
Exploration or Convergence? Another Meta-Control Mechanism for GAs

C. W. Liew
Department of Computer Science

Lafayette College
Easton, PA 18042

liew@cs.lafayette.edu

M. Lahiri
Department of Computer Science

Lafayette College
Easton, PA 18042

lahirim@cs.lafayette.edu

Abstract

Genetic algorithm based optimizers have to balance ex-
tensive exploration of solution spaces to find good so-
lutions with convergence to generate solutions quickly.
Many optimizers use a two phase approach where the
first phase explores the solution space and the second
converges on a set of potential regions. This paper de-
scribes a meta-level algorithm (GAITER ) that itera-
tively applies a GA based optimizer with a bias towards
either exploration or convergence. The optimizer is ex-
ecuted with a very small number of evaluations which
leads to fast generation of solutions. The iterative ap-
proach of GAITER has been shown to lead to fast gen-
eration of good solutions. Experiments in problems
from two real-world domains have shown that GAITER
can improve the performance of an existing GA without
compromising the quality of the solution.

Introduction
Optimizers using genetic algorithms have been success-
fully used to solve many real world optimization prob-
lems. This is in part because Genetic algorithms (GA)
have proved to be effective at searching a large space of
possible solutions and finding good solutions. The issue
of how much time or resources an optimizer should ex-
pend to find good solutions has been studied for a long
time. A consequence of large solution spaces is that op-
timizers have to deal with convergence on locally opti-
mal but globally sub-optimal solutions. There is a possi-
bility that the population will converge on one particular
region of the space. Optimizers need to decide between
sampling unexplored regions,i.e.expanding the search,
and converging on a subspace. This is a difficult de-
sign choice. If an optimizer does not sample sufficient
points, it is likely to find itself converging upon a local
optimum. On the other hand, an optimizer may over
sample the space and it could take a long time before
it converges to a good solution. This tradeoff is espe-

Copyright c© 2005, American Association for Artificial Intel-
ligence (www.aaai.org). All rights reserved.

cially difficult in problems in high dimensional spaces
because of the large solution spaces.

This paper describes a meta-level algorithm
(GA ITER ) that iteratively applies genetic algorithms
to both find good solutions and also converge quickly.
On each iteration, the algorithm decides whether to
explore (search) or converge (focus) and applies the
GA appropriately. The algorithm has been evaluated
on problems from two real-world domains, (1) finding
the optimalgape(cross-sectional area) of a snake jaw
and (2) finding the best set of parameters to model the
swimming motion of a pumpkinfish. The first problem
involves a search in an eight dimensional space while
the second requires a search in a fourteen dimensional
space. This paper describes the algorithm along with
the experimental results that shows that the GAITER
algorithm significantly improves the performance of an
existing GA.

Problem Description
Morphology is the study of how changes in structure
can affect function. The jaw of a snake is a complex
object composed of many bones and the lengths of the
various bones can affect both the size and shape of the
prey that can be swallowed. One method of studying the
effect is to construct a computational model of the jaw.
This section briefly describes the structure of a snake
jaw based on a specimen of the gopher snake (Pituophis
melanoleucus) and the computational issues involved in
studying the morphology.

A snake jaw is composed of ten elements, four bones
on each side connected symmetrically by elements at
the top and bottom. The four bones on each side are
the supratemporal, quadrate, compoundand dentary.
The elements at the top and bottom are thebraincase
andsymphyseal. Figure 1 is a representation of a snake
jaw showing how the elements are connected. In the
figure, thebraincaseand symphysealare perpendicu-
lar to the side view. Thesymphysealis not actually a
bone but is an elastic element and the amount that it can



be stretched varies from species to species. The joints
connecting the elements allow movement in two per-
pendicular planes, the frontal and the sagittal, for each
joint. These movements are constrained by restrictions
on the maximum and minimum angles in each plane.

Dentary Symphyseal

BraincaseSupratemporal

Quadrate

Compound

Figure 1: Side View of a Snake Jaw

Herpetologists are interested in the size and shape of
the largest prey that a snake can swallow. They believe
that this is determined by the absolute and relative di-
mensions of the bones that make up a snake jaw. A
snake jaw specification is composed of a set of dimen-
sions for each of the bones. Finding the maximum size
of the gape for a jaw specification consists of determin-
ing the corresponding set of values for each of the joint
angles. This is treated as an optimization problem in
eight real-valued dimensions, one for each joint angle
subject to (1) constraints on the maximum and mini-
mum values of each joint angle and (2) constraints that
the configuration is realizable,e.g.the upper jaw does
not overlap the lower jaw. A more detailed descrip-
tion of the problem and the system used to solve it can
be found in (Author 2004). Thegapeis calculated for
each configuration as the product of the height (the ver-
tical distance between the upper and lower jaw) and the
width (the distance between the left and right quadrate-
compound joints. Thefitnessof a specific configuration
is calculated as

csa ∗ k ∗ (s − 1) (1)

where

• csa : is the cross-sectional area (size of the gape)
calculated using the height and width from the model,

• s : the stretch of the symphyseal at maximum gape,

• k : is the weighting penalty for the use of the sym-
physeal. Stretching the symphyseal is viewed as a
negative the more the symphyseal is stretched, the
more the overall merit of the configuration is reduced.

This models the assumption that it is less desirable to
stretch the symphyseal.

The constraints render many potential solutions in-
feasible. Figure 2 is a surface plot that shows how
the fitnessof the solution changes as two of the an-
gles (quadrate-frontal and compound-sagittal) are var-
ied. The plot also shows that there are many infeasible
points in the two dimensional region that make it hard
to find good solutions in the eight dimensional space.

-20 0 20 40 60 80100Quadrate Frontal
80

120
160

Compound Sagittal

-1000
-600
-200
200
600
Fitness

Figure 2: The Effect of Changes in Quadrate-Frontal
and Compound-Sagittal Angles on Fitness

Several GA based optimization packages including
the frequently referenced GALib package (Wall ) were
tried and evaluated on the snake jaw problem. The
GADO (Genetic Algorithm-Based Design Optimiza-
tion) package (Rasheed, Hirsh, & Gelsey 1997; Blaize,
Knight, & Rasheed 1998), an optimization package that
was originally developed for the design of supersonic
nozzle inlets, was eventually selected for its perfor-
mance. We systematically varied the parameters for
each of the optimization packages and found that the
GADO package had the best performance for both time
and solution quality. Figure 3 shows a comparison of
the best performance of GADO and GALib on an ex-
ample snake jaw problem. The performance on this
problem instance is typical of the performance on other
instances.

Convergence versus Exploration
The tradeoff between convergence and exploration
arises when there is a decision as to whether to generate
new (subsequent) points from an unexplored region (ex-
ploration) or near a known good point (convergence).
A GA should converge when it is in a region that is
believed to lead to better solutions. The GA should
explore when the current region will not yield signifi-
cantly better solutions. Two factors that greatly affect
the decision as to whether to explore or converge are
(1) the total number of points to be evaluated (indirectly,
this affects the number of generations of the population)
and (2) the size of the population. A GA typically uses



300

400

500

600

700

0 2000 4000 6000 8000

F
itn

e
ss

Number of Evaluations

GADO
GALib

Figure 3: Performance of GALib vs GADO in the
Snake Jaw Domain

random sampling (exploration) to fill the initial popula-
tion pool and then uses a combination of (1) mutation,
(2) recombination and selection to generate new indi-
viduals for subsequent generations. If the size of the
population is too small, the GA will have insufficient
diversity to effectively use its operators. On the other
hand if the population size is too large, computational
resources are expended to managing and analyze the in-
dividuals in the population. The total number of points
(individuals) to be evaluated also directly affects how
quickly a GA can or should converge upon a solution.
If the total is relatively large compared to the population
size, the GA can initially spend more resources (time)
examining (sampling) points from unexplored regions
rather than combining individuals from the population
(mutation and cross-over). A larger number of sample
points would help the GA avoid sub-optimal regions.
On the other hand a larger number of evaluations re-
quires resources, an important consideration when the
cost of generating each individual is relatively high or
when the solution space is large.

There have been many studies (Grefenstette 1986;
Eiben, Hinterding, & Michalewicz 1999; Cicirello &
Smith 2000) that have explored various combinations
of controlling parameters to generate the best perfor-
mance in GAs. Using the best set of parameters,i.e.the
ones that generate the best solutions, usually results in
a GA evaluating many points. This can be computa-
tionally infeasible if (1) it requires a substantial amount
of computation to generate each point and (2) there
are many dimensions (parameters) to the problem so
the search space is large. The snake jaw problem is
an example of such a problem. It takes3 ∼ 5 sec-
onds to generate each point and there are eight dimen-
sions in the problem. The best settings for GADO (

number of evaluations = 8000, population size =
80) require four hours to generate a solution for one
specification of bone dimensions. The computational
cost can be reduced by lowering the total number of
evaluations but this can negatively impact the solution
quality.

Figure 4 shows how the fitness of the solutions
changes as the GA generates successive new individ-
uals. The most interesting observation that can be made
from the figure is that there are several places where the
GA “plateaus”, i.e.successive individuals do not have
any impact on the overall fitness. This occurs after
about200 solutions (individuals) have been generated
and again after2000 and3500 solutions. In addition,
after3500 points, the GA has essentially plateaued and
is generating successive points in the same region with-
out significantly improving the quality of the solution.

300

400

500

600

700

0 2000 4000 6000 8000

F
itn

e
ss

Number of Evaluations

GADO

Figure 4: Behavior of GADO on a Snake Jaw Problem

The performance can be improved if the GA can
avoid regions with low potential and instead focus on
searching for good solutions in yet unexplored regions.
A region rapidly loses potential if successive points gen-
erated from that region are not significantly better. The
plot in Figure 4 illustrates two related problems with
the current approach. Firstly, many solutions have to be
generated before the GA can converge on a good solu-
tion. Secondly, there are regions where the GA might
avoid generating unproductive solutions by changing its
focus. What is needed is an algorithm that (1) generates
better solutions faster and (2) will not converge prema-
turely and generate lower quality solutions by dynami-
cally changing the focus between exploration and con-
vergence. The GAITER algorithm has these desired
qualities and is described in the next section.

Other approaches to dealing with the tradeoff be-
tween exploration and convergence include swarming
(Kennedy, Eberhart, & Shi 2001) and scouting-inspired



evolutionary algorithms (SEA) (Pfaffmann, Bousmalis,
& Colombano 2004). Swarming focuses more on using
the initial sample of points to find good regions of con-
vergence by incrementally searching from a given loca-
tion. The SEA approach is similar in many ways to our
approach but SEA deals more with trying to avoid lo-
cally optimal regions automatically, by modulating the
search dynamics based on previously generated individ-
uals. The SEA approach was one of the techniques that
was systematically evaluated with different parameters
but much like GALib, it was unable to generate solu-
tions that were within 40% of the best solutions gener-
ated with GADO.

Algorithm Description

The main idea behind our algorithm is an iterative ap-
plication of the GA where each iteration requires a deci-
sion as to whether to converge or explore. The decision
is implemented by “seeding” each iteration with indi-
viduals from the previous iteration to bias the GA. The
result at the end of each iteration, where each iteration
is one complete invocation of the GA, is compared with
the result from the previous iteration. A subset of the
points in the population at the end of the iteration is then
used to seed the next iteration. The number of points
used to seed is dependent upon whether the improve-
ment in results between the current and previous itera-
tions is above a given threshold. If the improvement is
greater than (or equal to) the threshold, the system will
continue in the same direction and will seed with the
entire population (excluding infeasible points). If the
improvement is below the threshold, the GA has found
a plateau and the number of points used to seed the next
iteration is reduced. This causes the GA to fill the pop-
ulation by sampling points at random. The number of
points used to seed the next iteration biases how much
exploration is performed. If the GA is still improving
the solution by more than the threshold, the search is
strongly biased in the current direction by using the
entire population. If the GA has found a plateau, the
search is biased in the current direction slightly (it might
contain the best solution) by using a much smaller num-
ber of seed points.

A second key idea is that the the number of points
to be evaluated on each iteration of the meta-level al-
gorithm is set at a very low value (just slightly larger
than the population size). This causes the GA to con-
verge quickly, even to a sub-optimal region. The subse-
quent iterations will determine whether the algorithm
will continue in this region or explore other regions.
This focus on a small number of evaluations on each
iteration results in good solutions showing up in a small
number of iterations and thus a small number of evalu-
ations.

The GA ITER Algorithm
The basic GAITER algorithm is given below:

1. Set the parameters for the GA to the recommended
default values.

2. execute GADO, evaluate the result and calculate the
improvement from the result of the previous execu-
tion of GADO. If the improvement is greater than
or equal to thethreshold, then set the value ofnum-
ber of seedpointsto convergeseedpoints, seed the
next GADO execution withnumberof seedpoints
from the best clusters (see Section for a description
of clustering) found in this execution. Repeat step2.

3. If the improvement is less than thethreshold, then
GADO has found a plateau. If there has been
no improvement greater than the threshold in the
last ten iterations, the algorithm terminates. Other-
wise, set the value ofnumberof seedpoints to ex-
plore seedpoints, seed the next GADO execution
with points from the best clusters in this iteration and
repeat step 2.

The GA parameters used for our experiments in the
snake jaw domain are shown in Table 1.

GA Parameter Value
populationsize 80

numberof evaluations 200
convergeseedpoints 80
exploreseedpoints 20

Table 1: GA Parameters for Snake Jaw Problem

The population size is dependent upon the number
of dimensions in the problem and the default value in
GADO is ten times the number of dimensions. Our
experiments showed that the default parameters consis-
tently produced the best results with single applications
of GADO.

Clustering and Seeding
There are many ways in which points generated from
one iteration can be used to seed the next iteration. The
best points from the population could be selected but
this has the problem of limiting diversity in that the
best points could come from one region or cluster of
points and the next iteration would be strongly biased
towards that cluster. Instead the algorithm uses clusters
of points within the population to seed the next iteration.
The clusters are defined as points that are separated
from each other by a distance that is less than aclus-
tering threshold. This approach has the advantage of
not having a pre-defined number of clusters. The value
of the variableclusteringthresholdis currently set at
0.15, a value that has been experimentally determined



% of Best Fitness GA Iter (Avg) Best Std Dev.
50% 100% 100% 0
75% 48.7% 25.9% 17.8
90% 49.8% 29.5% 12.2
95% 62.1% 45.9% 15.8
100% 89.9% 81.7% 11.1

Table 2: Evaluation of GAITER on Snake Jaw Problem

to give good results. Once the clusters have been com-
puted, the clusters are ordered by the best fitness value
from each cluster and then the points within each cluster
are rank ordered by their fitness values. When selecting
the points to seed the next iteration, the best point is re-
moved from each cluster in order of their ranking and
placed in the pool. The process is repeated until the
pool containsnumberof seedpointspoints.

Experimental Results
The performance of GAITER was evaluated in two
real-world domains. The first domain is the snake jaw
problem described in Section. The second domain is
to calculate the best values for the parameters of both a
fish and fluid model that best describes the swimming
motion of a fish.

The first set of experiments involved evaluating
GA ITER on many different variations of the snake jaw
problem. Each bone’s dimensions was varied by in-
creasing and decreasing it by 10% up to a maximum of
30%. The maximum stretch of the symphysis was also
varied between 1 and 2 times the length of the brain-
case in increments of 0.2. The evaluation of GAITER
is shown in Table 2. The first column shows the fit-
ness of the solution as a percentage of the best known
solution. The second and third columns show the num-
ber of evaluations GAITER takes (as a percentage of
the number of evaluations taken by GADO) on average
and in the best case respectively to achieve the specified
solution quality. For example, it takes GAITER on av-
erage 62.1% (and 45.9% in the best case) of the number
of evaluations that GADO takes to find a solution that is
evaluated at 90% of the best fitness. The fourth column
gives the standard deviation of the performance.

The data shows that GAITER finds good solutions
much faster than GADO. This is especially important
for problems where (1) the solution space is large and
(2) the cost of generating a solution is high. Figure 5
shows a plot of the performance of the two genetic al-
gorithms on a problem instance from the snake jaw do-
main.

Fish Locomotion Models
The GA ITER algorithm was evaluated on a second
real-world domain, that of modeling the swimming mo-

300

400

500

600

700

0 2000 4000 6000 8000

F
itn

e
ss

Number of Evaluations

GADO
GAIter

Figure 5: Plot of GAITER vs GADO on Snake Jaw
Problem

tion of a fish, specifically a pumpkinfish. The swim-
ming model (Rootet al. 2004) actually consists of two
computational models representing (1) the fish and (2)
the fluid. Each model has an effect on the other and in-
formation must be exchanged between the models for
an accurate simulation. The goal is to use the models
to compute a swimming motion that most closely re-
sembles the swimming motion of an actual fish over a
specified time interval. The fish model is an approxi-
mation based on a sequence of stiff rectangular plates
connected through hinges. Currently, the model uses
eleven plates and twelve hinges

Images of a swimming pumpkinfish were recorded
over a short time interval at the rate of thirty frames
per second. The coordinates of several points on the
fish body were extracted from each frame and are used
to show the body shape changes (changes in the coor-
dinates) as the fish swims. An iterative loop is used
to calculate the coordinates of the corresponding points
on the fish model. Each iteration corresponds to an im-
age frame. The coordinates of positions of the digital
fish body are then extracted for each time interval of the
simulation. The computed coordinates are then com-
pared with coordinates extracted from the video of the
actual fish. Thebadnessof a particular solution (set of
parameter values) is defined by as the sum of the least
squares difference between the actual and computed co-
ordinates over the entire time interval (all iterations). In
this case, the optimizer is trying to minimize the errors.

The behaviors of the two models are controlled by
setting values for fourteen parameters,e.g.the initial po-
sitions, velocities and angles for the plates and hinges
and the viscosity of the fluid. The problem is defined as
an optimization problem in fourteen dimensions where
the goal is to find thebest valuesfor the controlling pa-



rameters of the models that minimize the difference in
motion between the actual and digital fish.

GA Parameter Value
populationsize 140

numberof evaluations 350
convergeseedpoints 140
exploreseedpoints 20

Table 3: GA Parameters for Fish Problem

The GA parameter settings used for this problem
are shown in Table 3. All the values other thanex-
plore seedpointswere derived by multiplying the cor-
responding values from the snake jaw problem with a
factor of14/8 (the change in the number of dimensions
of the problem). A similar multiplicative factor was ap-
plied to the other parameters used by GADO.

Percent of Best Solution GA Iter
50% 8%
75% 9%
90% 10%
95% 8%
100% 12.1%

Table 4: Evaluation of GAITER on Fish Model

The GA ITER algorithm performed very well in this
second domain. Table 4 shows the data that was ob-
tained for this second problem in comparing the perfor-
mance of GAITER and GADO. Each row shows the
number of evaluations taken by GAITER (as a per-
centage of that taken by GADO) to find solutions that
are within a certain range of the best known solution.
For example, the table shows that to find a solution
that is within 90% of the best solution GAITER only
evaluates 10% of the solutions that GADO examines to
achieve the same solution quality. The GAITER al-
gorithm is particularly useful in this problem domain
because of the computational requirements. Each point
(potential solution) takes thirty seconds to generate and
using the default parameters for GADO requires a four-
teen day computational run. The GAITER algorithm
finds a good solution (within 5% of the best known) in
less than ten percent of the time that GADO takes.

Discussion
The experimental results from the two domains show
the GA ITER algorithm algorithm converges on good
solutions much faster than GADO and generates solu-
tions that are just as good. There were some problem
instances where GADO had better solutions and other
problem instances where the inverse was true. In all

cases, the best solution from GAITER was within 2%
of the best solution of GADO. The combination of (1)
the iterative approach with (2) a small number of eval-
uations per iteration and (3) clustering of points is what
makes the approach effective. We have systematically
tried clustering and iteration separately but they both
lead to little or no improvement.

Conclusion
This paper has described an iterative algorithm for con-
trolling GA’s that provides a better ability to reason and
control the tradeoff between exploration and conver-
gence. The algorithm generates good solutions more
efficiently, an important factor with problems that (1)
have large solution spaces and (2) require significant
computational resources to generate solutions. The
algorithm has been evaluated on two such real-world
problems, one of modeling snake jaws and the second
the modeling of the swimming motion of fish.

References
Author. 2004. Using a genetic algorithm to optimize
the gape of a snake jaw. InProceedings of Twenty
Fourth ACM Symposium on Applied Computing.
Blaize, M.; Knight, D.; and Rasheed, K. 1998. Auto-
mated optimal design of two dimensional supersonic
missile inlets. The Journal of Propulsion and Power
14(6).
Cicirello, V., and Smith, S. 2000. Modeling ga per-
formance for control parameter optimization. InPro-
ceedings of The Genetic and Evolutionary Computa-
tion Conference 2000.
Eiben, A. E.; Hinterding, R.; and Michalewicz, Z.
1999. Parameter control in evolutionary algorithms.
IEEE Transactions on Evolutionary Computation3(2).
Grefenstette, J. 1986. Optimization of control parame-
ters for genetic algorithms.IEEE Transactions on Sys-
tems, Man and Cybernetics16(1).
Kennedy, J.; Eberhart, R.; and Shi, Y. 2001.Swarm
Intelligence. Morgan Kaufmann.
Pfaffmann, J. O.; Bousmalis, K.; and Colombano, S.
2004. A scouting-inspired evolutionary algorithm. In
Proceedings of Congress on Evolutionary Computa-
tion 2004.
Rasheed, K.; Hirsh, H.; and Gelsey, A. 1997. A
genetic algorithm for continuous design space search.
Artificial Intelligence in Engineering11(3).
Root, R. G.; Psemeneki, T.; Cortez, R.; Watts, P.; and
Jṙ, J. H. L. 2004. Heads or Tails? Anterior Thrust
Generation in Numerically-Simulated Carangiform
Fish. Journal of Morphology260.
Wall, M. The galib-2.4.2 genetic algorithm library.
http://lancet.mit.edu/ga.


