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Abstract 

Much of current data mining research is focused on 
discovering sets of attributes that discriminate data entities 
into classes, such as shopping trends for a particular 
demographic group.  In contrast, we are working to develop 
data mining techniques to discover patterns consisting of 
complex relationships between entities.  Our research is 
particularly applicable to domains in which the data is 
event driven, such as counter-terrorism intelligence 
analysis.  In this paper we describe an algorithm designed 
to operate over relational data received incrementally.  Our 
approach includes a mechanism for summarizing 
discoveries from previous data increments so that the 
globally best patterns can be computed by examining only 
the new data increment.  We describe a method by which 
relational dependencies that span across temporal 
increment boundaries can be efficiently resolved so that 
additional pattern instances, which do not reside entirely in 
a single data increment, can be discovered.   

Introduction 
Much of current data mining research is focused on 
algorithms that can discover sets of attributes that 
discriminate data entities into classes, such as shopping or 
banking trends for a particular demographic group.  In 
contrast, our work is focused on data mining techniques to 
discover relationships between entities.  Our work is 
particularly applicable to problems where the data is event 
driven, such as the types of intelligence analysis performed 
by counter-terrorism organizations.  Such problems require 
discovery of relational patterns between the events in the 
environment so that these patterns can be exploited for the 
purposes of prediction and action.   

Also common to these domains is the continuous nature 
of the discovery problems.  For example, Intelligence 
Analysts often monitor particular regions of the world or 
focus on long-term problems like Nuclear Proliferation 
over the course of many years.  To assist in such tasks, we 
are developing data mining techniques that can operate 
with data that is received incrementally. 

In this paper we present Incremental Subdue (ISubdue), 
which is the result of our efforts to develop an incremental 
discovery algorithm capable of evaluating data received 
incrementally.  ISubdue iteratively discovers and refines a 

set of canonical patterns, considered to be most 
representative of the accumulated data. 

Structure Discovery 
The work we describe in this paper is based upon Subdue 
(Holder et al. 2002), which is a graph-based data mining 
system designed to discover common structures from 
relational data.  Subdue represents data in graph form and 

can support either directed or undirected edges.  Subdue 
operates by evaluating potential substructures for their 
ability to compress the entire graph, as illustrated in Figure 
1.  The better a particular substructure describes a graph, 
the more the graph will be compressed by replacing that 
substructure with a placeholder.  Repeated iterations will 
discover additional substructures, potentially those that are 
hierarchical, containing previously compressed 
substructures.   

Subdue uses the Minimum Description Length Principle 
(Rissanen 1989) as the metric by which graph compression 
is evaluated.  Subdue is also capable of using an inexact 
graph match parameter to evaluate substructure matches so 
that slight deviations between two patterns can be 
considered as the same pattern. 

Incremental Discovery 
For our work on ISubdue, we assume that data is received 
in incremental blocks.  Repeatedly reprocessing the 
accumulated graph after receiving each new increment 
would be intractable because of the combinatoric nature of 
substructure evaluation, so instead we wish to develop 
methods to incrementally refine the substructure 
discoveries with a minimal amount of reexamination of old 
data.   

Figure 1.  Subdue discovers common substructures within 
relational data by evaluating their ability to compress the 
graph. 
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Independent Data 
In our previous work (Coble et al, 2005), we developed a 
method for incrementally determining the best 
substructures within sequential data where each new 
increment is a distinct graph structure independent of 
previous increments.  The accumulation of these 
increments is viewed as one large but disconnected graph.   

We often encounter a situation where local applications 
of Subdue to the individual data increments will yield a set 
of locally-best substructures that are not the globally best 
substructures that would be found if the data could be 
evaluated as one aggregate block.  To overcome this 
problem, we introduced a summarization metric, 
maintained from each incremental application of Subdue, 
that allows us to derive the globally best substructure 
without reapplying Subdue to the accumulated data. 

To accomplish this goal, we rely on a few artifacts of 
Subdue’s discovery algorithm.  First, Subdue creates a list 
of the n best substructures discovered from any dataset, 
where n is configurable by the user.  . 

 
 
 
Second, we use the value metric Subdue maintains for 

each substructure.  Subdue measures graph compression 
with the Minimum Description Length principle as 
illustrated in Equation 1, where DL(S) is the description 
length of the substructure being evaluated, DL(G|S) is the 
description length of the graph as compressed by the 
substructure, and DL(G) is the description length of the 
original graph.  The better our substructure performs, the 
smaller the compression ratio will be.  For the purposes of 
our research, we have used a simple description length 
measure for graphs (and substructures) consisting of the 
number of vertices plus the number of edges.  C.f. (Cook 
and Holder 1994) for a full discussion of Subdue’s MDL 
graph encoding algorithm. 

Subdue’s evaluation algorithm ranks the best 
substructure by measuring the inverse of the compression 
value in Equation 1.  Favoring larger values serves to pick 
a substructure that minimizes DL(S) + DL(G|S), which 
means we have found the most descriptive substructure. 

For ISubdue, we must use a modified version of the 
compression metric to find the globally best substructure, 
illustrated in Equation 2. 

 
 
 
 
 
With Equation 2 we calculate the compression achieved 

by a particular substructure, Si, up through and including 
the current data increment m.  The DL(Si) term is the 
description length of the substructure, Si, under 
consideration.  The term  

 
 
 

represents the description length of the accumulated graph 
after it is compressed by the substructure Si.   

Finally, the term  
 
 
 
represents the full description length of the accumulated 
graph. 

 
 

 
 

 
At any point we can then reevaluate the substructures using 
Equation 3 (inverse of Equation 2), choosing the one with 
the highest value as globally best. 

After running the discovery algorithm over each newly 
acquired increment, we store the description length metrics 
for the top n local subs in that increment.  By applying our 
algorithm over all of the stored metrics for each increment, 
we can then calculate the global top n substructures.   

Sequentially Connected Data 
We now turn our attention to the challenge of 
incrementally modifying our knowledge of the most 
representative pattern when dependencies exist across 
sequentially received data increments.  As each new data 
increment is received, it may contain new edges that 
extend from vertices in the new data increment to vertices 
in previous increments. 

Figure 2 illustrates an example where two data 
increments are introduced over successive time steps.  

Common substructures have been identified and two 
instances extend across the increment boundary.  Referring 
back to our counterterrorism example, it is easy to see how 
analysts would continually receive new information 
regarding previously identified groups, people, targets, or 
institutions. 

Algorithm 
First, we assume certain conditions with respect to the 
data.   
1) The environment producing the data is stable, meaning 
that the relationships that govern the variables are constant.  
We will address concept drift in our future work. 
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Figure 2.  Sequentially connected data 



2) The pattern instances are distributed consistently 
throughout the data.  We need not rely on a specific 
statistical distribution.  Our requirement is only that any 
pattern prominent enough to be of interest is consistently 
supported throughout the data.   

Approach 
Let 

Gn =  set of top-n globally best substructures 
Is =  set of pattern instances associated with a 

substructure s∈  Gn 
Vb = set of vertices with an edge spanning the increment 

boundary and that are potential members of a top-n 
substructure 

Sb =  2-vertex pairs of seed substructure instances with 
an edge spanning the increment boundary 

Ci =  set of candidate substructure instances that span the 
increment boundary and that have the potential of 
growing into an instance of a top n substructure. 

 
The first step in the discovery process is to apply the 
algorithm we developed for the independent increments 
discussed above.  This involves running Subdue discovery 
on the data contained exclusively within the new 
increment, ignoring the edges that extend to previous 
increments.  We then update the statistics stored with the 
increment and compute the set of globally best 
substructures Gn.  This process is illustrated in Figure 3. 

Based on our defined assumptions, we know that the 
local data within the new increment is consistent with the 
rest of the data, so we wish to take advantage of it in 
forming our knowledge about the set of patterns that are 

most representative of the system generating the data.  
Although the set of top-n substructures computed at this 
point in the algorithm does not consider substructure 
instances spanning the increment boundary and therefore 
will not be accurate in terms of the respective strength of 
the best substructures, it will be more accurate than if we 
were to ignore the new data entirely prior to addressing the 
increment boundary. 

The second step of our algorithm is to identify the set of 
boundary vertices, Vb, where each vertex has a spanning 
edge that extends to a previous increment and is potentially 
a member of one of the top n best substructures in Gn.  We 

can identify all boundary vertices in O(m), where m is the 
number of edges in the new increment, and then identify 
those that are potential members of a top-n substructure in 
O(k), where k is the number of vertices in the set of 
substructures Gn.  Figure 4 illustrates this process. 

For the third step we create a set of 2-vertex substructure 
seed instances by connecting each vertex in Vb with the 
spanning edge to its corresponding vertex in a previous 
increment.  We immediately discard any instance where 
the second vertex is not a member of a top-n substructure 
(all elements of Vb are already members of a top-n 

substructure), which again can be done in O(k).  A copy of 
each seed instance is associated with each top-n 
substructure, si ∈  Gn, for which it is a subset.   

To facilitate an efficient process for growing the seed 

instances into potential instances of a top-n substructure, 
we now create a set of reference graphs.  We create one 

Figure 4.  The second step is to identify all 
boundary vertices that could possibly be part of an 
instance of a top n pattern.  The third step is to 
create 2-vertex substructure instances by joining the 
vertices that span the increment boundary.  
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reference graph for each copy of a seed instance, which is 
in turn associated with one top-n substructure.  Figure 5 
illustrates this process.  We create the initial reference 

graph by extending the seed instance by one edge and 
vertex in all possible directions.  We can then extend the 
seed instance with respect to the reference graph to create a 

set of candidate instances Ci, for each top-n substructure 
si ∈  Gn, illustrated in Figure 6.  The candidate instances 
represent an extension by a single edge and a single vertex, 
with one candidate instance being generated for each 
possible extension beyond the seed instance.  We then 
evaluate each candidate instance, cij ∈  Ci and keep only 
those where cij is still a subgraph of si.  For each candidate 
instance that is found to not be a subgraph of a top-n 
substructure, we mark the reference graph to indicate the 
failed edge and possibly a vertex that is a dead end.  This 
prevents redundant exploration in future extensions and 
significantly prunes the search space. 

In the fifth step (Figure 7), we repeatedly extend each 
instance, cij ∈  Ci, in all possible directions by one edge 
and one vertex.  When we reach a point where candidate 

instances remain but all edges and vertices in the reference 
graph have already been explored, then we again extend 
the reference graph frontier by one edge and one vertex.  
After each instance extension we discard any instance in Ci 
that is no longer a subgraph of a substructure in Gn.  Any 
instance in Ci that is an exact match to a substructure in Gn 
is added to the instance list for that substructure, Is, and 

removed from Ci.  The pseudocode for this process is 
illustrated in Figure 8. 

Once we have exhausted the set of instances in Ci so that 
they have either been added to a substructure’s instance list 
or discarded, we update the increment statistics to reflect 
the new instances and then we can recalculate the top-n set, 
Gn, for the sake of accuracy, or wait until the next 
increment.   

Evaluation 
To validate our work, we have conducted two sets of 
experiments, one on synthetic data and another on data 
simulated for the counterterrorism domain.   
Synthetic Data.  Our synthetic data consists of a 
randomly generated graph segment with vertex labels 
drawn uniformly from the 26 letters of the alphabet.  
Vertices have between one and three outgoing edges where 
the target vertex is selected at random and may reside in a 
previous data increment, causing the edge to span the 
increment boundary.  In addition to the random segments, 

we intersperse multiple instances of a predefined 
substructure.  For the experiments described here, the 

Figure 8.  Pseudocode for steps 5 
and 6. 
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predefined substructure we used is depicted in Figure 9.  
We embed this substructure internal to the increments and 
also insert instances that span the increment boundary to 
test that these instances are detected by our discovery 
algorithm. 
Figure 10 illustrates the results for a progression of five 
experiments.  The x-axis indicates the number of 
increments that were processed and the respective size in 
terms of vertices and edges.  To illustrate the experiment 
methodology, consider the 15-increment experiment.  We 
provide ISubdue with the 15 increments in sequential order 

as fast as the algorithm can process them.  The time 
depicted is for processing all 15 increments.  We then 
aggregate all 15 increments and process them with Subdue 
for the comparison.  The five results shown in Figure 10 
are not cumulative, meaning that each experiment includes 
a new set of increments.  It is reasonable to suggest then 
that adding five new increments – from 15 to 20 – would 
require approximately three additional seconds of 
processing time for ISubdue, whereas Subdue would 
require the full 1130 seconds because of the need to 
reprocess all of the accumulated data. 
Counterterrorism Data.  The counterterrorism data was 
generated by a simulator created as part of the Evidence 
Assessment, Grouping, Linking, and Evaluation (EAGLE) 
program, sponsored by the U.S. Air Force Research 
Laboratory.  The simulator was created by a program 
participant after extensive interviews with Intelligence 
Analysts and several studies with respect to appropriate 
ratios of noise and clutter.  The data we use for discovery 
represents the activities of terrorist organizations as they 
attempt to exploit vulnerable targets, represented by the 
execution of five different event types.  They are: 

Two-way-Communication: Involves one initiating person 
and one responding person. 
N-way-Communication: Involves one initiating person and 
multiple respondents. 
Generalized-Transfer: One person transfers a resource. 

Applying-Capability: One person applies a capability to a 
target 
Applying-Resource: One person applies a resource to a 
target 

The data also involves targets and groups, groups being 
comprised of member agents who are the participants in 

the aforementioned events.  All data is generalized so that 
no specific names are used.  Figure 11 illustrates a small 
cross-section of the data used in our experiments. 

The intent of this experiment was to evaluate the 
performance of our research on ISubdue against the 

performance of the original Subdue algorithm.  We are 
interested in measuring performance along two 
dimensions, run-time and the best reported substructures.   

Figure 11.  A section of the graph representation of the 
counterterrorism data used for our evaluation. 
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Figure 12.  Comparison of run-times for ISubdue and 
Subdue on increasing numbers of increments for 
counterterrorism data. 
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Figure 12 illustrates the comparative run-time performance 
of ISubdue and Subdue on the same data.  As for the 
synthetic data, ISubdue processes all increments 

successively whereas Subdue batch processes an 
aggregation of the increments for the comparative result. 

Figure 13 depicts the top three substructures discovered 
by both ISubdue and Subdue.  This set of substructures 
was consistently discovered for all five experiments 
introduced in Figure 12.  

Conclusions and Future Work 
In this paper we have presented a method for mining 
graph-based data received incrementally over time.  We 
have demonstrated that our approach provides a significant 
savings, in terms of processing time, without sacrificing 
accuracy.  This work provides essential capabilities 
necessary for the next phase of our research in which we 
will investigate the notion of drifting concepts, which is a 
significant challenge for time-sequenced data. 

Concept Drift 

In the traditional machine learning problem (Mitchell, 
2004; Vapnik, 1995), it is generally stated that some stable 
function F(x) is generating an attribute vector x.  The 
attribute vector x represents the observable features of the 
problem space.  This definition extends intuitively to data 
mining.  However, in sequential discovery problems, the 
domains are such that the underlying relationships between 
system variables often change over time.  Referring back to 
our counter-terrorism domain, it is certainly the case that 
terrorist organizations change their behaviors in 
unpredictable ways and adapt to counter-terrorism efforts.  
There are approaches to machine learning in the presence 
of shifting concepts, such as the sliding window approach 
(Widmer & Kubat, 1996), where only the last n data points 
are used to update the learned model, but such approaches 
are often naïve in the sense that they disregard valuable 

information learned outside of the data window.  This is 
akin to forgetting everything discovered about a terrorist 
organization’s behaviors and capabilities when in fact only 
a small portion of their behaviors have changed, like an 
alteration in communication patterns.  Our future work will 
focus on developing methods for structure discovery when 
the underlying system is undergoing change. 

Increment Size 
We have learned from our experimentation that the size of 
the data increments must be chosen carefully.  If data 
increments are too small, then the local discovery process 
we use as a precursor to our boundary evaluation may be 
overly biased to incomplete substructures.  In practice, it is 
often possible to select an appropriately sized increment 
boundary given some knowledge about the domain.  
However, there are situations where the data may obey 
irregular cycles and therefore the increment size shouldn’t 
be set to a fixed size.  In our future work we intend to 
explore statistical and information theoretic measures for 
dynamically selecting an increment size. 
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Figure 13.  The top 3 substructures discovered by 
both ISubdue and Subdue for the counterterrorism 
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