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Abstract 
Similarity-based access to image databases assumes one or 
more similarity models. Although this assumption affects 
the retrieval precision of a system considerably, it is rarely 
described explicitly. Furthermore, because the similarity 
model is typically hard-coded into the system, it is very 
difficult if not impossible to use such a system for 
applications that do not fit the same similarity model. In this 
work, we develop a framework for designing similarity-
based image access systems that are driven by human 
perception, and hence can be tailored for multiple, diverse 
applications. The driving components of the approach are 
Principal Components-based feature selection, perception 
modeling via psychophysical experiments and Genetic 
Algorithm-driven distance function optimization. While our 
framework is general and flexible, we demonstrate the 
application in a particular image access scenario: Shape-
based retrieval of skin lesion images. The experimental 
results show that, by incorporating human perception of 
similarity into the system, retrieval performance may be 
significantly improved. 

Introduction   
Most similarity-based image retrieval or querying systems 
in literature assume a particular similarity model. While 
the choice of the similarity model affects the system 
retrieval performance significantly, it is rarely described 
explicitly. It is the authors’ experience that unless there is a 
strong resemblance between the similarity model of an 
access system and a new application, the system may be 
unusable. 
 Current content-based retrieval systems use low-level 
image features based on color, texture, and shape to 
represent images. However, another aspect that is as 
important as the features themselves has been neglected: 
The processing and interpretation of those features by 
human cognition.  For this reason, except in some 
constrained applications such as human face and 
fingerprint recognition, these low-level features do not 
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capture the high-level semantic meaning of images (Rui, 
Huang, and Chang 1999).  
 Although the ultimate goal of all image similarity 
metrics is to be consistent with human perception, little 
work has been done to systematically examine this 
consistency. Commonly, the performance of similarity 
metrics is evaluated based on anecdotal accounts of good 
and poor matching results (Frese, Bouman, and Allebach 
1997).  

In this work, we develop a system for retrieving medical 
images with focus objects incorporating models of human 
perception. The approach is to guide the search for an 
optimum similarity function using human perception. 
 Figure 1 shows an overview of the system. First, the 
images are segmented using an automated segmentation 
tool. Then, 15 shape features are computed for each image 
to obtain a feature matrix. Principal component analysis is 
performed on this matrix to reduce its dimensionality. The 
principal components obtained from the analysis are used 
to select a subset of variables that best represents the data. 
A human perception of similarity experiment is designed 
to obtain a perceptual distance matrix. Finally, an optimum 
weighted (city-block) distance function is designed using a 
genetic algorithm utilizing a matrix correlation procedure 
(the Mantel test) as a fitness function. 
 

Figure 1. System Overview 
 



 The system is tested for shape-based retrieval of skin 
lesion images. However, it can be used in other image 
domains where the images have focus objects, such as 
brain tumors (Figure 2, lower right) and bone tumors 
(Figure 2, lower left). 

Segmentation and Feature Computation   
Our database contains 500 clinical skin lesion images. The 
images have a resolution of about 500 pixels per 
centimeter. 

Segmentation 
Segmentation is an extremely important step in image 
retrieval since accurate computation of shape features 
depends on good segmentation (Rui, Huang, and Chang 
1999). For segmentation of lesion images we have used an 
automated tool, SkinSeg, described in (Xu et al. 1999). 
Two examples of segmented lesion images are given in the 
upper half of the Figure 2. 
 

        Figure 2. Biomedical images with focus objects 

Feature Computation 
The ABCD rule of dermatoscopy (Argenziano et al. 2000), 
recommended by the American Cancer Society, 
summarizes the clinical features of pigmented lesions 
suggestive of melanoma (a deadly form of skin cancer) by: 
asymmetry (A), border irregularity (B), color variegation 
(C) and diameter greater than 6 mm (D). Interestingly, 
three of these features are shape related. For each image in 
the database, we compute 15 shape features: Diameter, 
area, bending energy, contour sequence moments (Gupta 
and Srinath 1987), solidity, compactness, eccentricity, 
 
 
 
 

orientation, asymmetry (Costa and Ceesar 2001), fractal 
dimension (Costa and Ceesar 2001), and border 
irregularity (Xu et al. 1999).  
 We choose weighted city-block (L1) distance as the 
distance metric due to its ease of computation and 
robustness in the presence of outliers (Rousseeuw and 
Leroy 1987). Following (Aksoy and Haralick 2001), we 
normalize the features by transforming them to Uniform 
[0,1] random variables using their cumulative distribution 
functions (CDFs), since given a random variable x with 
CDF Fx( x ), the random variable x~ resulting from the 
transformation x~ = Fx( x ) will be uniformly distributed in 
the [0,1] range. 

Dimensionality Reduction and Feature 
Selection 

After the feature computation step, we have data with 15 
dimensions to be analyzed. Well known problems 
associated with high dimensionality include (a) high 
computational cost, (b) classifier accuracy degradation, 
known as Hughes phenomenon, and (c) difficulty in 
visualization.  
 We apply Principal Component Analysis (PCA) to this 
data to reduce its dimensionality. As a result of the analysis 
we choose to retain 5 principal components (PCs) that 
account for 96.15% of the variation in the data. The 
correlations between the PCs and the variables constitute 
the principal component loading matrix. An examination 
of this matrix shows that 5 PCs explain more than 90% of 
the variation in each variable. 
 Substantial dimensionality reduction can be achieved 
using a small number of PCs instead of the original 
variables, but usually the values of all of the original 
variables are still needed to calculate the PCs, since each 
PC is a linear combination of all of the original variables 
(Jolliffe 1986). Some variables may be difficult or 
expensive to measure therefore, collecting data on them in 
future studies may be impractical. Furthermore, while the 
original variables are readily interpretable, the constructed 
PCs may not be easy to interpret. Therefore, it might be 
preferable if, instead of using PCs, we could use a subset 
of the original variables, to account for most of the 
variation in the data (Jolliffe 1986). 
 The procedure to find n most important variables in the 
original set of variables is as follows: Starting with the 
largest PC, select the variable with the largest coefficient 
(loading) on that PC to represent that component, unless it 
has been chosen to represent a larger PC. Then, select the 
representative variable in the next largest PC. Repeat this 
procedure until you have a total of n variables (Jolliffe 
1986). We use this method (a.k.a. Jolliffe’s B4 method) to 
retain the following 5 variables: diameter, compactness, 
asymmetry, first contour sequence moment, and 
eccentricity.  
 The total amount of variation the selected variables 
account for can be used as a criterion to evaluate the 
efficiency of a particular subset of variables in representing 



the original set of variables (Jolliffe 1986). The total 
amount of variation that a subset of variables explains is 
the sum of the variation they explain in each of the 
discarded variables plus the sum of the variances for the 
variables comprising the subset. Each discarded variable is 
regressed on the retained variables and the corresponding 
squared multiple correlations are summed. If we add to 
that the variances of the retained variables, in our case 1.0 
for each variable since the variables are normalized, we 
obtain a measure of the total amount of variation that a 

subset of variables explains. This can be formulated as: 
where n and m are the number of  variables in the subset 
and the original set, respectively, and )(2 iR is the squared 
multiple correlation of the thi discarded variable with the 
retained variables.  
 In our case, the subset of 5 variables retained by the 
Jolliffe’s B4 method explains 87.54% of the variation in 
the data. Note that this is significantly lower than the 
percentage of variation explained by the 5 PCs (96.15%). 
In fact, no subset of 5 variables can explain more variation 
than 5 PCs, because, PC coordinate axes are defined as 
those directions, which maximize the total variation 
accounted for in the data. Therefore, we include a 6th 
variable (solidity), which has the highest loading on the 6th 
largest PC, in this subset to increase the percentage of 
variation it explains from 87.54% to 96.72%. In the rest of 
the study, feature vectors representing the images will 
consist of the following 6 features: diameter, compactness, 
asymmetry, first contour sequence moment, eccentricity, 
and solidity. 

Human Perception of Similarity Experiment   
Since the ultimate user of an image retrieval system is 
human, the study of human perception of image content 
from a psychophysical perspective is crucial (Rui, Huang, 
and Chang 1999). However, few content-based image 
retrieval systems have taken into account the 
characteristics of human visual perception and the 
underlying similarities between images it implies (Guyader 
et al. 2002). In (Payne and Stonham 2001), the authors 
argue that if perceptually derived criteria and rank 
correlation are used to evaluate textural computational 
methods, retrieval performances are typically 25% or less, 
unlike the 80-90% matches often quoted. 
 We conduct a psychophysical experiment to measure the 
perceived similarity of each image with every other image 
in the experimental database. 
 
 
 

Experiment Description 
Ten subjects (7 male and 3 female) participated in the 
experiment. They were graduate students, ranging in age 
from 22 to 25. The subjects, except one of the authors of 
this work, had no background on image retrieval and were 
not familiar with the images. All subjects had normal or 
corrected-to-normal vision. 
 Figure 3 shows a snapshot of the graphical user interface 
of the experiment. The image on the left is the reference 
image, and the one on the right is the test image. In order 
to focus the subjects only on shape similarity we converted 
the images to black and white so that there is no color or 
texture information in them.  
 In each trial, the subjects were asked to rate the 
similarity between a pair of images on a scale of four: 
Extremely similar, considerably similar, partially similar, 
and not similar. This scale is adapted from an earlier 
psychophysical study (Kurtz, White, and Hayes 2000). 
There were no instructions concerning the criteria on 
which the similarity judgments were to be made. 
 With a database of n images, this type of experimental 
design requires 2/)1( −nn comparisons, which, in 
our case, means 124750 trials. Therefore, in order to keep 
the experiment duration within reasonable limits, we 
randomly selected 100 images from our original database 
of 500 images. With this experimental database size the 
number of trials is 4950. The time required to complete the 
experiment in a single session is too long. Therefore, the 
experiment is divided into 5 sessions each containing 
4950/5=990 trials. 

Figure 3. Experiment GUI  

 A warm-up session, which precedes the real sessions, 
was performed with each subject in order to make him/her 
comfortable with the procedure. Ten images (which are not 
included in the experimental database) were used in this 
session.  
 The sessions were self-paced and the subjects were free 
to take breaks whenever they wanted. Each session took 
about 41 minutes on the average. 
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Computation of Dissimilarity Matrix 
We compute the aggregate similarity matrix ST from the 
responses of human subjects following the approach 
described in (Guyader et al. 2002). For each subject, a 
sample similarity matrix S is computed as a weighted 
average of the elementary similarity matrices 

( ){ }jiSS KK ,= , one for each level of similarity judgment 
(matrix S1 for “Extremely similar”, S2 for “Considerably 
similar”, S3 for “Partially similar”, and S4 for “Not 
similar”). Each time a subject associates a test image j to a 
reference image i, the appropriate ( )jiSK ,  is set to one. The 
weights in the computation of S are determined based on a 
psychological model of similarity (Ashby and Perrin 
1988). According this model, for two stimuli A and B, if 
( )BAs ,  is the perceived similarity between the two, then 

the judged similarity is given by: 

         ( ) ( )[ ]BAsgBA ,, =σ                   (1) 

where g is a suitable monotonic non-decreasing function of 
its argument. Based on this model, the following relation 
between σ (judged similarity) and s (perceived similarity) 
is assumed:  

 31s=σ              (2) 

which agrees with the observation that humans are good at 
distinguishing short perceptual distances while they have 
the tendency to mix large and very large perceptual 
distances in their judgment. Based on (2) the following 
formulation for S is chosen: 
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 Note that the entries of the sample similarity matrix S 
fall into the [0,1] range since the elementary similarity 
matrices KS are boolean and for a given entry ),( ji only one 
of the ( )jiSK ,  can be 1.  
 Now, the aggregate similarity matrix TS is calculated as 
the average of the sample similarity matrices, which makes 
its entries fall into the [0,1] range, as well. We convert the 
aggregate similarity matrix TS to a dissimilarity matrix P 
by ),(1),( jiSjiP T−= . 

Optimization of the Distance Function Using a 
Genetic Algorithm   

In the previous steps, we have obtained the distances 
between pairs of images using a computational approach 
(feature computation) and a perceptual approach 
(subjective experiments). Now, in order to incorporate 
human perception of similarity into the system, we 
determine the weights of the distance function (city-block 
distance) that maximizes the correlation between the 
 
 
 

outputs of the computational and perceptual approaches 
using a genetic algorithm (GA). 
 GAs are stochastic and adaptive optimization methods. 
They can handle high-dimensional, nonlinear optimization 
problems and are especially effective in situations where 
the search space is mathematically uncharacterized and not 
fully understood (Eiben 2002). The randomness in the 
Mantel’s procedure (which will be described in the 
following subsection) suggests the use of GA as an 
appropriate optimization technique. 
 We used Parallel Genetic Algorithm Library (PGAPack) 
(Levine 1996) to implement the GA. In order to minimize 
the effects of random starting points in the optimization 
process, 20 different runs of the GA were carried out. 

The Mantel Test 
The Mantel test (Manly 1991) is a statistical method for 
finding the correlation between two symmetric distance 
matrices. It involves calculation of a suitable correlation 
statistic   between the elements of the matrices. The null 
hypothesis is that entries in the matrices are independent of 
each other. Testing of the null hypothesis is done by a 
Monte Carlo randomization procedure in which the 
original value of the statistic is compared with the 
distribution found by randomly relocating the order of the 
elements in one of the matrices. The significance of the 
association is estimated by counting the number of 
randomizations in which the test statistic is lower than or 
equal to that obtained from the original matrices, and 
dividing this number by the number of randomizations. 
 The statistic used in the Mantel test for measuring the 
correlation between two n-by-n distance matrices, A and 
B, is the classical Pearson correlation coefficient: 
where Ā and SA are the mean and standard deviation of 

elements of A, respectively.  
 The procedure for the Mantel test is as follows (Bonnet 
and Peer 2002): 
1) Compute the correlation coefficient ABr using (3). 
2) Permute randomly rows and the corresponding columns 
of one of the matrices, creating a new matrix A’. 
3) Compute the correlation coefficient BAr ' using (3). 
4) Repeat steps 2 and 3 a great number of times (>5000). 
The number of repeats determines the overall precision of 
the test (≈1000 for α= 0.05; ≈5000 for α= 0.01; ≈10000 
for greater precision (Manly 1991)).  
 We used the software described in (Bonnet and Peer 
2002) to perform the Mantel test. 

Optimization Procedure 
In the optimization procedure, to evaluate the goodness of 
a particular set of weights, we determine the correlation 
between the perceptual distances and the computational 
distances. This correlation is computed by the simple 
Mantel test, which requires two symmetric distance 
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matrices as input. The P matrix, which represents the 
perceptual distances, is already symmetric. In each 
generation, we form a C matrix, which represents the 
computational distances, by taking the weighted city-block 
(L1) distances between feature vectors of all pairs of 
images using the gene values of the fittest individual in 
that generation as weights. Since city-block distance 
function is a metric, C matrix is always a symmetric 
distance matrix.  
 When the GA terminates, the gene values of the fittest 
individual in the population give the optimum set of 
weights of the distance function, which maximizes the 
correlation between the perceptual distance and 
computational distance matrices. 

Results of the Optimization 
Initially (i.e., with all weights equal to 1.0), the correlation 
between the C (computational distance matrix) and P 
(perceptual distance matrix) matrices is 32%. After the 
optimization, the correlation becomes 50%. To test the 
impact of this correlation improvement on the actual 
retrieval performance, we perform queries with 100 images 
chosen randomly from the remaining 400 images in the 
original database that are not included in the experimental 
database. 
 We determine the retrieval performance of the system 
for the case of optimized distance function as follows: A 
matrix Cf is computed using the final set of weights, which 
were obtained as a result of the optimization. This matrix 
represents the computational distances (between pairs of 
images) calculated using the optimized distance function. 
For each query image, the 10 most similar images to it are 
determined using the Cf matrix. Then, these 10 images are 
marked as relevant (extremely or considerably similar) or 
non-relevant (partially or not similar). For each rank 
position K, where K ranges from 1 to 10, the number of 
relevant images among the K images is counted and 
averaged over 100. The retrieval performance of the 
system for the case of unoptimized distance function is 
determined similarly with the only difference that the 
weights used in the computation of Cf matrix are taken as 
1.0. Figure 4 shows the average precision values calculated 
for both cases for N (number of images retrieved) ranging 
from 1 to 10. As can be observed from this figure, the 
optimization of the distance function has a great impact on 
the average precision. 

Figure 4. Performance comparison graph     

Related Work  
To the authors’ knowledge relatively little work has been 
done to incorporate human perception of similarity in 
CBIR systems in a systematic manner. 
 Scassellati et al. (Scassellati, Alexopoulos, and Flickner 
1994) have used shape similarity judgments from human 
subjects to evaluate the performance of several shape 
distance metrics.  
 Frese et al. (Frese, Bouman, and Allebach 1997) have 
developed an image distance metric based on a multiscale 
model of the human visual system, which is systematically 
optimized for maximum consistency with human 
perception of the similarity of images of natural scenes. 
 Rogowitz et al. (Rogowitz et al. 1998) have studied how 
human observers judge image similarity. They conduct two 
psychophysical scaling experiments aimed at uncovering 
the dimensions human observers use in rating the 
similarity of photographic images and compare the results 
with two algorithmic image similarity methods.  
 Mojsilovic et al. (Mojsilovic et al. 2000) have developed 
a perceptually based image retrieval system based on color 
and texture attributes. They perform subjective 
experiments and analyze the results using 
multidimensional scaling to extract relevant dimensions. 
They also design distance metrics for color and texture 
matching.  
 In (Chang, Li, and Li 2000), several perceptual 
characteristics are described to argue that using Euclidean 
distance may not be appropriate in all circumstances. 
Furthermore, these perceptual characteristics are used in 
designing image filters that support customizable queries. 
 Guyader et al. (Guyader et al. 2002) have developed a 
natural scene classification system using Gabor features. 
They optimize the feature weights by analyzing the results 
of a psychophysical experiment using a multidimensional 
scaling technique. 

Conclusions and Future Work  
Content-based image retrieval has been an active research 
area in the past 10 years. Since the early 90s numerous 
image retrieval systems, both research and commercial, 
have been developed (Niblack et al. 1993; Pentland, Picard 
, and Sclaroff 1996; Smith and Chang 1996). The main 
contribution of this work is the incorporation of human 
perception into this task in a systematic and generalizable 
manner. 
 In this work, we used human perception of similarity as 
a guide in optimizing an image distance function in a 
content-based image retrieval system. A psychophysical 
experiment was designed to measure the perceived 
similarity of each image with every other image in the 
database. The weights of the distance function were 
optimized by means of a genetic algorithm using the 
distance matrix obtained from the subjective experiments. 
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Using the optimized distance function, the retrieval 
performance of the system is significantly improved. 
 In this study we focus on shape similarity. However, the 
same approach can be used to develop similarity functions 
based on other low-level features such as color or texture. 
Also, for general similarity based retrieval, another 
content-based image retrieval system powerful in color or 
texture aspects can be combined with our system.  
 The retrieval performance of the system can be further 
improved by using better shape features, such as those 
adopted by the MPEG-7 consortium (Manjunath, 
Salembier, and Sikora 2002). 
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