
Approximating Partial Interchangeability in CSP Solutions

Nicoleta Neagu1 and Boi Faltings2

1Whitestein Technologies AG
Pestalozzistrasse 24, 8032 Zurich

Switzerland
{nne}@whitestein.com

2Artificial Intelligence Laboratory (LIA)
Computer Science Department, EPFL

CH-1015, Ecublens, Switzerland
{boi.faltings}@epfl.ch

Abstract

The concept ofinterchangeabilitycharacterizes the possibili-
ties for making local changes to CSP solutions. Often, inter-
changeability is onlypartial and also requires changing val-
ues assigned to other variables, called thedependent set. As
partial interchangeability (PI) can only be computed by solv-
ing the whole problem, it needs to be approximated. We in-
troduce the new concept ofneighborhood tuple interchange-
ability (NTI) and show that it correctly approximatespartial
interchangeability(PI). We propose an algorithm for comput-
ing smallest dependent sets for NTI.

Keywords: constraint satisfaction, interchangeability.

Introduction and Background
Constraint Satisfaction Problems(CSP) prove to be a
generic framework which can be applied for modeling and
solving a wide range of combinatorial applications as plan-
ning, scheduling and resource sharing. Many of this appli-
cations may require not only solving but also adaptation of
solutions, whereas an existing solution needs to be modified
to satisfy additional criteria or accommodate changes in the
problem. In this paper, we propose a method based on partial
interchangeability for localizing changes in a CSP problem
with the precise purpose of adapting CSP solutions. The al-
gorithm we propose does not necessarily consider to bring
yet another search algorithm for solving CSP problems, but
a method for adapting solutions when this is required by the
application domain. This can be exploited for example: -
in interactive configuration systems, where it is possible to
show what parts of a solution might be affected by a local
change (Weigel & Faltings 1998), - in distributed problem
solving, where it is possible to limit the set of agents that
a change has to be coordinated with, and also to make lo-
cal changes so that they do not spread through the entire
problem, as shown by Petcu and Faltings (Petcu & Faltings
2003), - in constraint-based control systems, where it is pos-
sible to choose control actions that have effects that are as

Copyright c© 2005, American Association for Artificial Intelli-
gence (www.aaai.org). All rights reserved.

local as possible, - in problem abstraction, where a criti-
cal variable and the dependent set for making its domain
interchangeable provide meaningful meta-variables, similar
to the compilation technique in (Weigel & Faltings 1999).

Following its introduction by Freuder (Freuder 1991), in-
terchangeability has been investigated by Choueiry and Falt-
ings (Choueiry, Faltings, & Rainer 1995), for problem ab-
straction, by Neagu and Faltings (Neagu & Faltings 2001)
for case adaptation and by Weigel and Faltings (Weigel
& Faltings 1998), for configuration. Interchangeability
in binary constraint networks has been first proposed by
Freuder (Freuder 1991) to capture equivalence among the
values of a variable in a discrete constraint satisfaction prob-
lem. Valuexi = a is interchangeablewith xi = b if for any
solution wherexi = a, there is an otherwise identical solu-
tion wherexi = b and vice versa.Full Interchangeability
considers all constraints in the problem and checks if val-
uesa and b for a certain variablexi can be interchanged
without affecting the global solution. The localized notion
of Neighborhood Interchangeabilityconsiders only the con-
straints involving a certain variablexi, as in the definition:

Definition 1 ([Freuder’91] Neighborhood Interchangeabil-
ity - NI) Two valuesxi = a andxi = b are neighborhood
interchangeable (NI) for variablexi iff for every constraint
C onxi: {j|(a, j)satisfiesC} = {j|(b, j)satisfiesC}.

NI values can be computed by the use of Discrimination
Tree (DT) algorithm proposed by Freuder in (Freuder 1991).
The construction of the DT proceeds in the following way:
For each value of the variablexi, we build a path containing
in its nodes consistent values of variables in the neighbor-
hood. Each time we start the process from the root node of
the tree. For each neighboring variable value a node is con-
structed, but in the case it already exists in the next node of
the path the algorithm just makes the move to the node. The
annotations of the leaves of the DT trees will be the equiva-
lence classes of neighborhood interchangeable values.

For example, in the problem shown in Figure 1, values
r and z of variablex5 are neighborhood interchangeable

{ y , v, t } { y , z, t }

{ t, v, z, q}
{ t}

{ y, w, s}

X4

X0
X2

X1 X3

X5

{ r, z, w, s}

Figure 1:Example of a CSP problem.

(NI) 1. Thus, interchangingr andz for variablex5 in any
solution does not require any changes in any other variable
in order to remain a solution. NI is important because any
values that are NI are also fully interchangeable, so NI can
be used as an incomplete approximation of FI. Interchange-
ability as defined above is quite rare in practice. Usually, ex-
changing values also requires making changes elsewhere in
the solution. Thus, in (Freuder 1991) Freuder also defined:

Definition 2 ([Freuder’91] Partial Interchangeability - PI)
Two valuesxi = a andxi = b arepartially interchangeable
(PI) with respect to a set of variablesS iff for any solution
involving one there also is an otherwise identical solution
involving the other, except possibly different values for vari-
ables in S. We callxi the critical variable, the set{a, b} the
interchangeable setand the setS the dependent set.

In the problem shown in Figure 1, valuesw ands for vari-
ablex5 are partially interchangeable with respect to the de-
pendent set of variablesS = {x4}. Thus, when interchang-
ing valuesw and s for x5 it may be necessary to change
also the value ofx4 in order to maintain a consistent so-
lution. There is no known algorithm for computing par-
tial interchangeability without enumeration of all solutions.
Choueiry and Noubir (Choueiry & Noubir 1998) proposed a
localized algorithm for computingneighborhood partial in-
terchangeability(NPI), using an algorithm based on aJoint
Discrimination Tree(JDT). A formal definition of NPI con-
cept is as follows:

Definition 3 ([Choueiry&Noubir’98] Neighborhood Par-
tial Interchangeability - NPI) A valueb for a CSP vari-
ablexi is neighborhood partial interchangeable (NPI) with
a value c for xi given a dependent setS (which include
xi) if and only if for every constraint C defined on the
variables (xi, xk) where inxi ∈ S, xk /∈ S , we have:
{j|(b, j)satisfiesC} = {j|(c, j)satisfiesC}.

NPI values can be computed based on the JDT Algorithm,
see Algorithm 1. The JDT algorithm structures the possible
values of the critical variable and the dependent set by con-
sidering the assignments of their neighborhood that they are
consistent with. Each group of values that is compatible with

1This CSP problem example was inspired and further extended
from one presented by Chouiery and Noubir in (Choueiry & Noubir
1998).

the same set of assignments to the neighborhood becomes a
leaf node and is indicated in theannotationof that node.

In the Figure 2, we show a graphical representation of the
JDT algorithm for the set of variablesS = {x0, x3} of the
problem in the Figure 1.

1: Create the root of the Joint Discrimination Tree.
2: for variablexi ∈ S do
3: for valuevil ∈ Dxi

do
4: for variable variablexj ∈ Neigh(S)do
5: for value valuevjk ∈Dxj consistent withvil do
6: if there is a child node corresponding to ’xj =

vjk ’ then
7: Then move to it,
8: else
9: Construct such a node and move to it.

10: Add ’xi, vil’ to annotation of the node (or root).
11: Go back to the root of the discrimination tree.

Algorithm 1: Algorithm for computing the Joint Discrimination
Tree (JDT).

Not all partially interchangeable values can be detected
by neighborhood-based algorithms. For example, the crit-
ical variablex3 of the CSP in Figure 1 has a partially in-
terchangeable set{t, z} with respect to the dependent set
S = {x2} because the variablex0 will never take valuet
in a consistent solution as necessarilyx1 = t. Computing
this fact requires computing global consistency and is not
feasible with algorithms based on the neighborhood only.

Moreover, not all values detected by the NPI algorithm
are partially interchangeable. For the problem shown in Fig-
ure 1, by applying the NPI algorithm for critical variable
x3 and dependent setS = {x0}, we obtain that valuesv
andq are NPI whenx0 = {v}. However, valuesv andq
are not partially interchangeable for variablex3 relatively to
the dependent setS = {x0} because for example, the so-
lution x0 = v, x1 = t, x2 = y, x3 = q, x4 = s, x5 = w
has no identical solution wherex3 = v with other changes
only in variableS = {x0}. If x3 takes valuev the value
of variablex2 would also have to change. So, according to
the Definition 2, valuesv andq for variablex3 are not PI
with respect to the setS = {x0} but only with respect to
setS = {x0, x2}. So not all values detected by the NPI
algorithm are PI.

Neighborhood Tuple Interchangeability
In order to guarantee consistencies among variables in the
dependent setS, we introduce the concept ofNeighborhood
Tuple Interchangeability(NTI) which is considering in the
computation of PI interchangeable values not only the outer
join semantics of the setS ∪{xi} as NPI algorithm, but also
its inner join semantics. Thus, NTI is taking into account
also consistency of values assigned to variables in the depen-
dent setS and values to interchange of the critical variable
xi.

Definition 4 (Neighborhood Tuple Interchangeability -
NTI) Valuesxi = a and xi = b are neighborhood tuple
interchangeable(NTI) with respect to a set of variablesS if

S = { X0, X3}
JDT (S)

X3 = {q, v}

X0 = {v}
X0 = y

root

X2= y

X2= t

X5 = w

X5 = r

X5 = s

X5 = z

X2= z

X2= t

X4= y

X4= w

X4= s

X5 = w

X5 = r

X5 = s

X5 = z

X2= y

X2= z

X4= y

X4= w

X4= s

X5 = w

X5 = r

X5 = s

X5 = z

X0 = t

X4= s

X4= w

X4= y

X2= z

X3 = z X3 = t

X1= t

X4= y

X4= w

X4= s

X5 = r

X5 = z

X5 = w

X5 = s

X2= t

X4= y

X4= w

X4= s

X5 = r

X5 = z

X5 = w

X5 = s

Figure 2:Joint Discrimination Tree (JDT) for setS = {x0, x3}.

for everyconsistenttuplet of value assignments toS ∪{xi}
wherexi = a there is anotherconsistenttuple t′ where
xi = b such thatt andt′ are consistent with the same value
combinations for variables outside ofS. Additionally, the
same condition must hold witha andb exchanged.

For example, by applying the NTI algorithm we propose
in this paper for the critical variablex3 in Figure 1 and the
interchangeable setsI1 = {t, z} or I2 = {q, v}, our NTI
algorithm finds as dependent set the set of variablesS =
{x0, x2} and its corresponding interchangeable tuples, see
Table 1.

For NTI, we can show the following properties:

Theorem 1 (Extensivity: NTI=⇒ NPI) Consider a critical
variablexi. If valuesa andb are NTI with dependent setS,
then they are NPI with dependent setS.

Due to lack of space, the proofs of the theorems are
not presented in the paper but they can be found on line
at (Neagu & Faltings 2005).

Theorem 2 (Extensivity: NTI=⇒ PI) Consider a critical
variablexi. If values a and b are NTI with dependent setS,
then they are PI with dependent setS.

Theorem 3 LetI be a partially interchangeable set for crit-
ical variablexi with dependent setS. ThenI is also a neigh-
borhood tuple interchangeable set forxi with dependent set
S′ ⊇ S.

In most cases, it will not be necessary to extend the de-
pendent set to the entire problem to obtainNTI. For ex-
ample, in the problem shown in Figure 1, the setI = {t, z}
is partially interchangeablefor the variablex3 with the de-
pendent setS = {x2}. This happens because variablex0

would never take valuet. Using NTI, we can find thatI is a
neighborhood tuple interchangeableset for variablex3 with
dependent setS′ = {x0, x2}, whereS′ ⊇ S.

In this paper we propose an algorithm for computing tu-
ple interchangeability. We first describe an algorithm that
test for NTI using a novel structure called the joint tuple
tree (JTT). We then present an algorithm that incrementally
searches for a minimal dependent set containing NTI tuples.

Based on Theorem 3, this algorithm also provides a way to
test if a given interchangeable set can be PI at all. Finally,
we give experimental results about the occurrence of tuple
interchangeability and the size of dependent sets depending
on the CSP structure.

Algorithm for Testing NTI
Firstly, we present an algorithm for testing whether a given
interchangeable set is indeed neighborhood tuple inter-
changeable. This algorithm is based on the JDT algorithm
described in previous section.

When searching for tuple interchangeability, it is suffi-
cient to consider only a part of the JDT, namely the branch
corresponding to the values of the interchangeable set. We
thus define:

Definition 5 (Reduced JDT) Areduced JDTis a JDT where
we consider only the neighborhood assignments that are
consistent with all values in the interchangeable set. We call
these assignments theCommon Assignments.

In Figure 3, in the left side, one can see the reduced JDT
for the setS = {S1 ∪ {x3}}, whereS1 = {x0}, relatively
to critical variablex3.

Thus, all branches of the reduced JDT involve only sub-
sets of the common assignments. Each branch leads to a JDT
node that carries an annotation. We structure these nodes
into aJoint Tuple Tree (JTT)that reflects the subset relations
between the corresponding branches of the reduced JDT:
Definition 6 (Joint Tuple Tree (JTT)) AJoint Tuple Treeis
a tree which contains as nodes the leaves of the reduced JDT
for a critical variablexi and a dependent set S. A noden is a
child of a noden′ if the set of compatible assignments ofn is
a subset of that ofn′ and if there is no othern′′ such thatn′′
would be child ofn andn′ child ofn′′. We annotate the arc
betweenn andn′ by the variables involved in assignments
that are consistent withn′ but not withn.

For example, we consider that variablex3 in Figure 1,
an interchangeable setI = {q, v} and a dependent set
S1 = {x0}. Whereas the reduced JDT is shown in Fig-
ure 3 on the left side, the right side of Figure 3 shows the
JTT obtained from the annotations of the reduced JDT. The
root node contains in its annotation the critical variablex3

and the interchangeable setI = {q, v}. All the other nodes
have assignments that are subsets of the root node assign-
ment, and thus they become children of the root node. For
example, as the annotationx0 = y has the assignments a
subset of the annotationx3 = {q, v}, it becomes its child.

Algorithm 2 constructs the JTT from the reduced JDT.
Note that as NTI implies NPI, there must be a leaf node of
the reduced JDT that contains the interchangeable set in its
annotations; otherwise, the values cannot be NTI. This leaf
becomes the root node of the JTT. The other leaves become
nodes of the JTT. Arcs between the nodes are constructed as
in Definition 6 between nodes whose annotations are subsets
of one another.

We now consider the use of the JTT for computing tuple
interchangeability. We associate the different consistent tu-
ples of the dependent set with nodes of the JTT using the
notion of admissibility:

- admissible tuples

X3 - critical variable
JTT (S1)

X3 - critical variable
S1 = { X0}
Reduced JDT ({S1 U X3})

X3 = {q, v}

X0 = {v}

X0 = y

root

X1 = t

X2= y

X2= t

X5 = w

X5 = r

X5 = s

X5 = z

X2= z

X2= t

X4= y

X4= w

X4= s

X5 = w

X5 = r

X5 = s

X5 = z

X2= y

X2= z

X4= y

X4= w

X4= s

X5 = w

X5 = r

X5 = s

X5 = z

X0 = t

X4= s

X4= w

X4= y

X2= z

X3 = {q, v}

X0 = {v}

X0 = y

X0 = t

X2
X2, X4

(X3=q, X0=v)

(X3=q, X0=v)
(X3=q, X0=y)
(X3=v, X0=y)

(X3=q, X0=v)
(X3=q, X0=t)
(X3=v, X0=t)

Figure 3: Reduced Joint Discrimination Tree (JDT) for the crit-
ical variable x3, interchangeable setI = {q, v} and dependent
set S1 = {x0} (left side). Joint Tuple Tree (JTT) for the criti-
cal variablex3, interchangeable setI = {q, v} and dependent set
S1 = {x0} (right side).

Definition 7 (Admissible Tuples) The admissible tuples at a
noden of the Joint Tuple Tree(JTT) are all the combinations
of the variable/value assignments to the critical variable and
dependent set that are consistent with all assignments on the
corresponding branch of the JDT.

Lemma 1 A consistent tuplet that contains a value of the
interchangeable set and is consistent with the neighborhood
will be admissible at some node of the JTT.

Theorem 4 Admissible tuples of a JTT node are inter-
changeable.

The JTT decomposes the different possible value assign-
ments to variables in the neighborhood of the dependent set
into environments represented as nodes. Each environment
represents a combination of value assignments such that the

1: T ← root node,r = leaf node with interchangeable set
in reduced JDT.

2: l ← remaining leaf nodes of the reduced JDT.
3: repeat
4: n ← node inl such that no other noden′ is compati-

ble with all assignments on the path ton.
5: p ← deepest node inT that is compatible with all the

assignments on the path ton.
6: maken a child node ofp; removen from l.
7: annotate the arc betweenp andn with the variable in-

volved in assignments consistent with the annotation
of p but not consistent with the annotation ofn.

8: until l is empty

Algorithm 2: Algorithm for computing the Joint Tuple Tree (JTT).

admissible tuples are the same. In order to have neigh-
borhood tuple interchangeability, the admissible tuples for
each environment must either contain a tuple for each inter-
changeable value, or no tuple with any of the interchange-

able values. This is expressed by the notion ofcompatibility,
defined as follows:

Definition 8 (Compatibility) We call the subtree of the joint
tuple tree rooted at noden compatibleif either: (1) - for
each value in the interchangeable set, the JTT admissible
tuples at noden contain at least one tuple where the critical
variable takes that value or (2) - the admissible tuples at
noden contain no tuple where the critical variable takes a
value in the interchangeable set, and all subtrees rooted at
children of noden are compatible.

For example, in Figure 3 all the tree nodes of the JTT are
compatible. The two children are compatible because their
admissible tuples contain at least one tuple for the values to
interchangex3 = q andx3 = v, and the root node is also
compatible since it has as children compatible nodes, even
thou it does not have an admissible tuple for valuex3 = v.

To show that the values in the interchangeable set are in-
deed partially interchangeable, we need to show that every
tuple containing one is an interchangeable tuple containing
the other. Due to the structure of the JTT, we can test this
using the following:

Lemma 2 The values in the interchangeable set are NTI
with respect to setS if and only if the JTT is compatible
from the root node.

In certain cases, the JTT also allows us to determine that
values are not interchangeable forS or any superset:

Lemma 3 If the root of the JTT is not compatible, and there
is a value in the interchangeable set that does not occur in
any of the admissible tuples of the nodes of the JTT, the val-
ues are not NTI for setS or any superset of setS.

Complexity of JTT Algorithm: Consider the computa-
tion of the JTT for a dependent set S of sizes and a maxi-
mum domain sized. There are at mosts · d variable-value
combinations. Each occurs in at most one leaf of the JDT
so the number of leaves in the JDT and the number of nodes
in the JTT is bounded tos · d. In the worst case, the al-
gorithm has to check for each leaf of the JDT whether the
neighborhood values are consistent with a subset of the val-
ues contained in all the other leaf nodes; there areO((s·d)2)
such tests. Each test requires at most(n− s) ·d2 operations.
The total complexity isO(s2 · (n− s) · d4), thus polynomial
in boths andd.

Algorithm for computing NTI
The NTI algorithm goal is to determine a minimal set to
which the change in one CSP variable can be localized. For
this purpose, we now consider an algorithm for determining
a minimal dependent setS that would make a setI neigh-
borhood tuple interchangeable.

Algorithm 3 for computing NTI values is based on the
JTT (Algorithm 2), the discrimination algorithms proposed
by Freuder in (Freuder 1991) and by Choueiry and Noubir
in (Choueiry & Noubir 1998). It takes as input a critical
variablexi and an interchangeable setI. It determines a
dependent setS of minimum size such thatI is NTI with
this dependent set. If no such set exists, it returns failure.

The algorithm first computes the discrimination tree (DT)
for the critical variablexi to check whether if its inter-
changeable setI is neighborhood interchangeable. If this
is the case, it returns withS = φ. If not, it uses the DT to
determine which variables to include in the initial candidate
dependent setS.

1: construct DT forxi.
2: if interchangeable set values are NIthen
3: return (success,S = φ).
4: else
5: S ← variables that are involved in DT assignments

that are consistent with some values in the inter-
changeable set but not all.

6: OPEN ← ({S})
7: repeat
8: S ← first(OPEN), OPEN ← rest(OPEN).
9: construct JDT for S.

10: construct JTT.
11: if root node compatiblethen
12: return (success,S).
13: else
14: c ← sets of minimal combinations of nodes of

the JTT such that the union of their admissible
tuples contains each value of the interchangeable
set at least once.

15: for c∈ C do
16: NS ← S ∪ ⋃

n∈C . annotations of the arcs
which are on the path from root of JTT to node
n.

17: if NS /∈ OPEN then
18: includeNS in OPEN s. th. OPEN is or-

dered in increasing size.
19: until OPEN = φ
20: return failure.

Algorithm 3: Algorithm for computing NTI. Input : critical vari-
ablexi and interchangeable setI.

All assignments which place values inI in different
branches in the DT must be included in any dependent setS
for the NTI. It then enters a search for a minimal dependent
setS, considering them in the order of increasing size to en-
sure that the smallest is found first. For each candidate set, it
computes first the JDT and then the JTT using Algorithm 2.
It then checks whether the JTT is compatible according to
Definition 8. If it is, thenS is a correct dependent set and
the algorithm terminates.

If the JTT is not compatible, the algorithm generates all
possible candidates forS that could provide a set of admis-
sible tuples containing all values in the interchangeable set,
and thus a compatible JTT. It adds these to the list of candi-
dates, and continues with the next candidate.

Following the example given in the previous subsection
for the computation of tuple interchangeability for variable
x3 and its interchangeable setI = {q, v}, we can see in
Figure 3 that the root node of the JTT obtained in the right
side of the figure is not compatible. Thus, the computation
continues according to Algorithm 3 by including in the set

X0 = tX0 = { y, v}
X2 = {z, t}
X3 = {q, v}

X2 = y

(x3 : q x2 : z x0 : y)

(x3 : q x2 : z x0 : v)

(x3 : q x2 : t x0 : y)

(x3 : q x2 : t x0 : v)

(x3 : v x2 : z x0 : y)

(x3 : v x2 : t x0 : y)

X0 = {y, v}
X2 = {z, t}
X3 = {q, v}

X3 = y
X2 = y

X0 = t

root

X4= y

X4= w

X5= z

X5 = w

X5 = r

X5 = s

X4= w

X5= z

X5 = w

X5 = r

X5 = s

X4= y

X4= w

X5= z

X5 = w

X5 = r

X5 = s

X4

X1

X1 = t

X4 = s

X4 = s
X4 = s

X3 - critical variable
S2 = { X0, X2}
Reduced JDT ({S2 U X3})

X3 - critical variable
JTT (S2)

- admissible tuples

Figure 4: Joint Discrimination Tree (JDT) for the critical vari-
able x3, interchangeable setI = {q, v} and dependent set
S = {x0, x2} (left side). Joint Tuple Tree (JTT) for the critical
variable x3, interchangeable setI = {q, v} and dependent set
S = {x0, x2} (right side).

S variablex2 which makes the difference between the root
node of the JTT and nodex0 = y, see Figure 3.

x5, S = {x4}
Ix5 = {w, s}

x3, S = {x2, x0}
Ix3 = {t, z}

x3, S = {x2, x0}
Ix3 = {q, v}

(x5, x4) (x3, x2, x0) (x3, x2, x0)
(w, s)
(s, w)

(t, z, y)
(t, z, v)
(z, t, y)
(z, t, v)

(q, z, y)
(q, z, v)
(q, t, y)
(q, t, v)
(v, z, y)
(v, t, y)

Table 1:Interchangeable tuples for different critical variables
and interchangeable sets for the CSP of Figure 1.

Note that we choose nodex0 = y of the JTT since the
other node would require to extend the setS more, withx2

andx4 as well. Further, the computation continues with the
construction of the JDT for the new setS and its correspond-
ing JTT as in Figure 4. The computation stops here since the
root node of the JTT is compatible and returns the obtained
setS and the corresponding interchangeable tuples.

We display more results by applying the NTI algorithm
for the variables of the problem shown in Figure 1 in the
Table 1. We can see that for the critical variablex5 and in-
terchangeable setI = {w, s}, we obtained the dependent set
S = {x4}. For variablex3 by interchanging values{t, z} or
{v, q} the dependent set obtained isS = {x2, x0} on differ-
ent domain partitions and thus different values in tuples.

Theorem 5 Algorithm 3 issound: if it returns a dependent
setS, then the setI is Neighborhood Tuple Interchangeable
for the critical variablexi. Algorithm 3 is alsocomplete: if
the setI is NTI forxi, then it will find a smallest dependent
setS for this interchangeability.

Complexity of NTI Algorithm: The NTI algorithm com-

plexity is generated by the computation of the JDT and JTT
data structures it uses. The complexity of the JTT algorithm
as presented earlier in this paper isO(s2 · (n−s) ·d4) where
n is the number of CSP variables,s is the size of the depen-
dent set for which the JTT is constructed andd the largest
domain size. In the worst case, the NTI algorithm constructs
the JTT for all possible dependent sets in the neighborhood
of the critical variable up to sizesmax where an interchange-
ability is found or not. Thus, it can call the JTT algorithm at
mostO(nsmax) times, and the worst case computation time
is O((nsmax)smax(n − smax)d4). Fortunately, we will see
in the analysis on random problems thatsmax is on average
quite small.

Experimental results
We report our results obtained during empirical study for
NTI occurrence over random generated problems. During
our experimental study we notice that NTI values occurrence
depends mostly on the CSP tightness. In our experiments,
we measured two parameters of the NTI occurrence: the av-
erage tuple size per variable,Avs and the average number of
interchangeable tuples per variable,Avt. Both measures are
obtained by computing the sets of interchangeable tuples for
each value pair of each variable normalized to the domain
size of the variable. Due to lack of space, we present here
only the results forAvs measure; the others can be found
in an extended version of this paper at (Neagu & Faltings
2005).

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

tightness

m
ea

su
re

 A
ve

ra
ge

 D
ep

en
de

nt
 S

et

Figure 5:The dependence of the interchangeable tuple size (Avs)
on the CSP tightness.

In Figure 5, we study how the interchangeable tuples mea-
sureAvs, defined above, varies with the CSP tightness. For
each data point, we generated 20 random problems with
the following parameters : number variables= 10, do-
main size= 10, CSP density varies randomly in the interval
[0.1, 0.9] and CSP tightness varies for each point in the set
{0.1, 0.3, ..., 0.9}. We can observe that the average tuple
size,Avs, increases with the CSP tightness. Note that we
count in our measurements also tuples of one variable, thus
the NI values. From our empirical experimentation we re-
trieve the following conclusions: the interchangeable tuple
size and number do not depend on the CSP density; the in-
terchangeable tuple size and number increases with the CSP
tightness, where the number of tuples is more sensitive to the

CSP tightness; the interchangeable tuples size does not de-
pend on the problem size, while the number of interchange-
able tuples increases with the problem size. Both measures
increases with the domain size.

Conclusions
Interchangeability is an interesting but not very deeply ex-
plored concept in constraint satisfaction. In this paper, we
have developed the first algorithm that allows to find partial
interchangeabilities without solving the entire problem. It is
based on the concept of Neighborhood Tuple Interchange-
ability, which turns out to be more useful than Neighborhood
Partial Interchangeability as defined earlier by Choueiry and
Noubir (Choueiry & Noubir 1998).

We have given an algorithm that computes a smallest de-
pendent setS for a desired interchangeability. If the algo-
rithm finds such a set, it is guaranteed that the set is indeed
partially interchangeable, but possibly with a smaller depen-
dent set. An interesting result is provided by Theorem 3:
if the set is found to be not NTI, then it can also be guar-
anteed to not be partially interchangeable at all. Thus, we
actually have a complete method to compute all partial in-
terchangeabilities; however, it does not necessarily find the
smallest dependent sets. In experiments on random prob-
lems, we found that in general most values seem to become
interchangeable with dependent sets of manageably small
size. Thus, while the complexity of our methods are expo-
nential in the size of the dependent sets, we do not expect
this to be a great problem in practice.

References
Choueiry, B., and Noubir, G. 1998. On the Computation
of Local Interchangeability in Discrete Constraint Satisfac-
tion Problems. InProc. of AAAI-98, 326–333.
Choueiry, B.; Faltings, B.; and Rainer, W. 1995. Abstrac-
tion by interchangeability in resource allocation. InProc.
of the IJCAI-95, 1694–1701.
Freuder, E. C. 1991. Eliminating Interchangeable Values
in Constraint Satisfaction Problems. InProc. of AAAI-91,
227–233.
Neagu, N., and Faltings, B. 2001. Exploiting Interchange-
abilities for Case Adaptation. InProc. of ICCBR-01, 422–
437.
Neagu, N., and Faltings, B. 2005. Approximating
Partial Interchangeability in CSP Solutions. Inhttp :
//liawww.epfl.ch/Publications/, In Proc. of FLAIRS-
05.
Petcu, A., and Faltings, B. 2003. Applying Interchange-
ability Techniques to the Distributed Breakout Algorithm.
In Proc. of IJCAI-03.
Weigel, R., and Faltings, B. 1998. Interchangeability for
Case Adaptation in Configuration Problems.In Proc. of the
AAAI-98.
Weigel, R., and Faltings, B. 1999. Compiling Constraint
Satisfaction Problems.Artificial Intelligence 115, pg. 257-
287.

