
Structure Discovery in Sequentially Connected Data

Jeffrey A. Coble, Diane J. Cook, and Lawrence B. Holder

Department of Computer Science and Engineering
The University of Texas at Arlington

Box 19015, Arlington, TX 76019
{coble,cook,holder}@cse.uta.edu

Abstract

Much of current data mining research is focused on
discovering sets of attributes that discriminate data entities
into classes, such as shopping trends for a particular
demographic group. In contrast, we are working to develop
data mining techniques to discover patterns consisting of
complex relationships between entities. Our research is
particularly applicable to domains in which the data is
event driven, such as counter-terrorism intelligence
analysis. In this paper we describe an algorithm designed
to operate over relational data received incrementally. Our
approach includes a mechanism for summarizing
discoveries from previous data increments so that the
globally best patterns can be computed by examining only
the new data increment. We describe a method by which
relational dependencies that span across temporal
increment boundaries can be efficiently resolved so that
additional pattern instances, which do not reside entirely in
a single data increment, can be discovered.

Introduction
Much of current data mining research is focused on
algorithms that can discover sets of attributes that
discriminate data entities into classes, such as shopping or
banking trends for a particular demographic group. In
contrast, our work is focused on data mining techniques to
discover relationships between entities. Our work is
particularly applicable to problems where the data is event
driven, such as the types of intelligence analysis performed
by counter-terrorism organizations. Such problems require
discovery of relational patterns between the events in the
environment so that these patterns can be exploited for the
purposes of prediction and action.

Also common to these domains is the continuous nature
of the discovery problems. For example, Intelligence
Analysts often monitor particular regions of the world or
focus on long-term problems like Nuclear Proliferation
over the course of many years. To assist in such tasks, we
are developing data mining techniques that can operate
with data that is received incrementally.

In this paper we present Incremental Subdue (ISubdue),
which is the result of our efforts to develop an incremental
discovery algorithm capable of evaluating data received
incrementally. ISubdue iteratively discovers and refines a

set of canonical patterns, considered to be most
representative of the accumulated data.

Structure Discovery
The work we describe in this paper is based upon Subdue
(Holder et al. 2002), which is a graph-based data mining
system designed to discover common structures from
relational data. Subdue represents data in graph form and

can support either directed or undirected edges. Subdue
operates by evaluating potential substructures for their
ability to compress the entire graph, as illustrated in Figure
1. The better a particular substructure describes a graph,
the more the graph will be compressed by replacing that
substructure with a placeholder. Repeated iterations will
discover additional substructures, potentially those that are
hierarchical, containing previously compressed
substructures.

Subdue uses the Minimum Description Length Principle
(Rissanen 1989) as the metric by which graph compression
is evaluated. Subdue is also capable of using an inexact
graph match parameter to evaluate substructure matches so
that slight deviations between two patterns can be
considered as the same pattern.

Incremental Discovery
For our work on ISubdue, we assume that data is received
in incremental blocks. Repeatedly reprocessing the
accumulated graph after receiving each new increment
would be intractable because of the combinatoric nature of
substructure evaluation, so instead we wish to develop
methods to incrementally refine the substructure
discoveries with a minimal amount of reexamination of old
data.

Figure 1. Subdue discovers common substructures within
relational data by evaluating their ability to compress the
graph.

D

E

Y

X Z

S1
S1A

D

C

B

E

C
B

A

Y

X Z

Common Substructures Compressed Graph

Copyright 2005, American Association for Artificial Intelligence
(www.aaai.org). All rights reserved.

Independent Data
In our previous work (Coble et al, 2005), we developed a
method for incrementally determining the best
substructures within sequential data where each new
increment is a distinct graph structure independent of
previous increments. The accumulation of these
increments is viewed as one large but disconnected graph.

We often encounter a situation where local applications
of Subdue to the individual data increments will yield a set
of locally-best substructures that are not the globally best
substructures that would be found if the data could be
evaluated as one aggregate block. To overcome this
problem, we introduced a summarization metric,
maintained from each incremental application of Subdue,
that allows us to derive the globally best substructure
without reapplying Subdue to the accumulated data.

To accomplish this goal, we rely on a few artifacts of
Subdue’s discovery algorithm. First, Subdue creates a list
of the n best substructures discovered from any dataset,
where n is configurable by the user. .

Second, we use the value metric Subdue maintains for

each substructure. Subdue measures graph compression
with the Minimum Description Length principle as
illustrated in Equation 1, where DL(S) is the description
length of the substructure being evaluated, DL(G|S) is the
description length of the graph as compressed by the
substructure, and DL(G) is the description length of the
original graph. The better our substructure performs, the
smaller the compression ratio will be. For the purposes of
our research, we have used a simple description length
measure for graphs (and substructures) consisting of the
number of vertices plus the number of edges. C.f. (Cook
and Holder 1994) for a full discussion of Subdue’s MDL
graph encoding algorithm.

Subdue’s evaluation algorithm ranks the best
substructure by measuring the inverse of the compression
value in Equation 1. Favoring larger values serves to pick
a substructure that minimizes DL(S) + DL(G|S), which
means we have found the most descriptive substructure.

For ISubdue, we must use a modified version of the
compression metric to find the globally best substructure,
illustrated in Equation 2.

With Equation 2 we calculate the compression achieved

by a particular substructure, Si, up through and including
the current data increment m. The DL(Si) term is the
description length of the substructure, Si, under
consideration. The term

represents the description length of the accumulated graph
after it is compressed by the substructure Si.

Finally, the term

represents the full description length of the accumulated
graph.

At any point we can then reevaluate the substructures using
Equation 3 (inverse of Equation 2), choosing the one with
the highest value as globally best.

After running the discovery algorithm over each newly
acquired increment, we store the description length metrics
for the top n local subs in that increment. By applying our
algorithm over all of the stored metrics for each increment,
we can then calculate the global top n substructures.

Sequentially Connected Data
We now turn our attention to the challenge of
incrementally modifying our knowledge of the most
representative pattern when dependencies exist across
sequentially received data increments. As each new data
increment is received, it may contain new edges that
extend from vertices in the new data increment to vertices
in previous increments.

Figure 2 illustrates an example where two data
increments are introduced over successive time steps.

Common substructures have been identified and two
instances extend across the increment boundary. Referring
back to our counterterrorism example, it is easy to see how
analysts would continually receive new information
regarding previously identified groups, people, targets, or
institutions.

Algorithm
First, we assume certain conditions with respect to the
data.
1) The environment producing the data is stable, meaning
that the relationships that govern the variables are constant.
We will address concept drift in our future work.

)G(DL

)S|G(DL)S(DL
nCompressio

+= Eq. 1

Eq. 2
∑

∑

=

=
+

=
m

j
j

m

j
iji

im

)G(DL

)S|G(DL)S(DL

)S(Compress

1

1

+∑

∑

=

=
m

j
iji

m

j
j

)S|G(DL)S(DL

)G(DL

)imax(arg

1

1 Eq. 3

∑
=

m

j
ij)S|G(DL

1

∑
=

m

j
j)G(DL

1

A

D

C

B

E

C
B

A

Y

X Z

Common
Substructures

N

M

Y

C

A
L

B

A

R

X

Z

J

B

C

O

H

Increment
Boundary

A

B

C

Figure 2. Sequentially connected data

2) The pattern instances are distributed consistently
throughout the data. We need not rely on a specific
statistical distribution. Our requirement is only that any
pattern prominent enough to be of interest is consistently
supported throughout the data.

Approach
Let

Gn = set of top-n globally best substructures
Is = set of pattern instances associated with a

substructure s∈ Gn
Vb = set of vertices with an edge spanning the increment

boundary and that are potential members of a top-n
substructure

Sb = 2-vertex pairs of seed substructure instances with
an edge spanning the increment boundary

Ci = set of candidate substructure instances that span the
increment boundary and that have the potential of
growing into an instance of a top n substructure.

The first step in the discovery process is to apply the
algorithm we developed for the independent increments
discussed above. This involves running Subdue discovery
on the data contained exclusively within the new
increment, ignoring the edges that extend to previous
increments. We then update the statistics stored with the
increment and compute the set of globally best
substructures Gn. This process is illustrated in Figure 3.

Based on our defined assumptions, we know that the
local data within the new increment is consistent with the
rest of the data, so we wish to take advantage of it in
forming our knowledge about the set of patterns that are

most representative of the system generating the data.
Although the set of top-n substructures computed at this
point in the algorithm does not consider substructure
instances spanning the increment boundary and therefore
will not be accurate in terms of the respective strength of
the best substructures, it will be more accurate than if we
were to ignore the new data entirely prior to addressing the
increment boundary.

The second step of our algorithm is to identify the set of
boundary vertices, Vb, where each vertex has a spanning
edge that extends to a previous increment and is potentially
a member of one of the top n best substructures in Gn. We

can identify all boundary vertices in O(m), where m is the
number of edges in the new increment, and then identify
those that are potential members of a top-n substructure in
O(k), where k is the number of vertices in the set of
substructures Gn. Figure 4 illustrates this process.

For the third step we create a set of 2-vertex substructure
seed instances by connecting each vertex in Vb with the
spanning edge to its corresponding vertex in a previous
increment. We immediately discard any instance where
the second vertex is not a member of a top-n substructure
(all elements of Vb are already members of a top-n

substructure), which again can be done in O(k). A copy of
each seed instance is associated with each top-n
substructure, si ∈ Gn, for which it is a subset.

To facilitate an efficient process for growing the seed

instances into potential instances of a top-n substructure,
we now create a set of reference graphs. We create one

Figure 4. The second step is to identify all
boundary vertices that could possibly be part of an
instance of a top n pattern. The third step is to
create 2-vertex substructure instances by joining the
vertices that span the increment boundary.

B

C

Step 2: Identify all vertices that have an
edge extending to a previous increment;
Keep only those that have the potential to
be grown into an instance of a top-n sub

A

B

A

B

C A

K B

R A

D B

Step 3: Create a 2-vertex
substructure instance by
connecting each vertex in the
list from step 2 with the edge
that spans the increment and
the corresponding vertex in a
previous increment;
Keep only those where both
vertices are members of a
top-n sub

C A

D B

New Increment
Received

Increment Boundary

Step 1: Run local
discovery, store
increment statistics,
compute best global
subs

Figure 3. The first step of the sequential discovery
process is to evaluate the local data in the new
increment

Seed
Instance

Reference
Graph

Complete
Graph

Mapping

Step 4: For each 2-vertex seed
instance, create a Reference
Graph that is one extension in
every possible direction beyond
the instance

Mapping

Figure 5. To facilitate efficient instance extension, we
create a reference graph, which we keep extended one
step ahead of the instances it represents.

reference graph for each copy of a seed instance, which is
in turn associated with one top-n substructure. Figure 5
illustrates this process. We create the initial reference

graph by extending the seed instance by one edge and
vertex in all possible directions. We can then extend the
seed instance with respect to the reference graph to create a

set of candidate instances Ci, for each top-n substructure
si ∈ Gn, illustrated in Figure 6. The candidate instances
represent an extension by a single edge and a single vertex,
with one candidate instance being generated for each
possible extension beyond the seed instance. We then
evaluate each candidate instance, cij ∈ Ci and keep only
those where cij is still a subgraph of si. For each candidate
instance that is found to not be a subgraph of a top-n
substructure, we mark the reference graph to indicate the
failed edge and possibly a vertex that is a dead end. This
prevents redundant exploration in future extensions and
significantly prunes the search space.

In the fifth step (Figure 7), we repeatedly extend each
instance, cij ∈ Ci, in all possible directions by one edge
and one vertex. When we reach a point where candidate

instances remain but all edges and vertices in the reference
graph have already been explored, then we again extend
the reference graph frontier by one edge and one vertex.
After each instance extension we discard any instance in Ci
that is no longer a subgraph of a substructure in Gn. Any
instance in Ci that is an exact match to a substructure in Gn
is added to the instance list for that substructure, Is, and

removed from Ci. The pseudocode for this process is
illustrated in Figure 8.

Once we have exhausted the set of instances in Ci so that
they have either been added to a substructure’s instance list
or discarded, we update the increment statistics to reflect
the new instances and then we can recalculate the top-n set,
Gn, for the sake of accuracy, or wait until the next
increment.

Evaluation
To validate our work, we have conducted two sets of
experiments, one on synthetic data and another on data
simulated for the counterterrorism domain.
Synthetic Data. Our synthetic data consists of a
randomly generated graph segment with vertex labels
drawn uniformly from the 26 letters of the alphabet.
Vertices have between one and three outgoing edges where
the target vertex is selected at random and may reside in a
previous data increment, causing the edge to span the
increment boundary. In addition to the random segments,

we intersperse multiple instances of a predefined
substructure. For the experiments described here, the

Figure 8. Pseudocode for steps 5
and 6.

)CC
C

 - cCC
 sc

 c I
 s c

truefound
 sc

 Gs
falsefound

 C c
C

ii

i

ii

s'

n

i

i

(anceExtendInst
 If

or foundnot If

If

 If

 allFor

allFor
 While

←
∅≠

←
=

=
=

⊆
∈

=
∈
∅≠

U

Figure 6. The reference graphs are used as a
template to extend new candidate instances for
evaluation against the top-n substructures. Failed
extensions are propagated back into the reference
graph with marked edges and vertices, to guide
future extensions.

Seed
Instance

Evaluate candidate
instances and mark
reference graph

Reference
Graph

Candidate
Instances

X
XX

Figure 7. The fifth and sixth steps repeatedly extend
the set of seed instances until they are either grown into
a substructure from St or discarded.

Step 5: Candidate instances are
repeatedly grown by one edge and
one vertex with respect to the
reference graph and evaluated
against the set of top-n subs

C A
D B

B

C A G

C AX

C AD

C A

C A

...

Step 6: Repeat step 5 until the
remaining subs are exact matches to
a top-n sub; Discard any duplicates

Step 7: Update the statistics for the
current increment in light of the newly
discovered instances; Re-compute
the top-n subs if desired.

Figure 9. Predefined substructure embedded in
synthetic data.

predefined substructure we used is depicted in Figure 9.
We embed this substructure internal to the increments and
also insert instances that span the increment boundary to
test that these instances are detected by our discovery
algorithm.
Figure 10 illustrates the results for a progression of five
experiments. The x-axis indicates the number of
increments that were processed and the respective size in
terms of vertices and edges. To illustrate the experiment
methodology, consider the 15-increment experiment. We
provide ISubdue with the 15 increments in sequential order

as fast as the algorithm can process them. The time
depicted is for processing all 15 increments. We then
aggregate all 15 increments and process them with Subdue
for the comparison. The five results shown in Figure 10
are not cumulative, meaning that each experiment includes
a new set of increments. It is reasonable to suggest then
that adding five new increments – from 15 to 20 – would
require approximately three additional seconds of
processing time for ISubdue, whereas Subdue would
require the full 1130 seconds because of the need to
reprocess all of the accumulated data.
Counterterrorism Data. The counterterrorism data was
generated by a simulator created as part of the Evidence
Assessment, Grouping, Linking, and Evaluation (EAGLE)
program, sponsored by the U.S. Air Force Research
Laboratory. The simulator was created by a program
participant after extensive interviews with Intelligence
Analysts and several studies with respect to appropriate
ratios of noise and clutter. The data we use for discovery
represents the activities of terrorist organizations as they
attempt to exploit vulnerable targets, represented by the
execution of five different event types. They are:

Two-way-Communication: Involves one initiating person
and one responding person.
N-way-Communication: Involves one initiating person and
multiple respondents.
Generalized-Transfer: One person transfers a resource.

Applying-Capability: One person applies a capability to a
target
Applying-Resource: One person applies a resource to a
target

The data also involves targets and groups, groups being
comprised of member agents who are the participants in

the aforementioned events. All data is generalized so that
no specific names are used. Figure 11 illustrates a small
cross-section of the data used in our experiments.

The intent of this experiment was to evaluate the
performance of our research on ISubdue against the

performance of the original Subdue algorithm. We are
interested in measuring performance along two
dimensions, run-time and the best reported substructures.

Figure 11. A section of the graph representation of the
counterterrorism data used for our evaluation.

Comparison Between ISubdue and Subdue

2252
4089

7031

10222

13628

115 174 229 275 322
0

2000

4000

6000

8000

10000

12000

14000

16000

10
 I

nc
re

m
en

ts
40

00
0V

46
60

9E

15
 I

nc
re

m
en

ts
60

00
0V

69
46

9E

20
 I

nc
re

m
en

ts
80

00
0V

92
62

5E

25
 I

nc
re

m
en

ts
10

00
00

V
11

62
17

E

30
 I

nc
re

m
en

ts
12

00
00

V
13

93
56

E

Number of Increments

T
im

e
in

 S
ec

o
n

d
s

ISubdue

Subdue

Figure 12. Comparison of run-times for ISubdue and
Subdue on increasing numbers of increments for
counterterrorism data.

Comparison Between ISubdue and Subdue on Synthetic Data

325

650

1130

1558

32 59494138

2347

0

500

1000

1500

2000

2500

10
 In

cr
em

en
ts

22

80
0V

45
47

8E

15
 In

cr
em

en
ts

34
20

0V
67

80
5

E

20
 In

cr
em

en
ts

45
60

0V
 9

07
03

E

25
 In

cr
em

en
ts

57
00

0V
11

33
26

E

30
 In

cr
em

en
ts

68
40

0V
13

60
22

E

Number of Increments

Ti
m

e
in

 S
ec

o
nd

s

ISubdue

Subdue

Figure 10. Comparison of ISubdue and Subue on on
increasing number of increments for synthetic data.

Figure 12 illustrates the comparative run-time performance
of ISubdue and Subdue on the same data. As for the
synthetic data, ISubdue processes all increments

successively whereas Subdue batch processes an
aggregation of the increments for the comparative result.

Figure 13 depicts the top three substructures discovered
by both ISubdue and Subdue. This set of substructures
was consistently discovered for all five experiments
introduced in Figure 12.

Conclusions and Future Work
In this paper we have presented a method for mining
graph-based data received incrementally over time. We
have demonstrated that our approach provides a significant
savings, in terms of processing time, without sacrificing
accuracy. This work provides essential capabilities
necessary for the next phase of our research in which we
will investigate the notion of drifting concepts, which is a
significant challenge for time-sequenced data.

Concept Drift

In the traditional machine learning problem (Mitchell,
2004; Vapnik, 1995), it is generally stated that some stable
function F(x) is generating an attribute vector x. The
attribute vector x represents the observable features of the
problem space. This definition extends intuitively to data
mining. However, in sequential discovery problems, the
domains are such that the underlying relationships between
system variables often change over time. Referring back to
our counter-terrorism domain, it is certainly the case that
terrorist organizations change their behaviors in
unpredictable ways and adapt to counter-terrorism efforts.
There are approaches to machine learning in the presence
of shifting concepts, such as the sliding window approach
(Widmer & Kubat, 1996), where only the last n data points
are used to update the learned model, but such approaches
are often naïve in the sense that they disregard valuable

information learned outside of the data window. This is
akin to forgetting everything discovered about a terrorist
organization’s behaviors and capabilities when in fact only
a small portion of their behaviors have changed, like an
alteration in communication patterns. Our future work will
focus on developing methods for structure discovery when
the underlying system is undergoing change.

Increment Size
We have learned from our experimentation that the size of
the data increments must be chosen carefully. If data
increments are too small, then the local discovery process
we use as a precursor to our boundary evaluation may be
overly biased to incomplete substructures. In practice, it is
often possible to select an appropriately sized increment
boundary given some knowledge about the domain.
However, there are situations where the data may obey
irregular cycles and therefore the increment size shouldn’t
be set to a fixed size. In our future work we intend to
explore statistical and information theoretic measures for
dynamically selecting an increment size.

Acknowledgements
This research is sponsored by the Air Force Research
Laboratory (AFRL) under contract F30602-01-2-0570.
The views and conclusions contained in this document are
those of the authors and should not be interpreted as
necessarily representing the official policies, either
expressed or implied, of AFRL or the United States
Government.

References
1. Coble, J., Rathi, R., Cook, D., Holder, L. Iterative

Structure Discovery in Graph-Based Data. To appear
in the International Journal of Artificial Intelligence
Tools, 2005.

2. Cook, D. and Holder, L. 1994. Substructure
Discovery Using Minimum Description Length and
Background Knowledge. In Journal of Artificial
Intelligence Research, Volume 1, pages 231-255.

3. Holder, L., Cook, D., Gonzalez, J., and Jonyer, I.
2002. Structural Pattern Recognition in Graphs. In
Pattern Recognition and String Matching, Chen, D.
and Cheng, X. eds. Kluwer Academic Publishers.

4. Mitchell, T. Machine Learning, McGraw Hill, 1997.
5. Rissanen, J. 1989. Stochastic Complexity in Statistical

Inquiry. World Scientific Publishing Company, 1989.

6. Vapnik, V. The Nature of Statistical Learning Theory,
Springer, New York, NY, USA, 1995.

7. Widmer, G.. and Kubat, M. . Learning in the Presence
of Concept Drift and Hidden Contexts. Machine
Learning, 23, 69-101, 1996.

Figure 13. The top 3 substructures discovered by
both ISubdue and Subdue for the counterterrorism
data.

TwoWayCommunication
Event

Person

respondent respondent respondent

Person

respondent respondent initiator

Person

respondent respondent

TwoWayCommunication
Event

TwoWayCommunication
Event

TwoWayCommunication
Event

TwoWayCommunication
Event

TwoWayCommunication
Event

TwoWayCommunication
Event

TwoWayCommunication
Event

