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Abstract1 
General Electric used case-based reasoning for gas turbine 
diagnostics at their monitoring and diagnostics center in 
Atlanta, GA.  This application had requirements that 
included accuracy, maintainability, modularity, 
parameterization, robustness, and integration of the system 
into an existing infrastructure. The CBR system has a 
modular “plug and play” architecture to facilitate 
experimentation and optimization. It was integrated into the 
production environment in 2004. The CBR system is 
currently in a trial deployment where diagnoses made by the 
system are created along with the previous process of using 
human-generated diagnosis. 

Introduction 
This paper describes a Case-Based Reasoning (CBR) 

system (Kolodner 1993, Aamodt and Plaza 1994) to help 
General Electric (GE) Energy service the heavy-duty gas 
turbines it sells.  Figure 1 shows a typical turbine, which 
can be used to power a small city and costs $30 million.  
As of 2004 there are over 6,000 of these turbines in use by 
GE customers worldwide.  GE has contracts to service 
1,200 turbines and that number has been growing by 
hundreds every year.  The goals of the service are to 
improve turbine and system reliability, reduced turbine 
operating/maintenance costs, and produce the greatest 
possible sustained availability from the power generation 
equipment.  All turbines have control logic, which includes 
the ability to automatically shut down the turbine to protect 
it from potentially dangerous situations.  An unplanned 
automatic shutdown is called a trip.  When a turbine that is 
serviced by GE trips, people at GE’s monitoring and 
diagnostics (M&D) center remotely diagnose the problem 
and assist the customer in quickly restarting the turbine.  
This paper describes the CBR system that was created for 
GE’s M&D center. 

 

Related Work 
GE has a long history of using CBR for monitoring and 

diagnostics.  Two of these efforts are for medical 
equipment and locomotives.  An Error Log Similarity 
Index (ELSI) (Cuddihy and Cheetham 1999) was created in 
1992 to solve a diagnostic challenge with computer 
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tomography scanners.   GE had built an infrastructure to 
allow service to dial in to imaging equipment and diagnose 
failures while still on the phone with the customer.  Once 
the service engineer had taken a look at the equipment 
remotely, the customers' issues could often be resolved 
over the phone.  The cases consisted of error logs 
generated by the computer processes controlling the 
machines.  ELSI has been in continuous use since 1992. 

 CBR was also used for remote diagnostics on 
locomotives to be able to quickly identify if an equipment 
failure has already occurred, or is going to occur on-board 
the locomotive that may result in a locomotive stranded on 
the tracks.  The cases consisted of historical fault logs 
generated by the locomotive and the repair history of the 
locomotive.  The system (Varma and Roddy, 1999) has 
been in continuous use since 1995. 

 Other companies have used artificial intelligence 
techniques for diagnosing gas turbines.  One significant 
system is TIGER (Milne and Nicol, 2000).  The purpose of 
TIGER is to identify future trips as early as possible or 
diagnose the cause of unexpected events.  It uses rule-based 
and model-based reasoning in its monitoring and diagnosis.   

TIGER was employed by groups at GE Energy for 
diagnosis, but the thousands of rules used by the system 
were difficult to understand and modify. These concerns 
over maintainability were a large motivation for the use of 
case-based reasoning which has the potential to greatly 
reduce the amount of effort required to maintain an active 
production system in a large-scale deployment 
environment. 

Turbine Diagnosis Process 
Gas turbines have controllers at the site where they are 

installed that perform a variety of functions including 
protecting the turbine from damage by performing an 

Figure 1: The Inside of a Gas Turbine 



automated shutdown (trip) when dangerous conditions are 
detected and archiving sensor data.  Typical gas turbines 
will have about 2000 sensors providing information such as 
temperatures, pressures, and vibration levels every second.  
If the turbine is serviced by GE, there will also be a remote 
connection to send the data to GE’s M&D center in 
Atlanta.  

 Prior to the development of the CBR system, the turbine 
diagnosis process was as follows.  When a turbine trips, the 
on-site controller will send a message to Atlanta.  The trip 
will be assigned to a person in the M&D Center for 
analysis.  That person will access the data from the turbine, 
review key values, create a hypothesis about the trip cause, 
create plots specific to the trip type hypothesized, confirm 
the cause of the trip as best as can be done using the 
available data, then call the site that tripped to provide 
assistance and confirm the trip cause.  The advice is most 
valuable soon after the trip, so the M&D Center tries to 
analyze each trip in under ten minutes. 

The CBR system is used to automate the data review, 
hypothesis generation, and hypothesis confirmation 
portions of this process whenever possible and assist the 
user when it does not have confidence in a single cause.  
This paper will describe how the CBR system was created 
and how it achieves this goal.  

System Requirements 
As with any deployed software application, the first steps 

in creating the system involve gathering requirements from 
the customer and assessing the conditions and environment 
under which the system will be used.  Given our team’s 
experience with Case-Based Reasoning and other AI 
techniques and the maturity of the processes at GE’s M&D 
center, the project began with a relatively well-defined set 
of requirements on the accuracy, maintainability, 
modularity, parameterization, robustness, and integration of 
the system.  

Accuracy 
The desire for diagnostic accuracy is no surprise, but 

there was also a need for the CBR system to not make 
diagnoses when it did not have sufficient confidence in its 
hypothesis.  This is particularly important in “human in the 
loop” applications such as the one described here, where 
operators are being guided by the output of the intelligent 
system.  Due to the time spent trying to validate inaccurate 
predictions, it is preferable that the system take a 
conservative approach to prediction and make no 
recommendations when it is not sufficiently confident of its 
answer (Cheetham and Price, 2004).  This goal required 
techniques to represent and quantify the tradeoffs of 
various predictive outcomes. 

Maintainability  
One of the strengths of case-based reasoning as a 

solution to the diagnosis problem is its potential for 

reducing the amount of human effort required for creating 
and maintaining the application, primarily in the knowledge 
engineering/acquisition stages (Pal & Shiu, 2004).  Rule or 
model-based approaches often require very extensive 
knowledge engineering efforts by experts versed in the 
appropriate techniques in conjunction with subject matter 
experts in order to construct an application.  Furthermore, 
once that application is fielded in a dynamic changing real-
world environment these techniques require the same 
personnel to monitor and update the system in order to 
preserve an acceptable level of performance.  Case-based 
reasoning, in contrast, is amenable to automated 
maintenance, in which a “meta-reasoning” component of 
the architecture continually monitors the inputs and outputs 
of the system and makes modifications to the casebase 
autonomously in order to preserve currency with a 
changing application domain. 

Modularity   
We are in agreement with the view that case-based 

reasoning is a methodology as opposed to a technology 
(Watson, 1998).  In this view, the “what” of the CBR 
process of “retrieve-reuse-revise-retain” is implemented by 
various algorithms – the “how”.  By employing a modular 
architecture with well-defined component interfaces, 
experimentation with different implementations and/or 
different algorithms for the various stages of CBR is 
greatly facilitated.  This was particularly important for this 
project, which represents a collaboration among several 
different groups and organizations, each taking 
responsibility for different stages of the process at different 
times.  The modular architecture allowed these different 
groups to include their particular “how” into the overall 
system and evaluate the resulting performance without 
having to deeply understand the underlying workings of the 
system or the particulars of the other components in the 
overall system. 

Parameterization 
Many of the techniques typically employed in case-based 

reasoning systems are controlled by various parameters.  
Typically, as part of a system deployment, knowledge 
engineers perform experimentation and determine an 
appropriate set of values for these parameters which are 
then fixed.  The danger in this approach is that while the 
initial set of parameter values may be optimal given the 
data available at system design and implementation time, a 
system that is to be deployed in a dynamic and changing 
environment must be able to respond to these changes via 
alteration of internal parameterization.  In other production 
deployment scenarios, while the underlying domain may 
not change significantly over time, only a limited sample of 
data may be available at the time the system is constructed 
and deployed.  As this data becomes available over time it 
is desirable to easily modify internal parameters in 
response to a larger sample of the population.   



Our CBR application was designed in such a way that 
operational parameters of the system could be changed 
without requiring modification of the code.   This allowed 
us to use tools and methodologies for automated 
optimization such as GE’s design of experiments (DOE) 
software and genetic algorithm decision engine for searches 
of large configuration spaces (Aggour, et. al., 2003).  We 
were able to use these tools to not only automatically 
determine an optimal configuration before deploying the 
application, but plan to incorporate these methods into an 
ongoing automatic maintenance and optimization strategy 
using the cross-validation capabilities of the CBR system. 

Robustness 
One of the greatest challenges in applying Artificial 

Intelligence techniques to real-world problems in real-
world environments is the presence of noisy and/or 
incomplete data.   In this application of turbine failure 
diagnosis, the data values used to create cases and describe 
new incidents come from physical hardware sensors 
onboard the turbines.  This data must be collected onsite 
and transmitted to the M&D facility in Atlanta.  It is quite 
common for particular sensors to have missing data due to 
hardware failures, data collection issues, or transmission 
errors.  Furthermore, because a common representation is 
used to cover a variety of different turbines, there are 
attributes that are only present in certain turbine models, 
which introduces another source of missing data.  Noise in 
the sensor values can occur for similar reasons – sensor 
malfunction, data transmission or collection issues.  
Different sites may also run their turbines with different 
operating parameters, causing some sensor readings to be 
outside of normal expected ranges.   

In response to these issues, the algorithms employed by 
the CBR system must be robust in the face of missing 
and/or erroneous data – it is unrealistic to assume that 
“prototypical” cases or exemplars will exist or that newly-
arriving failure incidents to be diagnosed will be described 
with the full set of available attributes.  Finally, due to the 
degree of subjectivity involved in assigning case labels to 
incidents of turbine failures, there is a lack of uniformity in 
the case labels (i.e., the reason for the trip).  These labels 
are assigned by human troubleshooting operators who often 
have conflicting hypotheses as to the true root cause of 
some failures, leading to issues with case and incident 
labels not corresponding to the attributes that describe 
them.  This leads to interesting issues that must be 
confronted in the hypothesis generation phase of the CBR 
process as well as the types of self-learning and evaluation 
strategies that can be employed during the maintenance 
process. 

Integration 
The final major requirement of the application was the 

ability to be easily integrated into GE’s central monitoring 
platform in a production environment.  While this 
requirement typically impacts the software engineering 

aspect of the application as opposed to the knowledge 
engineering aspect, it is equally critical in contributing to a 
successful deployment.  Our use of industry standard 
technologies for integration into a production environment 
such as XML and JDBC as well as our techniques for 
testing and evaluation are discussed later. 

Knowledge Engineering 
Knowledge engineering is the process by which the 

system designers determine what information is necessary 
to produce the desired outputs of the intelligent system and 
determine the algorithms or techniques to make use of that 
data.  Adequate representations are a cornerstone of a 
successful application of intelligent systems techniques.  In 
our domain of turbine diagnostics, the universe of available 
representations was effectively limited to the outputs of the 
hardware sensors monitoring the turbines.  This is the same 
data that the human M&D engineers use to make diagnoses 
and thus, presumably, carries information sufficient for the 
CBR system to perform the same task.  Consultation with 
M&D engineers resulted in lists of commonly-examined 
sensors for each type of trip, which were validated and 
standardized to account for differences of opinion among 
different engineers.  

Use of this “raw” low-level data may be a viable strategy 
and has the benefit of greatly reducing the amount of effort 
required in the knowledge engineering task – it is often 
simply a matter of collecting and organizing the raw data.  
The drawback to using this type of data, however, is that 
due to its representational “sparseness”, it is generally 
necessary to collect a greater population sample in order to 
construct a casebase with adequate coverage.  In other 
words, the use of raw low-level attributes typically involves 
a much higher-dimensional representation space and the 
values of those attributes typically have much larger 
ranges, further increasing the size of the space that the 
casebase must cover.   

At the other representational extreme, human experts or 
other external knowledge sources, or even automated 
induction, clustering, or other techniques are used to 
construct a more restricted description space that carries 
the same informational content.  The tradeoff in this case is 
the extra effort required to construct the representations.  
Another tradeoff is that this effort must be repeated 
whenever it is desired to expand the role of the system to 
additional diagnosis types, application conditions, etc. 

 In this application, however, it was decided that due to 
the large number of low-level features present, particularly 
in respect to the number of historical cases available, it was 
preferable to employ knowledge-based representations by 
extracting higher-level features from the low-level data.  
This process was carried out by subject matter experts in 
consultation with AI knowledge engineers.  The large 
number of raw sensor tags were distilled into a more 
parsimonious set of attributes while still capturing the 
predictive information. This set of attributes was used as 
the format for a case. For example, thirty minutes of 



control data can be summarized by what the last control 
change was and when it happened.   This knowledge 
engineering process was somewhat of a middle ground, 
however, as a fairly “coarse” set of higher-level attributes 
was defined rather than a perfectly fitting set of finer-
grained attributes.  We then employed optimization and 
analysis tools, such as Weka (Witten and Frank, 2000), for 
automated feature selection to arrive at the optimal set of 
descriptors given our training data.   

   After defining a coarse set of derived features and 
determining the optimal subset of these features via 
automated analysis, the final stage of the initial knowledge 
engineering phase of the project was to systematically 
evaluate various parameterizations, such as feature weights 
and configurations of the complete system using cross-
validation studies and a genetic algorithm on our training 
casebase.   The initial training data consisted of historical 
trip records that were validated by human experts.  We 
later validated the parameters on a new set of trip instances 
obtained after the system had been built.  The optimization 
and evaluation phase continued through the full 
development cycle.  The results of the ongoing evaluations 
were used during system design and implementation in 
order to identify techniques and algorithms that prove most 
suitable for the problem as well as highlight aspects of the 
system where parameterization was desirable.   

Thus, knowledge engineering is not necessarily a 
discrete first step as is requirements gathering and analysis 
(at least to a degree), but a continuous ongoing process 
through the life of the project.  In fact, many of the 
techniques and algorithms developed and employed during 
the knowledge engineering phase of the project not only 
contributed to the initial system design and implementation, 
but have been identified as candidates for inclusion in the 
ongoing automated maintenance of the system. 

Case-Based Reasoning Architecture 
Our CBR architecture for turbine diagnostics follows the 

traditional case-based reasoning paradigm of “retrieve-
reuse-revise-retain” using numerical reasoning methods to 
accommodate the data available in the application domain. 

As mentioned above, the CBR system reflects a modular 
“plug and play” architecture to facilitate experimentation 
and optimization.  Figure 2 depicts the high-level stages of 
reasoning in our implementation but does not reflect an 
actual software architecture – i.e., it is a depiction of 
functional as opposed to physical configuration.  The 
following sections describe these stages in more detail.  

Input 
When a turbine trip report is received for diagnosis, its 

low-level description is a time-series of sensor values read 
from some interval prior to failure.  These sensor values are 
converted to a higher-level representation via the 
knowledge-based feature extraction algorithms described 
above.  The output of this process is the input to the CBR 

system, and all of this activity occurs automatically without 
human intervention when a trip is activated. 

Configuration 
The case-based reasoning system is configured via a set 

of XML files that control the composition and behavior of 
the entire system. This configuration specifies which “plug 
and play” modules should be used for retrieve, recommend, 
and confidence. It also includes all parameters needed for 
each module, such as the attribute weights that will be used 
by the retrieve module to calculate the similarity of a case. 
Retuning the parameters in the configuration files is one 
aspect of periodic maintenance. Another configuration file 
specifies the location and structure of the case library as 
well as the representations used in describing cases.  

Figure 2: Case-based Reasoning System Architecture 

CBR Engine 
The top-level CBR Engine reads the configuration files, 

creates and configures all of its components and loads the 
casebase into memory.  The CBR Engine provides the top-
level interface of the overall system for diagnosing new 
incidents and monitoring the behavior of the system and is 
the component responsible for executing each of the 
modules that compose the overall system. 

Retrieve 
The first step in the CBR process is the retrieval of 

similar prior trip events.  In this step the case library is 
queried for prior events that are most similar to the current 
incident to be diagnosed.  A custom nearest-neighbor 
technique is used to retrieve some number of cases that 
form the input of the next stage in reasoning. 

Recommend 
In traditional descriptions of case-based reasoning, prior 

cases are “adapted” to form solutions to new problems.   In 
situations where CBR is used in a multi-step problem 
solving or planning task, this adaptation may involve 
combining the steps or other aspects of one or more cases 

Case Library (Oracle) 

Retrieve Recommend Confidence

CBR Engine (Java) 
 

Configuration (XML) 

Input Output



to produce a novel solution (e.g., as in Hammond, 1996).  
In this application domain, however, the output of the CBR 
system must be a single diagnosis, which comes from a 
discrete set of potential candidates.  A weighted voting 
algorithm is used to combine the solutions suggested by the 
recalled cases into a single answer. The requirement to 
produce only a single solution or small set of potential 
solutions is not unusual in recommendation systems.  
Concern for usability often dictates that the system not 
force the user to manually investigate multiple potential 
answers.  Instead, a single answer along with the system’s 
confidence in that answer should be presented and when 
the system does not have adequate confidence in any 
solution it should present that information instead.  I.e., no 
answer is often preferable to an incorrect answer. 

Confidence 
As described above, one of the critical factors of the 

CBR system is the requirement that it provide a confidence 
level along with its recommendation to the M&D support 
personnel.  After the recommendation is determined, the 
next stage of the CBR process assigns a confidence level to 
that recommendation.  In our application, a histogram is 
computed based on the weighted recommendations of the 
supporting cases.  The  histogram is normalized and each 
recommendation is assigned a confidence based on its 
corresponding histogram value.  The output of the 
confidence step is the diagnosed root cause of the new 
turbine failure along with a confidence assessment of that 
diagnosis.   

Output 
One of the most critical steps in case-based reasoning is 

the fourth “R” – retain.  By incorporating the problems 
solved into the casebase, a CBR system is able to learn 
from its experiences and improve its performance over time 
as it gains additional experience.  This ability is particularly 
important in a fielded diagnostics application such as this 
one, where the reasoning system must maintain currency 
with changing conditions in the domain in which it is 
operating.  GE is continually introducing modifications, 
new models, new parts, and other changes into its deployed 
fleet and the automated diagnostic system must be able to 
constantly update its knowledge base in order to reflect the 
effects of these changes.  The relative ease with which 
case-based reasoning is able to function in this type of 
dynamic changing environments is one of its principal 
strengths with respect to model-based or rule-based 
approaches (e.g., “expert systems”).   In these approaches, 
human experts must be called in to incorporate the new 
information, whereas in CBR, it is largely a matter of 
simply adding the new data points into the case library. 

Deployment and Evaluation 
After finalizing the software architecture and 

implementation, the CBR system was parameterized and 

optimized via a combination of “hand tuning” and 
automated analysis via GE’s genetic algorithm engine and 
DOE software as mentioned above.  During these 
processes, a data set of approximately four hundred trips 
was used and repeated cross validation studies were 
performed.  This data set would also be used as the 
casebase once the system was deployed into production at 
the M&D center.   

   Due to the criticality of the case labels, extensive 
human validation was performed by asking subject matter 
experts to examine all cases that were misclassified during 
the cross validation studies.  Due to differences of opinion 
between different experts as well as the inability to review 
raw tag values after some time, there was still not complete 
confidence in the validity of all case labels.  However, this 
situation is not unusual for real-world applications and our 
robust retrieval and recommendation algorithms were able 
to obtain performance in excess of the performance 
requirements.   

In order to reduce the effort required to validate the trip 
incidents to be used in the casebase, only cases that were 
misdiagnosed during the cross-validation studies were 
examined.  Some of these cases had their case labels 
corrected based on expert feedback and others were 
removed if the experts could not agree on the label.  The 
remaining cases were retained as their misdiagnoses were 
attributed to lack of coverage in the case  base, a condition 
that is expected to be remedied as the system is placed in 
production and additional trips are processed and 
incorporated into the casebase.   

After the final evaluations and configuration were 
complete, the system was integrated into the production 
environment in 2004.  This entailed incorporating the 
system within the M&D troubleshooting workflow to 
invoke CBR whenever a new trip was received and to 
display the system’s diagnosis to the human operator.  The 
existing workflow system was modified to trigger the CBR 
engine via a daemon process and the CBR system received 
the new trip incident data from the database system via 
JDBC. The recommended diagnosis from CBR was 
incorporated into the web-based user interface already in 
use by the M&D personnel.  In order to support ongoing 
maintenance of the system as well as monitor its 
performance, all diagnoses made by the system are logged 
along with the “official” human-generated diagnosis. 

The system was placed in limited production use for a 
short period in order to verify full functionality, perform 
usability studies, and collect an initial sample of 
performance data.  This data is being used to identify 
potential areas of improvement in the user interface and to 
perform blame assignment on misdiagnoses (as identified 
by discrepancies between the system and human opinions).  
These initial results have been encouraging and have also 
spurred the development of automated techniques for 
casebase maintenance and blame assignment. 



Conclusions and Future Directions 
As mentioned previously, our initial performance results 

have been encouraging and the case base is currently being 
augmented with a larger number and range of cases.  The 
system currently performs on par with other approaches 
such as rule-based classification but does not require the 
same degree of maintenance.    We are particularly 
encouraged by the degree to which the ease of maintenance 
requirement has been met by the system.  Non-expert GE 
personnel have successfully increased the coverage of the 
system simply by adding cases for new failure types into 
the case library.  The CBR system is able to successfully 
diagnose those root causes with as good or better accuracy 
than the ones initially used to create the case library. 

Our immediate next step is to deploy the system in 
production for a full-scale test now that its stability and 
performance have been demonstrated in the trial 
deployment.  The system will be run in parallel with the 
current human troubleshooting operators in the M&D 
center who will not see the CBR diagnosis during this 
stage.  Nor will the CBR system have access to the cases 
processed during this stage.  We expect to collect at least 
three months of data and to then begin evaluating our 
techniques for automated blame assignment and casebase 
optimization.  These studies will be made offline using the 
newly collected data and a new casebase put into place.  
Eventually the ongoing maintenance and casebase 
optimization will be gradual transitioned to primarily 
online automated mode.  At that time we will have “closed 
the loop” and have deployed a self-learning diagnostic 
system and will continue to monitor and collect 
performance statistics.  

In addition to expanding our work into techniques and 
tools for automated maintenance of the CBR system, we 
are also exploring the potential for use of CBR in other 
aspects of turbine maintenance such as the prediction of 
trips before they occur.  We are very pleased with the 
performance of CBR as a decision aid for troubleshooting 
turbine failures and are excited about its potential in other 
areas as well. 
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