
Smelly Owls – Design Anomalies in Ontologies

Joachim Baumeister and Dietmar Seipel
Department of Computer Science, University of Wuerzburg, Germany

email:{baumeister, seipel}@informatik.uni-wuerzburg.de

Abstract

In the last years, ontologies have played a major role for
building large, distributed, and heterogeneous intelligent sys-
tems. E.g., ontologies are one key technique of the semantic
web layer. The development process of an ontology heavily
depends on its evaluation. In this paper, we introduce several
measures for the evaluation of ontological knowledge. Be-
sides standard methods like taxonomic errors we also present
novel metrics focusing ondesign anomalies. For the imple-
mentation of these measures we propose a declarative ap-
proach using the logic-based language FNQuery.

Introduction
Since the late 90’s the impact of ontologies has increased
significantly in the context of building intelligent systems.
Ontologies describe a formal, conceptual, and executable
model of an application domain. With the vision of the se-
mantic web (Berners-Lee, Hendler, & Lassila 2001) the sig-
nificance of ontologies has additionally being emphasized,
and many applications have been deployed in industrial en-
vironments. The acquisition and management of ontologies
also is concerned with its syntactic and semantic evaluation.
According to Ǵomez-Ṕerez (Staab & Studer 2004, Ch. 13)
the evaluation comprises the verification, the validation, and
the assessment of ontologies. More formal criteria for eval-
uating an ontology are consistency, completeness, concise-
ness, expandability, and sensitiveness. A detailed and for-
mal introduction of these terms can be found in (Gómez-
Pérez 1996). In the last years, the ontology web language
OWL has been established as a standardized and widely ac-
cepted representation of knowledge. OWL is build on RDF
Schema and it can be expressed in XML syntax for a natural
exchange and share between intelligent systems.

In this paper, we present methods for declaratively defin-
ing evaluation queries on OWL-based ontologies. Although
there exists a collection of standardized measures for eval-
uating ontologies, e.g. taxonomic errors, in each particular
application these measures need to be adapted w.r.t. the do-
main. Sometimes, even new types of appropriate measures
are required for a particular domain. For example, the detec-
tion of design anomalies is of special interest, since it is suit-

Copyright c© 2005, American Association for Artificial Intelli-
gence (www.aaai.org). All rights reserved.

able for improving the usability and maintainability of on-
tologies. Thus, such measures can indicate areas in the on-
tology that may be simplified, or they can avoid the reusabil-
ity of particular concepts. Then, refactoring methods are ex-
ecuted subsequently to eliminate anomalies. Therefore, we
present a declarative approach for flexibly defining evalua-
tion queries and transformations.

The paper is organized as follows: In the next two sec-
tions we briefly introduce the ontology web language OWL
and the query language FNQuery. Building on PROLOG
technology the language FNQuery allows for the declara-
tive analysis and modification of XML documents and is ap-
propriate for the evaluation of OWL-based ontologies. After
these introductory parts we describe standard measures for
the evaluation of ontologies, i.e., the detection of taxonomic
errors, and we show how FNQuery can be applied for these
methods. The subsequent section presents design anomalies
as more ambiguous measures for the evaluation of ontolo-
gies; also we show how FNQuery can be used for detecting
such anomalies. Finally, we conclude the paper with a dis-
cussion of the presented work.

OWL in a Nutshell
The ontology web language OWL represents a standard-
ized approach for machine-readable semantics of knowl-
edge. It builds on the XML -based syntax of RDF(S), which
is the standard format, although some equivalent alterna-
tive verbalizations for OWL are in use that are more human-
readable.

An ontology contains definitions of hierarchies ofclasses
(concepts), hierarchies ofpropertiesstating relations be-
tween classes or properties, andinstancesof classes and
properties. OWL allows for the declaration of specialized
properties like restrictions on properties, transitivity, dis-
jointness, boolean combinations, and enumerations. Thus,
OWL provides very expressive primitives for describing the
semantics of knowledge, which in turn makes the evaluation
process less efficient or even causes undecidability of state-
ments. For this reason, three sub-languages were defined for
OWL:
• OWL Full is the entire language including all modeling

primitives for stating semantics on knowledge; e.g., the
semantics of language primitives can be modified by ap-
plying arbitrary primitives to other primitives.

• OWL DL is a reasonable subset of OWL Full which allows
for efficient reasoning support. For short, the expressive-
ness of description logics (DL) is mapped in OWL DL.

• OWL Lite is further restricted in its expressiveness when
compared to OWL DL; however, due to its limited expres-
siveness it is easy to learn and to implement, e.g., for users
and for vendors providing OWL tools for reasoning and
construction.

For a careful introduction into OWL and the related con-
cepts we refer to (Antoniou & van Harmelen 2004).

Figure 1 and the subsequent text show an excerpt of a
printer ontology given in UML and XML -based OWL syn-
tax, respectively.

product

printer

personalPrinter laserJetPrinter hpPrinter

hpLaserJetPrinter

hpApplePrinter

hpProduct

appleLaserWriter

{disjoint}

ibmLaserPrinter

Figure 1: A Printer Ontology in UML

The conceptslaserJetPrinter , appleLaser-
Writer , andhpLaserJetPrinter are defined in the
XML -based syntax of OWL as follows.

<owl:Class rdf:ID="appleLaserWriter">

<rdfs:comment>Apple laser writers are laser printers

</rdfs:comment>

<rdfs:subClassOf rdf:resource="#laserJetPrinter"/>

<owl:disjointWith rdf:resource="#hpLaserJetPrinter"/>

</owl:Class>

<owl:Class rdf:ID="hpApplePrinter">

<rdfs:comment>Printers from a joint

venture of HP and Apple: contradicts the

disjoint restriction</rdfs:comment>

<rdfs:subClassOf rdf:resource="#hpLaserJetPrinter"/>

<rdfs:subClassOf rdf:resource="#apperLaserWriter"/>

</owl:Class>

<owl:Class rdf:ID="laserJetPrinter">

<rdfs:subClassOf rdf:resource="#printer"/>

</owl:Class>

<owl:Class rdf:ID="hpLaserJetPrinter">

<rdfs:subClassOf rdf:resource="#laserJetPrinter"/>

<rdfs:subClassOf rdf:resource="#hpPrinter"/>

<rdfs:subClassOf rdf:resource="#hpProduct"/>

<owl:disjointWith rdf:resource="#appleLaserWriter"/>

</owl:Class>

Examples of instances for the given printer ontology are as
follows:

<appleLaserWrite rdf:ID="1000"/>

<appleLaserWrite rdf:ID="1001"/>

<appleLaserWrite rdf:ID="1002"/>

<hpLaserJetPrinter rdf:ID="1003"/>

<hpLaserJetPrinter rdf:ID="1004"/>

<hpLaserJetPrinter rdf:ID="1005"/>

<hpLaserJetPrinter rdf:ID="1006"/>

The measures presented in this paper mainly focus on hi-
erarchical relationships between classes; also characteristics
of (primitive) properties of classes are investigated. Here,
the expressiveness of OWL Lite is sufficient. Some further
measures use disjointness relations of concepts that can be
formulated with OWL DL.

Declarative Queries in FNQuery
In the following, we consider the syntactic and semantic
analysis of OWL-based ontologies using a declarative ap-
proach.

Field Notation and FNQuery There exist several XML
parsers and term representations for XML documents in
PROLOG. We are using SWI-PROLOG and a special XML
representation, which we callfield notation. E.g., we repre-
sent the firstowl:Class -element as follows:

’owl:Class’:[’rdf:ID’:’appleLaserWriter’]:[

’rdfs:comment’:[’Apple laser ...’],

’rdfs:subClassOf’:[

’rdf:resource’:’#laserJetPrinter’]:[],

’owl:disjointWith’:[

’rdf:resource’:’#hpLaserJetPrinter’]:[]]

In general, an XML element is represented as a term struc-
tureT:As:C , which we call an FN-triple;T is the tag of the
element,As is a list representing the attribute/value pairs
A:V of the element, andC is a list of FN-triples represent-
ing the subelements. We often need to quote tags, attributes
or values, e.g., if they start with a capital letter or if they are
structures containing ’:’.

XML documents in field notation can be queried and
modified using the query language FNQuery (Seipel 2002),
which consists of the retrieval language FNSELECT, the up-
date language FNUPDATE, and the transformation language
FNTRANSFORM. FNQuery has been developed and imple-
mented as a PROLOG library by using suitable, intuitive
PROLOG constructs including path expressions similar to

XPATH. The main predicate is the binary infix predicate
:=/2 for evaluating path expressions to FN-triples.

FNSELECT Given an OWL knowledge baseOwl, there ex-
ists anisa -relationship between two classesC1 andC2, if
a subclassOf -relationship has explicitly been specified
between the two classes, or ifC1 has been defined as the
intersection ofC2 and some other classes:

isa(Owl, C1, C2) :-
R2 := Owl/’owl:Class’::[@’rdf:ID’=C1]

/’rdfs:subClassOf’@’rdf:resource’,
owl_reference_to_id(R2, C2).

isa(Owl, C1, C2) :-
R2 := Owlˆ’owl:Class’::[@’rdf:ID’=C1]

/’owl:intersectionOf’
/’owl:Class’@’rdf:about’,

owl_reference_to_id(R2, C2).

owl_reference_to_id(Reference, Id) :-
concat(’#’, Id, Reference).

owl_reference_to_id(Id, Id).

The two cases can be covered using the two rules defining
the predicateisa/3 ; further cases could be added nicely.
In the first rule the path expression selects a subelement
’owl:Class’ , whose attribute’rdf:ID’ is C1, and
then it selects the subelement’rdfs:subClassOf’ , and
assigns the attribute’rdf:resource’ to R2. Note that
we have to dereference attributes such asrdf:resource
andrdf:about to make them compatible withrdf:ID –
attributes.

Similarly, the following rule determines disjointness con-
ditions between classes in an OWL document:

disjointWith(Owl, C1, C2) :-
R2 := Owl/’owl:Class’::[@’rdf:about’=R1]

/’owl:disjointWith’@’rdf:resource’,
owl_reference_to_id(R1, C1),
owl_reference_to_id(R2, C2).

FNUPDATE The following update rule can be used for
deleting a redundantsubClassOf -relationship from an
OWL knowledge base:

delete(isa(C1, C2), Owl1, Owl2) :-
owl_reference_to_id(R2, C2),
Owl2 := Owl1 <-> [

/’owl:Class’::[@’rdf:ID’=C1]
/’rdfs:subClassOf’::[

@’rdf:resource’=R2]].

The following rule inserts a comment indicating that there
exists a redundantsubClassOf -relationship in an OWL
knowledge base:

indicate(isa(C1, C2), Owl1, Owl2) :-
Owl2 := Owl1 <+> [

/’owl:Class’::[@’rdf:ID’=C1]
/’rdfs:comment’:[

’redundant subClassOf: ’, C2]]

FNTRANSFORM There is also a language similar to XSLT
for transforming XML documents in PROLOG.

PROLOG Rules The following rules derive transitive sub-
classes of a class based on theisa -relation:

subClassOf(C1, C2) :-
isa(C1, C2).

subClassOf(C1, C2) :-
isa(C1, C), subClassOf(C, C2).

If the ontologyOwl is fixed, then we defineisa(C1,
C2) as isa(Owl, C1, C2) , and omit the ontology ar-
gument.

Taxonomic Errors in Ontologies
According to Ǵomez–Ṕerez (Ǵomez-Ṕerez 1999) the evalu-
ation of an ontology includes the inspection of its taxonomy,
which should be checked forinconsistency, incompleteness,
andredundancy, cf. Figure 2.

Taxonomy Errors=

Inconsistency

{
Circularity
Partition Errors
Semantic Errors

Incompleteness

{
Cpt. Classification
Exhaustiveness

Redundancy

{
Grammatical
Identity

Figure 2: Taxonomy Errors in an Ontology

In the following, we will show that our approach can be
easily applied for declaratively implementing most of these
standard tests. Furthermore, the examples will motivate
that additional, application–driven measures can be imple-
mented analogously.

Inconsistency
Inconsistency tests check, if a contradictory definition of an
individual can be found or if contradictory knowledge can be
derived from other definitions and axioms given in the on-
tology. We distinguish betweencircularity errors, partition
errors, andsemantic errors.

Circularity A circularity is identified if a class defined in
an ontology is a specialization or generalization of itself. For
example, in Figure 1 there exists a circle of the length 2 be-
tween the conceptsprinter and personalPrinter .
We can easily detect circularities with the following query:

?- isa(C1, C2),
subClassOf(C2, C1).

C1 = personalPrinter, C2 = printer
Yes

Observe, that for keeping the report on circularities com-
pact it is sufficient to report only givenisa –relationships
that are involved in a cycle; moreover, this yields a much
more efficient evaluation.

Partition Errors In a taxonomy subconcepts of a class
can be defined as a disjoint partition of the generalizing
class. E.g., in Figure 1 the conceptlaserJetPrinter
has two disjoint subconceptsappleLaserWriter and
hpLaserJetPrinter . A class partition error oc-
curs, if a class is defined as a common subclass of
several classes of a disjoint partition. Analogously, a
common instance of two disjoint classes resembles an
instance partition error. In our example the concept
hpApplePrinter causes a class partition error, since it is
inherited from the disjoint conceptsappleLaserWriter
andhpLaserJetPrinter . Class partition errors can be
found using the following query:

?- disjointWith(C1, C2),
subClassOf(C, C1),
subClassOf(C, C2).

C = hpApplePrinter,
C1 = hpLaserJetPrinter,
C2 = appleLaserWriter
Yes

Semantic Inconsistency Semantic inconsistencies occur
if the developer of the ontology asserts incorrect semantic
classifications; e.g., if a class is falsely defined as a subcon-
cept of another class, such that there is no semantic relation
between the concepts.

Semantic inconsistencies often are difficult to find using
automated methods, but they may be detected by a manual
inspection of the ontology. However, assistance can be of-
fered using FNQuery, e.g., by transforming (parts of) the
taxonomy into a human–readable format, cf. (Seipel, Baum-
eister, & Hopfner 2004).

Incompleteness
Ontological knowledge can be incomplete, ifisa relation-
ships between concepts are imprecisely defined or possible
information about decompositions is missing. Typically, in-
completeness occurs if (probably) important concepts are
omitted during the definition of the taxonomy. Furthermore,
partitions are incompletely defined, if knowledge about the
disjointness or exhaustiveness of a partition is omitted.

Unfortunately, it is very difficult to provide automated
methods for detecting such errors. However, it is possible
to support the identification of incomplete ontologies. E.g.,
partially defineddisjointWith relationships between sib-
lings may indicate an incomplete definition of a disjoint par-
tition. A partially defined disjointness can be formulated as
follows:

?- isa(C1, C), isa(C2, C), isa(C3, C),
disjointWith(C1, C2),
not(disjointWith(C2, C3)).

C = laserJetPrinter,
C1 = hpLaserJetPrinter,
C2 = appleLaserWriter,
C3 = ibmLaserPrinter
Yes

Furthermore, the manual inspection of an ontology for
finding incomplete knowledge can be supported by prepar-
ing human–readable reports using FNQuery. An interesting
measure, which requiresaggregation, would be the number
of classesC, such that most, but not all of their subclasses
have been modeled as disjoint, since this indicates poten-
tially missing disjointness conditions.

Redundancy
For a given ontology we can detect redundant class/instance
definitions or redundant subclass relations (isa) in the tax-
onomy. An isa definition is redundant, if it can be de-
rived from otherisa relationships. These redundancies are
harder to detect if transitive subclasses are involved:

redundant_isa(C1->C2->C3) :-
isa(C1, C3), subClassOf(C3, C2),
isa(C1, C2).

In the printer example in Figure 1 thesubClass rela-
tion betweenhpLaserJetPrinter andhpProduct is
redundant, since an indirectsubClass relation already ex-
ists due to the concepthpPrinter :

?- redundant_isa(X).

X = hpLaserJetPrinter ->
hpPrinter -> hpProduct

Yes

Analogously, redundantinstanceOf relations occur if
more than oneinstanceOf relation is defined; we also
distinguish direct and indirect (transitive) redundancy.

Design Anomalies
In addition to the taxonomic errors presented in the pre-
vious section there may exist even more subtle anomalies
in ontologies. Such anomalies do not directly imply errors
in reasoning but point to problematic areas in the ontology
that may require modification. Originally, anomalies had
been identified and investigated for relational databases. In
the last years, software engineering research has coined the
termbad smellsfor parts of the source code that do not pro-
duce false behavior but are badly designed and should be
improved for better maintainability, cf. (Fowler 1999).

The concept of design anomalies and corresponding
refactoring methods was transferred to rule-based and case-
based knowledge in (Baumeister, Seipel, & Puppe 2004). In
this section, we define typical design anomalies in ontolo-
gies.

We extend the predicate subClassOf/2 to
subClassOf/3 , where the third argument contains
the list of classes in a chain ofisa -relationships:

subClassOf(C1, C2, [C1, C2]) :-
isa(C1, C2).

subClassOf(C1, C2, [C1|Cs]) :-
isa(C1, C), subClassOf(C, C2, Cs).

The second rule constructs a path[C1|Cs] from C1 to
C2 recursively by appendingC1 to a pathCs - which is a
list of classes that has to be constructed before - fromC to
C2, if C1 is a subclass ofC.

Lazy Concepts Class and property definitions are the ba-
sis for instances created for the particular application do-
main. If a leaf class or property is never used in an appli-
cation, then we call this alazy concept. Lazy concepts can
appear in large manually defined ontologies, e.g., if the lazy
concept has been replaced with specialized or generalized
concepts during the development phase. A lazy concept is
not always a certain candidate for deletion, e.g., the concept
should remain in the ontology for preserving the reusabil-
ity or the standardization of the ontology. Then, the devel-
oper has to deal with the trade-off between the reusability of
the original and verbose ontology and the simplicity of the
ontology design. In FNQuery we define a lazy concept as
follows:

lazy_concept(C) :-
not(isa(_, C)), not(_:C).

Given a conceptC, we encode byX:C thatX is an instance
of C. The concept is lazy, if it is a leaf in the concept hier-
archy (i.e., there exists no subclass ofC), and if C does not
have any instances. We have used anonymous variables ”_”
here, since we are not interested in the particular subclasses
or instances ofC.

Chains of Inheritance Classes can be inherited by other
classes usingsubClassOf relations. Due to the applica-
tion of restructuring in even larger ontologies, an originally
well-designedsubClassOf tree may be degenerated such
that some parts of the tree represent long paths in which each
particular class contains only on inherited child. We call
such a path achain of inheritance, and in some cases it may
be reasonable to cut the path down to an appropriate num-
ber ofsubClassOf relations. Such chains are detected in
FNQuery with the following statements:

chain_of_inheritance(Cs, Threshold) :-
subClassOf(C1, C2, Cs),
length(Cs, N), N > Threshold,
not(contains_branch(Cs)).

contains_branch(Cs) :-
subsequence(Cs, [X, Y]),
isa(Z, Y), Z \= Y.

A path Cs = [C1, ..., X, Y, ..., C2] of
isa -relationships from a classC1 to another classC2 con-
tains a branch, if there exists a subsequence[X, Y] of two
consecutive classes on the path, such thatY has another sub-
classZ which is different fromX.

Lonely Disjoints In OWL DL (and OWL Full) dis-
jointness of classes can be explicitly defined using the
disjointWith restriction. Often siblings of the same
parent class are defined to be disjoint. During the devel-
opment of an ontology, often one sibling class is moved to
another point in the hierarchy. However, when using visual
ontology editors, e.g., Protéǵe (Grossoet al. 1999) and On-
toEdit (Sure, Angele, & Staab 2002), developers may for-
get to delete the disjointness relation from the moved class
(which is often reasonable). Suchlonely disjointscan yield

inconsistency errors and errors in reasoning with the on-
tology, for which the lonely disjointness relation cannot be
identified at first sight. Therefore, it is helpful to report a
class as a possible source of anomaly, which is disjoint with
other classes that are all located at another level of the hier-
archy. If these classes are all at the same point of the hier-
archy, then a lonely disjointness is reported. In the case of
a correct detection the anomaly can be removed by simply
deleting thedisjointWith restriction. Lonely disjoints
are described in FNQuery as follows:

siblings(C1, C2) :-
isa(C1, C),
isa(C2, C).

disjoint_with_some_sibling(C) :-
siblings(C, S),
disjointWith(C, S).

lonely_disjoint(C, C1-C2) :-
disjointWith(C1, C2),
siblings(C1, C2),
disjointWith(C, C1),
not(siblings(C, C1)),
disjointWith(C, C2),
not(siblings(C, C2)),
not(disjoint_with_some_sibling(C)).

Two classesC1 and C2 are siblings, if they have a
common parent classC. A class is a lonely disjoint, if
there exist two disjoint siblingsC1 and C2, such thatC
is disjoint with both of them, butC is not a sibling of
them, and moreover,C is not disjoint with one of its
own siblings. If we don’t have multiple inheritance, then
the conditionnot(siblings(C, C2)) is redundant,
since it could be derived fromsiblings(C1, C2) and
not(siblings(C, C1)) .

Property Clumps For classes additional properties can be
defined that either attach primitive information (e.g., strings
or integers) to the classes (DataType Properties), or relate
the class to other classes (Object Properties). If a collection
of such properties is repeatedly included in several class def-
initions, then we call this aproperty clump. The design of
the ontology may be improved by defining an abstract con-
cept aggregating this clump and replacing the clump by the
new concept. E.g., from an OWL DataType Property

<owl:DatatypeProperty
rdf:ID="manufactured_by">
<rdfs:domain rdf:resource="#product"/>
<rdfs:range rdf:resource="xsd;string"/>

</owl:DatatypeProperty>

the property information can be extracted in FNQuery:
property(Owl, Property, Domain, Range) :-

P := Owl/’owl:DatatypeProperty’::[
@’rdf:ID’=Property],

D := P/’rdfs:domain’@’rdf:resource’,
Range := P/’rdfs:range’@’rdf:resource’,
owl_reference_to_id(D, Domain).

From property/3 we can derive all properties for a
given classDomain . If the setProperties of common

properties of a given setDs of classes is larger than a given
thresholdT, then we could extract the properties and form a
new class, from which the classes inDs inherit:

properties(Owl, Domain, Properties) :-
findall(Prop:Range,

property(Owl, Prop, Domain, Range),
Properties).

property_clump(Owl, Ds, T, Properties) :-
maplist(properties(Owl),

Ds, Ps),
intersection(Ps, Properties),
length(Properties, N), N > T.

Discussion
In recent years, ontologies have been a major subject of re-
search for building intelligent systems, especially in the con-
text of the semantic web. In this paper, we have presented
declarative methods for evaluating ontologies; we have mo-
tivated that our declarative approach using FNQuery can be
applied for implementing standard queries, such as the eval-
uation of taxonomic errors, but also for novel evaluation
measures considering design anomalies in ontologies. Since
OWL is commonly represented in XML the question arises,
whether OWL documents can be processed using standard
XML tools like XQUERY and XSLT. However, due to their
generality such systems can only handle tasks based on the
syntax of the XML document, but not on its semantics. Thus,
it is very difficult to define queries and transformations that
take the defined data model of OWL into account. For exam-
ple, a query for all instances ofprinter should not only
consider the actual instances of the classprinter , but also
all instances of its subclasses, e.g.,laserJetPrinter ,
hpPrinter . In FNQuery the particular semantics of the
OWL data model can be easily defined in order to allow for
deductive queries.

Ontology development tools and tool suites such as
Prot́eǵe and OntoEdit have been successfully applied in var-
ious domains including eCommerce, medicine, configura-
tion, and software engineering. Our approach could be used
as a plugin for extending the evaluation facilities of these
general development tools. For example, OntoEdit (Sure,
Angele, & Staab 2002) offers the plugin OntoAnalyser for
the analysis of ontologies w.r.t. the conformity of proper-
ties and the consistency of the ontology. The features of
OntoAnalyser can be configured by specialized rules steer-
ing the analysis process. Analogously, the web-based ontol-
ogy development workbench WebODE includes the plugin
ODEClean supporting the OntoClean methodology. Onto-
Clean (Guarino & Welty 2002) allows for the semantic anal-
ysis of ontologies based on predefined meta-properties. It
should be possible to apply appropriate reasoning techniques
using such meta-properties within our approach as well.

The described evaluation measures are a starting point for
the application of refactoring methods, that provide a struc-
tured approach for improving the design of ontologies. The
application of refactoring methods is driven by the detection
of design anomalies; each identified design anomaly corre-
sponds to a sequence of refactorings aiming at removing the

anomaly. Since FNQuery can be used not only for formulat-
ing queries on OWL but also for implementing declarative
transformations and updates of XML documents, the pre-
sented approach can be extended to handle complex refac-
torings as well. The identification and formal description of
appropriate refactorings together with their declarative im-
plementation using FNQuery is an issue for future work.

References
[Antoniou & van Harmelen 2004] Antoniou, G., and van
Harmelen, F. 2004.A Semantic Web Primer. MIT Press.

[Baumeister, Seipel, & Puppe 2004] Baumeister, J.; Seipel,
D.; and Puppe, F. 2004. Refactoring Methods for Knowl-
edge Bases. InEngineering Knowledge in the Age of
the Semantic Web: 14th International Conference, EKAW
2004, LNAI 3257, 157–171. Springer.

[Berners-Lee, Hendler, & Lassila 2001] Berners-Lee, T.;
Hendler, J.; and Lassila, O. 2001. The Semantic Web.
Scientific American.

[Fowler 1999] Fowler, M. 1999.Refactoring. Improving
the Design of Existing Code. Addison-Wesley.

[Gómez-Ṕerez 1996] Ǵomez-Ṕerez, A. 1996. Towards a
Framework to Verify Knowledge Sharing Technology.Ex-
pert Systems with Applications11(4).

[Gómez-Ṕerez 1999] Ǵomez-Ṕerez, A. 1999. Evaluation
of Taxonomic Knowledge on Ontologies and Knowledge-
Based Systems. InProceedings of the 12th International
Workshop on Knowledge Acquisition, Modeling and Man-
agement (KAW 1999).

[Grossoet al.1999] Grosso, W.; Eriksson, H.; Fergerson,
R. W.; Gennari, J. H.; Tu, S. W.; and Musen, M. 1999.
Knowledge Modeling at the Millennium – The Design and
Evolution of Prot́eǵe-2000. InProceedings of the 12th In-
ternational Workshop on Knowledge Acquisition, Model-
ing and Management (KAW 1999).

[Guarino & Welty 2002] Guarino, N., and Welty, C. 2002.
Evaluating Ontological Decisions with OntoClean.Com-
munications of the ACM45(2).

[Seipel, Baumeister, & Hopfner 2004] Seipel, D.; Baum-
eister, J.; and Hopfner, M. 2004. Declaratively Querying
and Visualizing Knowledge Bases in XML . In Proceed-
ings of the 15th International Conference on Applications
of Declarative Programming and Knowledge Management
(INAP 2004), LNAI 3392, 18–34. Springer.

[Seipel 2002] Seipel, D. 2002. Processing XML Documents
in Prolog. InProceedings of Workshop on Logic Program-
ming (WLP 2002).

[Staab & Studer 2004] Staab, S., and Studer, R., eds. 2004.
Handbook on Ontologies. International Handbooks on In-
formation Systems. Berlin: Springer.

[Sure, Angele, & Staab 2002] Sure, Y.; Angele, J.; and
Staab, S. 2002. OntoEdit: Guiding Ontology Develop-
ment by Methodology and Inferencing. InProceedings
Intl. Conf. on Ontologies, Databases and Applications of
Semantics for Large Scale Information Systems, ODBASE
2002, LNCS 2519. Springer.

	Introduction
	Owl in a Nutshell
	Declarative Queries in FnQuery
	Taxonomic Errors in Ontologies
	Inconsistency
	Incompleteness
	Redundancy

	Design Anomalies
	Discussion

