2) to employ a reinforcement learning (RL) 
mechanism to improve the melody generation. How can 
this be done? An RL agent could monitor the phrase 
structure produced by a network, such as noticing the two 
similar phrases in Figure 9 that both start with C and rise to 
G, each over a Fm to Eb7 (ii-I) chord transition, and 
reward that network output in some way. We have done 
some preliminary work in combining LSTM with a 
reinforcement prediction algorithm in which the LSTM 
equations are directly altered.  

Another idea is to use a simpler, even non-recurrent RL 
agent that controls the dual LSTM networks. This agent 
could control several networks that are each trained on 
several possibly overlapping songs. The RL agent could 
choose which network’s output to use for each note, or 
phrase. It could also learn to control the network by e.g. 
varying the threshold used in the duration network to 
choose which outputs are considered to contribute to the 
final duration value.  
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