
Case-Based Reasoning for Gas Turbine Diagnostics

Mark Devaney1, Bill Cheetham2

1Enkia Corporation, 10437 Innovation Drive, Wauwatosa, WI, 53226, USA, markd@enkia.com
2General Electric Global Research, 1 Research Circle, Niskayuna, NY, 12309, USA, cheetham@crd.ge.com

Abstract1
General Electric used case-based reasoning for gas turbine
diagnostics at their monitoring and diagnostics center in
Atlanta, GA. This application had requirements that
included accuracy, maintainability, modularity,
parameterization, robustness, and integration of the system
into an existing infrastructure. The CBR system has a
modular “plug and play” architecture to facilitate
experimentation and optimization. It was integrated into the
production environment in 2004. The CBR system is
currently in a trial deployment where diagnoses made by the
system are created along with the previous process of using
human-generated diagnosis.

Introduction
This paper describes a Case-Based Reasoning (CBR)

system (Kolodner 1993, Aamodt and Plaza 1994) to help
General Electric (GE) Energy service the heavy-duty gas
turbines it sells. Figure 1 shows a typical turbine, which
can be used to power a small city and costs $30 million.
As of 2004 there are over 6,000 of these turbines in use by
GE customers worldwide. GE has contracts to service
1,200 turbines and that number has been growing by
hundreds every year. The goals of the service are to
improve turbine and system reliability, reduced turbine
operating/maintenance costs, and produce the greatest
possible sustained availability from the power generation
equipment. All turbines have control logic, which includes
the ability to automatically shut down the turbine to protect
it from potentially dangerous situations. An unplanned
automatic shutdown is called a trip. When a turbine that is
serviced by GE trips, people at GE’s monitoring and
diagnostics (M&D) center remotely diagnose the problem
and assist the customer in quickly restarting the turbine.
This paper describes the CBR system that was created for
GE’s M&D center.

Related Work
GE has a long history of using CBR for monitoring and

diagnostics. Two of these efforts are for medical
equipment and locomotives. An Error Log Similarity
Index (ELSI) (Cuddihy and Cheetham 1999) was created in
1992 to solve a diagnostic challenge with computer

Copyright © 2005, American Association for Artificial Intelligence
(www.aaai.org). All rights reserved.

tomography scanners. GE had built an infrastructure to
allow service to dial in to imaging equipment and diagnose
failures while still on the phone with the customer. Once
the service engineer had taken a look at the equipment
remotely, the customers' issues could often be resolved
over the phone. The cases consisted of error logs
generated by the computer processes controlling the
machines. ELSI has been in continuous use since 1992.

 CBR was also used for remote diagnostics on
locomotives to be able to quickly identify if an equipment
failure has already occurred, or is going to occur on-board
the locomotive that may result in a locomotive stranded on
the tracks. The cases consisted of historical fault logs
generated by the locomotive and the repair history of the
locomotive. The system (Varma and Roddy, 1999) has
been in continuous use since 1995.

 Other companies have used artificial intelligence
techniques for diagnosing gas turbines. One significant
system is TIGER (Milne and Nicol, 2000). The purpose of
TIGER is to identify future trips as early as possible or
diagnose the cause of unexpected events. It uses rule-based
and model-based reasoning in its monitoring and diagnosis.

TIGER was employed by groups at GE Energy for
diagnosis, but the thousands of rules used by the system
were difficult to understand and modify. These concerns
over maintainability were a large motivation for the use of
case-based reasoning which has the potential to greatly
reduce the amount of effort required to maintain an active
production system in a large-scale deployment
environment.

Turbine Diagnosis Process
Gas turbines have controllers at the site where they are

installed that perform a variety of functions including
protecting the turbine from damage by performing an

Figure 1: The Inside of a Gas Turbine

automated shutdown (trip) when dangerous conditions are
detected and archiving sensor data. Typical gas turbines
will have about 2000 sensors providing information such as
temperatures, pressures, and vibration levels every second.
If the turbine is serviced by GE, there will also be a remote
connection to send the data to GE’s M&D center in
Atlanta.

 Prior to the development of the CBR system, the turbine
diagnosis process was as follows. When a turbine trips, the
on-site controller will send a message to Atlanta. The trip
will be assigned to a person in the M&D Center for
analysis. That person will access the data from the turbine,
review key values, create a hypothesis about the trip cause,
create plots specific to the trip type hypothesized, confirm
the cause of the trip as best as can be done using the
available data, then call the site that tripped to provide
assistance and confirm the trip cause. The advice is most
valuable soon after the trip, so the M&D Center tries to
analyze each trip in under ten minutes.

The CBR system is used to automate the data review,
hypothesis generation, and hypothesis confirmation
portions of this process whenever possible and assist the
user when it does not have confidence in a single cause.
This paper will describe how the CBR system was created
and how it achieves this goal.

System Requirements
As with any deployed software application, the first steps

in creating the system involve gathering requirements from
the customer and assessing the conditions and environment
under which the system will be used. Given our team’s
experience with Case-Based Reasoning and other AI
techniques and the maturity of the processes at GE’s M&D
center, the project began with a relatively well-defined set
of requirements on the accuracy, maintainability,
modularity, parameterization, robustness, and integration of
the system.

Accuracy
The desire for diagnostic accuracy is no surprise, but

there was also a need for the CBR system to not make
diagnoses when it did not have sufficient confidence in its
hypothesis. This is particularly important in “human in the
loop” applications such as the one described here, where
operators are being guided by the output of the intelligent
system. Due to the time spent trying to validate inaccurate
predictions, it is preferable that the system take a
conservative approach to prediction and make no
recommendations when it is not sufficiently confident of its
answer (Cheetham and Price, 2004). This goal required
techniques to represent and quantify the tradeoffs of
various predictive outcomes.

Maintainability
One of the strengths of case-based reasoning as a

solution to the diagnosis problem is its potential for

reducing the amount of human effort required for creating
and maintaining the application, primarily in the knowledge
engineering/acquisition stages (Pal & Shiu, 2004). Rule or
model-based approaches often require very extensive
knowledge engineering efforts by experts versed in the
appropriate techniques in conjunction with subject matter
experts in order to construct an application. Furthermore,
once that application is fielded in a dynamic changing real-
world environment these techniques require the same
personnel to monitor and update the system in order to
preserve an acceptable level of performance. Case-based
reasoning, in contrast, is amenable to automated
maintenance, in which a “meta-reasoning” component of
the architecture continually monitors the inputs and outputs
of the system and makes modifications to the casebase
autonomously in order to preserve currency with a
changing application domain.

Modularity
We are in agreement with the view that case-based

reasoning is a methodology as opposed to a technology
(Watson, 1998). In this view, the “what” of the CBR
process of “retrieve-reuse-revise-retain” is implemented by
various algorithms – the “how”. By employing a modular
architecture with well-defined component interfaces,
experimentation with different implementations and/or
different algorithms for the various stages of CBR is
greatly facilitated. This was particularly important for this
project, which represents a collaboration among several
different groups and organizations, each taking
responsibility for different stages of the process at different
times. The modular architecture allowed these different
groups to include their particular “how” into the overall
system and evaluate the resulting performance without
having to deeply understand the underlying workings of the
system or the particulars of the other components in the
overall system.

Parameterization
Many of the techniques typically employed in case-based

reasoning systems are controlled by various parameters.
Typically, as part of a system deployment, knowledge
engineers perform experimentation and determine an
appropriate set of values for these parameters which are
then fixed. The danger in this approach is that while the
initial set of parameter values may be optimal given the
data available at system design and implementation time, a
system that is to be deployed in a dynamic and changing
environment must be able to respond to these changes via
alteration of internal parameterization. In other production
deployment scenarios, while the underlying domain may
not change significantly over time, only a limited sample of
data may be available at the time the system is constructed
and deployed. As this data becomes available over time it
is desirable to easily modify internal parameters in
response to a larger sample of the population.

Our CBR application was designed in such a way that
operational parameters of the system could be changed
without requiring modification of the code. This allowed
us to use tools and methodologies for automated
optimization such as GE’s design of experiments (DOE)
software and genetic algorithm decision engine for searches
of large configuration spaces (Aggour, et. al., 2003). We
were able to use these tools to not only automatically
determine an optimal configuration before deploying the
application, but plan to incorporate these methods into an
ongoing automatic maintenance and optimization strategy
using the cross-validation capabilities of the CBR system.

Robustness
One of the greatest challenges in applying Artificial

Intelligence techniques to real-world problems in real-
world environments is the presence of noisy and/or
incomplete data. In this application of turbine failure
diagnosis, the data values used to create cases and describe
new incidents come from physical hardware sensors
onboard the turbines. This data must be collected onsite
and transmitted to the M&D facility in Atlanta. It is quite
common for particular sensors to have missing data due to
hardware failures, data collection issues, or transmission
errors. Furthermore, because a common representation is
used to cover a variety of different turbines, there are
attributes that are only present in certain turbine models,
which introduces another source of missing data. Noise in
the sensor values can occur for similar reasons – sensor
malfunction, data transmission or collection issues.
Different sites may also run their turbines with different
operating parameters, causing some sensor readings to be
outside of normal expected ranges.

In response to these issues, the algorithms employed by
the CBR system must be robust in the face of missing
and/or erroneous data – it is unrealistic to assume that
“prototypical” cases or exemplars will exist or that newly-
arriving failure incidents to be diagnosed will be described
with the full set of available attributes. Finally, due to the
degree of subjectivity involved in assigning case labels to
incidents of turbine failures, there is a lack of uniformity in
the case labels (i.e., the reason for the trip). These labels
are assigned by human troubleshooting operators who often
have conflicting hypotheses as to the true root cause of
some failures, leading to issues with case and incident
labels not corresponding to the attributes that describe
them. This leads to interesting issues that must be
confronted in the hypothesis generation phase of the CBR
process as well as the types of self-learning and evaluation
strategies that can be employed during the maintenance
process.

Integration
The final major requirement of the application was the

ability to be easily integrated into GE’s central monitoring
platform in a production environment. While this
requirement typically impacts the software engineering

aspect of the application as opposed to the knowledge
engineering aspect, it is equally critical in contributing to a
successful deployment. Our use of industry standard
technologies for integration into a production environment
such as XML and JDBC as well as our techniques for
testing and evaluation are discussed later.

Knowledge Engineering
Knowledge engineering is the process by which the

system designers determine what information is necessary
to produce the desired outputs of the intelligent system and
determine the algorithms or techniques to make use of that
data. Adequate representations are a cornerstone of a
successful application of intelligent systems techniques. In
our domain of turbine diagnostics, the universe of available
representations was effectively limited to the outputs of the
hardware sensors monitoring the turbines. This is the same
data that the human M&D engineers use to make diagnoses
and thus, presumably, carries information sufficient for the
CBR system to perform the same task. Consultation with
M&D engineers resulted in lists of commonly-examined
sensors for each type of trip, which were validated and
standardized to account for differences of opinion among
different engineers.

Use of this “raw” low-level data may be a viable strategy
and has the benefit of greatly reducing the amount of effort
required in the knowledge engineering task – it is often
simply a matter of collecting and organizing the raw data.
The drawback to using this type of data, however, is that
due to its representational “sparseness”, it is generally
necessary to collect a greater population sample in order to
construct a casebase with adequate coverage. In other
words, the use of raw low-level attributes typically involves
a much higher-dimensional representation space and the
values of those attributes typically have much larger
ranges, further increasing the size of the space that the
casebase must cover.

At the other representational extreme, human experts or
other external knowledge sources, or even automated
induction, clustering, or other techniques are used to
construct a more restricted description space that carries
the same informational content. The tradeoff in this case is
the extra effort required to construct the representations.
Another tradeoff is that this effort must be repeated
whenever it is desired to expand the role of the system to
additional diagnosis types, application conditions, etc.

 In this application, however, it was decided that due to
the large number of low-level features present, particularly
in respect to the number of historical cases available, it was
preferable to employ knowledge-based representations by
extracting higher-level features from the low-level data.
This process was carried out by subject matter experts in
consultation with AI knowledge engineers. The large
number of raw sensor tags were distilled into a more
parsimonious set of attributes while still capturing the
predictive information. This set of attributes was used as
the format for a case. For example, thirty minutes of

control data can be summarized by what the last control
change was and when it happened. This knowledge
engineering process was somewhat of a middle ground,
however, as a fairly “coarse” set of higher-level attributes
was defined rather than a perfectly fitting set of finer-
grained attributes. We then employed optimization and
analysis tools, such as Weka (Witten and Frank, 2000), for
automated feature selection to arrive at the optimal set of
descriptors given our training data.

 After defining a coarse set of derived features and
determining the optimal subset of these features via
automated analysis, the final stage of the initial knowledge
engineering phase of the project was to systematically
evaluate various parameterizations, such as feature weights
and configurations of the complete system using cross-
validation studies and a genetic algorithm on our training
casebase. The initial training data consisted of historical
trip records that were validated by human experts. We
later validated the parameters on a new set of trip instances
obtained after the system had been built. The optimization
and evaluation phase continued through the full
development cycle. The results of the ongoing evaluations
were used during system design and implementation in
order to identify techniques and algorithms that prove most
suitable for the problem as well as highlight aspects of the
system where parameterization was desirable.

Thus, knowledge engineering is not necessarily a
discrete first step as is requirements gathering and analysis
(at least to a degree), but a continuous ongoing process
through the life of the project. In fact, many of the
techniques and algorithms developed and employed during
the knowledge engineering phase of the project not only
contributed to the initial system design and implementation,
but have been identified as candidates for inclusion in the
ongoing automated maintenance of the system.

Case-Based Reasoning Architecture
Our CBR architecture for turbine diagnostics follows the

traditional case-based reasoning paradigm of “retrieve-
reuse-revise-retain” using numerical reasoning methods to
accommodate the data available in the application domain.

As mentioned above, the CBR system reflects a modular
“plug and play” architecture to facilitate experimentation
and optimization. Figure 2 depicts the high-level stages of
reasoning in our implementation but does not reflect an
actual software architecture – i.e., it is a depiction of
functional as opposed to physical configuration. The
following sections describe these stages in more detail.

Input
When a turbine trip report is received for diagnosis, its

low-level description is a time-series of sensor values read
from some interval prior to failure. These sensor values are
converted to a higher-level representation via the
knowledge-based feature extraction algorithms described
above. The output of this process is the input to the CBR

system, and all of this activity occurs automatically without
human intervention when a trip is activated.

Configuration
The case-based reasoning system is configured via a set

of XML files that control the composition and behavior of
the entire system. This configuration specifies which “plug
and play” modules should be used for retrieve, recommend,
and confidence. It also includes all parameters needed for
each module, such as the attribute weights that will be used
by the retrieve module to calculate the similarity of a case.
Retuning the parameters in the configuration files is one
aspect of periodic maintenance. Another configuration file
specifies the location and structure of the case library as
well as the representations used in describing cases.

Figure 2: Case-based Reasoning System Architecture

CBR Engine
The top-level CBR Engine reads the configuration files,

creates and configures all of its components and loads the
casebase into memory. The CBR Engine provides the top-
level interface of the overall system for diagnosing new
incidents and monitoring the behavior of the system and is
the component responsible for executing each of the
modules that compose the overall system.

Retrieve
The first step in the CBR process is the retrieval of

similar prior trip events. In this step the case library is
queried for prior events that are most similar to the current
incident to be diagnosed. A custom nearest-neighbor
technique is used to retrieve some number of cases that
form the input of the next stage in reasoning.

Recommend
In traditional descriptions of case-based reasoning, prior

cases are “adapted” to form solutions to new problems. In
situations where CBR is used in a multi-step problem
solving or planning task, this adaptation may involve
combining the steps or other aspects of one or more cases

Case Library (Oracle)

Retrieve Recommend Confidence

CBR Engine (Java)

Configuration (XML)

Input Output

to produce a novel solution (e.g., as in Hammond, 1996).
In this application domain, however, the output of the CBR
system must be a single diagnosis, which comes from a
discrete set of potential candidates. A weighted voting
algorithm is used to combine the solutions suggested by the
recalled cases into a single answer. The requirement to
produce only a single solution or small set of potential
solutions is not unusual in recommendation systems.
Concern for usability often dictates that the system not
force the user to manually investigate multiple potential
answers. Instead, a single answer along with the system’s
confidence in that answer should be presented and when
the system does not have adequate confidence in any
solution it should present that information instead. I.e., no
answer is often preferable to an incorrect answer.

Confidence
As described above, one of the critical factors of the

CBR system is the requirement that it provide a confidence
level along with its recommendation to the M&D support
personnel. After the recommendation is determined, the
next stage of the CBR process assigns a confidence level to
that recommendation. In our application, a histogram is
computed based on the weighted recommendations of the
supporting cases. The histogram is normalized and each
recommendation is assigned a confidence based on its
corresponding histogram value. The output of the
confidence step is the diagnosed root cause of the new
turbine failure along with a confidence assessment of that
diagnosis.

Output
One of the most critical steps in case-based reasoning is

the fourth “R” – retain. By incorporating the problems
solved into the casebase, a CBR system is able to learn
from its experiences and improve its performance over time
as it gains additional experience. This ability is particularly
important in a fielded diagnostics application such as this
one, where the reasoning system must maintain currency
with changing conditions in the domain in which it is
operating. GE is continually introducing modifications,
new models, new parts, and other changes into its deployed
fleet and the automated diagnostic system must be able to
constantly update its knowledge base in order to reflect the
effects of these changes. The relative ease with which
case-based reasoning is able to function in this type of
dynamic changing environments is one of its principal
strengths with respect to model-based or rule-based
approaches (e.g., “expert systems”). In these approaches,
human experts must be called in to incorporate the new
information, whereas in CBR, it is largely a matter of
simply adding the new data points into the case library.

Deployment and Evaluation
After finalizing the software architecture and

implementation, the CBR system was parameterized and

optimized via a combination of “hand tuning” and
automated analysis via GE’s genetic algorithm engine and
DOE software as mentioned above. During these
processes, a data set of approximately four hundred trips
was used and repeated cross validation studies were
performed. This data set would also be used as the
casebase once the system was deployed into production at
the M&D center.

 Due to the criticality of the case labels, extensive
human validation was performed by asking subject matter
experts to examine all cases that were misclassified during
the cross validation studies. Due to differences of opinion
between different experts as well as the inability to review
raw tag values after some time, there was still not complete
confidence in the validity of all case labels. However, this
situation is not unusual for real-world applications and our
robust retrieval and recommendation algorithms were able
to obtain performance in excess of the performance
requirements.

In order to reduce the effort required to validate the trip
incidents to be used in the casebase, only cases that were
misdiagnosed during the cross-validation studies were
examined. Some of these cases had their case labels
corrected based on expert feedback and others were
removed if the experts could not agree on the label. The
remaining cases were retained as their misdiagnoses were
attributed to lack of coverage in the case base, a condition
that is expected to be remedied as the system is placed in
production and additional trips are processed and
incorporated into the casebase.

After the final evaluations and configuration were
complete, the system was integrated into the production
environment in 2004. This entailed incorporating the
system within the M&D troubleshooting workflow to
invoke CBR whenever a new trip was received and to
display the system’s diagnosis to the human operator. The
existing workflow system was modified to trigger the CBR
engine via a daemon process and the CBR system received
the new trip incident data from the database system via
JDBC. The recommended diagnosis from CBR was
incorporated into the web-based user interface already in
use by the M&D personnel. In order to support ongoing
maintenance of the system as well as monitor its
performance, all diagnoses made by the system are logged
along with the “official” human-generated diagnosis.

The system was placed in limited production use for a
short period in order to verify full functionality, perform
usability studies, and collect an initial sample of
performance data. This data is being used to identify
potential areas of improvement in the user interface and to
perform blame assignment on misdiagnoses (as identified
by discrepancies between the system and human opinions).
These initial results have been encouraging and have also
spurred the development of automated techniques for
casebase maintenance and blame assignment.

Conclusions and Future Directions
As mentioned previously, our initial performance results

have been encouraging and the case base is currently being
augmented with a larger number and range of cases. The
system currently performs on par with other approaches
such as rule-based classification but does not require the
same degree of maintenance. We are particularly
encouraged by the degree to which the ease of maintenance
requirement has been met by the system. Non-expert GE
personnel have successfully increased the coverage of the
system simply by adding cases for new failure types into
the case library. The CBR system is able to successfully
diagnose those root causes with as good or better accuracy
than the ones initially used to create the case library.

Our immediate next step is to deploy the system in
production for a full-scale test now that its stability and
performance have been demonstrated in the trial
deployment. The system will be run in parallel with the
current human troubleshooting operators in the M&D
center who will not see the CBR diagnosis during this
stage. Nor will the CBR system have access to the cases
processed during this stage. We expect to collect at least
three months of data and to then begin evaluating our
techniques for automated blame assignment and casebase
optimization. These studies will be made offline using the
newly collected data and a new casebase put into place.
Eventually the ongoing maintenance and casebase
optimization will be gradual transitioned to primarily
online automated mode. At that time we will have “closed
the loop” and have deployed a self-learning diagnostic
system and will continue to monitor and collect
performance statistics.

In addition to expanding our work into techniques and
tools for automated maintenance of the CBR system, we
are also exploring the potential for use of CBR in other
aspects of turbine maintenance such as the prediction of
trips before they occur. We are very pleased with the
performance of CBR as a decision aid for troubleshooting
turbine failures and are excited about its potential in other
areas as well.

Acknowledgements
The authors would like to point out that the work

described in this paper was a team effort that included
many people. We would like to thank Slavek Zaremba,
Betty Whitaker, Bob Simpson, Sairam Satya-Neelan,
Ashwin Ram, Joe Price, Janet Kolodner, and Rahul
Chadha for their many contributions to this project. The
authors also thank the anonymous FLAIRS reviewers for
their many helpful and insightful comments.

References
Aamodt, A., Plaza, E. 1994. Case-Based Reasoning:

Foundational Issues, Methodological Variations, and
System Approaches, AICOM, Vol. 7, No. 1.

Aggour, K., Pavese, M., Bonissone, P., Cheetham, W.,

2003. SOFT-CBR: A Self-Optimizing Fuzzy Tool for
Case-Based Reasoning, The 5th International Conference
on Case-Based Reasoning, Trondheim, Norway, June 23 -
26.

Cheetham, W., Price, J., 2004. Measures of Solution

Accuracy in Case-Based Reasoning Systems, Seventh
European Conference on Case-Based Reasoning, Madrid,
August 30 - September 2.

Cuddihy, P., Cheetham, W. 1999. ELSI: A Medical

Equipment Diagnostic System. Third International
Conference on Case-Based Reasoning 415-425. Munich,
Germany.

Hammond, K.J. 1996. Chef: A model of case-based

planning. In Proceedings of the Thirteenth National
Conference on Artificial Intelligence (AAAI-96) 261-271.
Portland, Oregon.

Kolodner, J., 1993. Case-Based Reasoning. Morgan

Kaufmann: San Mateo, CA.

Milne, R., Nicol, C. 2000. TigerTM: Continuous

Diagnosis of Gas Turbines. In Proc. Of ECAI/PAIS’00,
edited by Werner Horn, Berlin, 2000.

Pal, S., Shiu, S. 2004. Foundations of Soft Case-Based

Reasoning. Wiley-Interscience: Hoboken, NJ.

Varma, A., Roddy, N. 1999. ICARUS: A Case-Based

System for Locomotive Diagnostics. Engineering
Applications of Artificial Intelligence Journal.

Watson, I., 1998. Is CBR a Technology or a

Methodology?. In, Tasks & Methods in Applied Artificial
Intelligence. DelPobil, A.P., Mira, K., & Ali, M. (Eds.),
pp525-534. Springer-Verlag Lecture Notes in Artificial
Intelligence 1416, Berlin.

Witten, I., Frank, E., 2000. Data Mining: Practical

Machine Learning Tools and Techniques with Java
Implementations. Morgan Kaufmann: San Francisco, CA.

