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Abstract

Genetic algorithm based optimizers have to balance ex-
tensive exploration of solution spaces to find good so-
lutions with convergence to generate solutions quickly.
Many optimizers use a two phase approach where the
first phase explores the solution space and the second
converges on a set of potential regions. This paper de-
scribes a meta-level algorithm (GAER ) that itera-
tively applies a GA based optimizer with a bias towards
either exploration or convergence. The optimizer is ex-
ecuted with a very small number of evaluations which
leads to fast generation of solutions. The iterative ap-
proach of GAITER has been shown to lead to fast gen-
eration of good solutions. Experiments in problems
from two real-world domains have shown that GFER

can improve the performance of an existing GA without
compromising the quality of the solution.

I ntroduction

Optimizers using genetic algorithms have been success-
fully used to solve many real world optimization prob-
lems. This is in part because Genetic algorithms (GA)
have proved to be effective at searching a large space of
possible solutions and finding good solutions. The issue
of how much time or resources an optimizer should ex-
pend to find good solutions has been studied for a long
time. A consequence of large solution spaces is that op-
timizers have to deal with convergence on locally opti-
mal but globally sub-optimal solutions. There is a possi-
bility that the population will converge on one particular
region of the space. Optimizers need to decide between
sampling unexplored regionise.expanding the search,
and converging on a subspace. This is a difficult de-
sign choice. If an optimizer does not sample sufficient
points, it is likely to find itself converging upon a local
optimum. On the other hand, an optimizer may over
sample the space and it could take a long time before
it converges to a good solution. This tradeoff is espe-
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cially difficult in problems in high dimensional spaces
because of the large solution spaces.

This paper describes a meta-level algorithm
(GAITER)) that iteratively applies genetic algorithms
to both find good solutions and also converge quickly.
On each iteration, the algorithm decides whether to
explore (search) or converge (focus) and applies the
GA appropriately. The algorithm has been evaluated
on problems from two real-world domains, (1) finding
the optimalgape(cross-sectional area) of a snake jaw
and (2) finding the best set of parameters to model the
swimming motion of a pumpkinfish. The first problem
involves a search in an eight dimensional space while
the second requires a search in a fourteen dimensional
space. This paper describes the algorithm along with
the experimental results that shows that the BER
algorithm significantly improves the performance of an
existing GA.

Problem Description

Morphology is the study of how changes in structure
can affect function. The jaw of a snake is a complex
object composed of many bones and the lengths of the
various bones can affect both the size and shape of the
prey that can be swallowed. One method of studying the
effect is to construct a computational model of the jaw.
This section briefly describes the structure of a snake
jaw based on a specimen of the gopher sn&kiei¢phis
melanoleucusand the computational issues involved in
studying the morphology.

A snake jaw is composed of ten elements, four bones
on each side connected symmetrically by elements at
the top and bottom. The four bones on each side are
the supratemporal, quadrate, compouadd dentary
The elements at the top and bottom are lih@incase
andsymphysealFigure 1 is a representation of a snake
jaw showing how the elements are connected. In the
figure, thebraincaseand symphyseahre perpendicu-
lar to the side view. Theymphyseais not actually a
bone but is an elastic element and the amount that it can



be stretched varies from species to species. The joints

connecting the elements allow movement in two per-
pendicular planes, the frontal and the sagittal, for each
joint. These movements are constrained by restrictions
on the maximum and minimum angles in each plane.

Braincase

Supratemporal

Quadrate

Compound Dentary Symphyseal

Figure 1: Side View of a Snake Jaw

Herpetologists are interested in the size and shape of

the largest prey that a snake can swallow. They believe
that this is determined by the absolute and relative di-
mensions of the bones that make up a snake jaw. A
shake jaw specification is composed of a set of dimen-
sions for each of the bones. Finding the maximum size
of the gape for a jaw specification consists of determin-
ing the corresponding set of values for each of the joint
angles. This is treated as an optimization problem in
eight real-valued dimensions, one for each joint angle
subject to (1) constraints on the maximum and mini-
mum values of each joint angle and (2) constraints that
the configuration is realizable,.gthe upper jaw does
not overlap the lower jaw. A more detailed descrip-
tion of the problem and the system used to solve it can
be found in (Author 2004). Thgapeis calculated for
each configuration as the product of the height (the ver-
tical distance between the upper and lower jaw) and the
width (the distance between the left and right quadrate-
compound joints. Thétnessof a specific configuration
is calculated as

csaxkx(s—1) Q)

where

e csa : is the cross-sectional area (size of the gape)
calculated using the height and width from the model,

e s: the stretch of the symphyseal at maximum gape,

e k : is the weighting penalty for the use of the sym-
physeal. Stretching the symphyseal is viewed as a
negative the more the symphyseal is stretched, the
more the overall merit of the configuration is reduced.

This models the assumption that it is less desirable to
stretch the symphyseal.

The constraints render many potential solutions in-
feasible. Figure 2 is a surface plot that shows how
the fitnessof the solution changes as two of the an-
gles (quadrate-frontal and compound-sagittal) are var-
ied. The plot also shows that there are many infeasible
points in the two dimensional region that make it hard
to find good solutions in the eight dimensional space.
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Figure 2: The Effect of Changes in Quadrate-Frontal
and Compound-Sagittal Angles on Fitness

Several GA based optimization packages including
the frequently referenced GALib package (Wall ) were
tried and evaluated on the snake jaw problem. The
GADO (Genetic Algorithm-Based Design Optimiza-
tion) package (Rasheed, Hirsh, & Gelsey 1997; Blaize,
Knight, & Rasheed 1998), an optimization package that
was originally developed for the design of supersonic
nozzle inlets, was eventually selected for its perfor-
mance. We systematically varied the parameters for
each of the optimization packages and found that the
GADO package had the best performance for both time
and solution quality. Figure 3 shows a comparison of
the best performance of GADO and GALib on an ex-
ample snake jaw problem. The performance on this
problem instance is typical of the performance on other
instances.

Conver gence versus Exploration

The tradeoff between convergence and exploration
arises when there is a decision as to whether to generate
new (subsequent) points from an unexplored region (ex-
ploration) or near a known good point (convergence).
A GA should converge when it is in a region that is
believed to lead to better solutions. The GA should
explore when the current region will not yield signifi-
cantly better solutions. Two factors that greatly affect
the decision as to whether to explore or converge are
(1) the total number of points to be evaluated (indirectly,
this affects the number of generations of the population)
and (2) the size of the population. A GA typically uses



number_of _evaluations = 8000, population_size =

80) require four hours to generate a solution for one
specification of bone dimensions. The computational
cost can be reduced by lowering the total number of
evaluations but this can negatively impact the solution
quality.

N Figure 4 shows how the fithess of the solutions
: changes as the GA generates successive new individ-
i uals. The most interesting observation that can be made
from the figure is that there are several places where the
GA “plateaus”,i.e successive individuals do not have
any impact on the overall fitness. This occurs after
about200 solutions (individuals) have been generated
and again afte2000 and 3500 solutions. In addition,
after3500 points, the GA has essentially plateaued and

Figure 3: Performance of GALib vs GADO in the is generating successive points in the same region with-
Snake Jaw Domain out significantly improving the quality of the solution.
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random sampling (exploration) to fill the initial popula-
tion pool and then uses a combination of (1) mutation,
(2) recombination and selection to generate new indi-
viduals for subsequent generations. If the size of the
population is too small, the GA will have insufficient
diversity to effectively use its operators. On the other
hand if the population size is too large, computational
resources are expended to managing and analyze the in-
dividuals in the population. The total number of points
(individuals) to be evaluated also directly affects how
guickly a GA can or should converge upon a solution. : : : ; : :
If.the total is relati\{e!y large compared to the popula_tion 0 2000 Num%oeg%f Evalggggns 8000
size, the GA can initially spend more resources (time)
examining (sampling) points from unexplored regions
rather than combining individuals from the population
(mutation and cross-over). A larger number of sample
points would help the GA avoid sub-optimal rggions. The performance can be improved if the GA can
On the other hand a larger number of evaluations re- g\4id regions with low potential and instead focus on
quires resources, an important consideration when the gearching for good solutions in yet unexplored regions.
cost of generating each individual is relatively high or A yegion rapidly loses potential if successive points gen-
when the solution space is large. erated from that region are not significantly better. The
There have been many studies (Grefenstette 1986; plot in Figure 4 illustrates two related problems with
Eiben, Hinterding, & Michalewicz 1999; Cicirello & the current approach. Firstly, many solutions have to be
Smith 2000) that have explored various combinations generated before the GA can converge on a good solu-
of controlling parameters to generate the best perfor- tion. Secondly, there are regions where the GA might
mance in GAs. Using the best set of parameiezshe avoid generating unproductive solutions by changing its
ones that generate the best solutions, usually results in focus. What is needed is an algorithm that (1) generates
a GA evaluating many points. This can be computa- better solutions faster and (2) will not converge prema-
tionally infeasible if (1) it requires a substantial amount turely and generate lower quality solutions by dynami-
of computation to generate each point and (2) there cally changing the focus between exploration and con-
are many dimensions (parameters) to the problem so vergence. The GATER algorithm has these desired
the search space is large. The snake jaw problem is qualities and is described in the next section.
an example of such a problem. It takés~ 5 sec- Other approaches to dealing with the tradeoff be-
onds to generate each point and there are eight dimen- tween exploration and convergence include swarming
sions in the problem. The best settings for GADO ( (Kennedy, Eberhart, & Shi 2001) and scouting-inspired

Figure 4: Behavior of GADO on a Snake Jaw Problem



evolutionary algorithms (SEA) (Pfaffmann, Bousmalis,
& Colombano 2004). Swarming focuses more on using
the initial sample of points to find good regions of con-

The GA_LITER Algorithm
The basic GAITER algorithm is given below:

vergence by incrementally searching from a given loca- 1 Set the parameters for the GA to the recommended

tion. The SEA approach is similar in many ways to our
approach but SEA deals more with trying to avoid lo-
cally optimal regions automatically, by modulating the
search dynamics based on previously generated individ-
uals. The SEA approach was one of the techniques that
was systematically evaluated with different parameters
but much like GALIb, it was unable to generate solu-
tions that were within 40% of the best solutions gener-
ated with GADO.

Algorithm Description

The main idea behind our algorithm is an iterative ap-
plication of the GA where each iteration requires a deci-
sion as to whether to converge or explore. The decision
is implemented by “seeding” each iteration with indi-
viduals from the previous iteration to bias the GA. The
result at the end of each iteration, where each iteration
is one complete invocation of the GA, is compared with
the result from the previous iteration. A subset of the
points in the population at the end of the iteration is then
used to seed the next iteration. The number of points
used to seed is dependent upon whether the improve-
ment in results between the current and previous itera-
tions is above a given threshold. If the improvementis
greater than (or equal to) the threshold, the system will
continue in the same direction and will seed with the
entire population (excluding infeasible points). If the
improvement is below the threshold, the GA has found

a plateau and the number of points used to seed the next

iteration is reduced. This causes the GA to fill the pop-
ulation by sampling points at random. The number of
points used to seed the next iteration biases how much
exploration is performed. If the GA is still improving
the solution by more than the threshold, the search is
strongly biased in the current direction by using the
entire population. If the GA has found a plateau, the
searchis biased in the current direction slightly (it might
contain the best solution) by using a much smaller num-
ber of seed points.

A second key idea is that the the number of points
to be evaluated on each iteration of the meta-level al-
gorithm is set at a very low value (just slightly larger
than the population size). This causes the GA to con-
verge quickly, even to a sub-optimal region. The subse-
guent iterations will determine whether the algorithm
will continue in this region or explore other regions.
This focus on a small number of evaluations on each
iteration results in good solutions showing up in a small
number of iterations and thus a small number of evalu-
ations.

2.

default values.

execute GADO, evaluate the result and calculate the
improvement from the result of the previous execu-
tion of GADO. If the improvement is greater than
or equal to thahreshold then set the value afum-
ber_of_seedpointsto convergeseedpoints seed the
next GADO execution withnumberof_seedpoints
from the best clusters (see Section for a description
of clustering) found in this execution. Repeat step2.

. If the improvement is less than ttlereshold then
GADO has found a plateau. If there has been
no improvement greater than the threshold in the
last ten iterations, the algorithm terminates. Other-
wise, set the value afiumberof_seedpointsto ex-
plore_seedpoints seed the next GADO execution
with points from the best clusters in this iteration and
repeat step 2.

The GA parameters used for our experiments in the
snake jaw domain are shown in Table 1.

GA Parameter Value
populationsize 80
numberof_evaluations| 200
convergeseedpoints 80
exploreseedpoints 20

Table 1: GA Parameters for Snake Jaw Problem

The population size is dependent upon the number
of dimensions in the problem and the default value in
GADO is ten times the number of dimensions. Our
experiments showed that the default parameters consis-
tently produced the best results with single applications
of GADO.

Clustering and Seeding

There are many ways in which points generated from
one iteration can be used to seed the next iteration. The
best points from the population could be selected but
this has the problem of limiting diversity in that the
best points could come from one region or cluster of
points and the next iteration would be strongly biased
towards that cluster. Instead the algorithm uses clusters
of points within the population to seed the next iteration.
The clusters are defined as points that are separated
from each other by a distance that is less thaiua-
tering_threshold This approach has the advantage of
not having a pre-defined number of clusters. The value
of the variableclusteringthresholdis currently set at
0.15, a value that has been experimentally determined



% of Best Fitnesq GA_lter (Avg) | Best | Std Dev.
50% 100% 100% 0
75% 48.7% 259% | 17.8
90% 49.8% 295%| 12.2
95% 62.1% 459% | 15.8
100% 89.9% 81.7%| 11.1

Table 2: Evaluation of GATER on Snake Jaw Problem

to give good results. Once the clusters have been com-
puted, the clusters are ordered by the best fithess value
from each cluster and then the points within each cluster
are rank ordered by their fitness values. When selecting
the points to seed the next iteration, the best point is re-
moved from each cluster in order of their ranking and
placed in the pool. The process is repeated until the
pool containsiumberof_seedpointspoints.

Experimental Results

The performance of GATER was evaluated in two
real-world domains. The first domain is the snake jaw
problem described in Section. The second domain is
to calculate the best values for the parameters of both a
fish and fluid model that best describes the swimming
motion of a fish.

The first set of experiments involved evaluating
GA_ITER on many different variations of the snake jaw
problem. Each bone’s dimensions was varied by in-
creasing and decreasing it by 10% up to a maximum of
30%. The maximum stretch of the symphysis was also
varied between 1 and 2 times the length of the brain-
case in increments of 0.2. The evaluation of GFAER
is shown in Table 2. The first column shows the fit-
ness of the solution as a percentage of the best known
solution. The second and third columns show the num-
ber of evaluations GATER takes (as a percentage of
the number of evaluations taken by GADO) on average
and in the best case respectively to achieve the specified
solution quality. For example, it takes GAER on av-
erage 62.1% (and 45.9% in the best case) of the number
of evaluations that GADO takes to find a solution that is
evaluated at 90% of the best fitness. The fourth column
gives the standard deviation of the performance.

The data shows that GNER finds good solutions
much faster than GADO. This is especially important
for problems where (1) the solution space is large and
(2) the cost of generating a solution is high. Figure 5
shows a plot of the performance of the two genetic al-
gorithms on a problem instance from the snake jaw do-
main.

Fish Locomotion Models

The GAITER algorithm was evaluated on a second
real-world domain, that of modeling the swimming mo-

700 " GADO T
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Figure 5: Plot of GAITER vs GADO on Snake Jaw
Problem

tion of a fish, specifically a pumpkinfish. The swim-
ming model (Rookt al. 2004) actually consists of two
computational models representing (1) the fish and (2)
the fluid. Each model has an effect on the other and in-
formation must be exchanged between the models for
an accurate simulation. The goal is to use the models
to compute a swimming motion that most closely re-
sembles the swimming motion of an actual fish over a
specified time interval. The fish model is an approxi-
mation based on a sequence of stiff rectangular plates
connected through hinges. Currently, the model uses
eleven plates and twelve hinges

Images of a swimming pumpkinfish were recorded
over a short time interval at the rate of thirty frames
per second. The coordinates of several points on the
fish body were extracted from each frame and are used
to show the body shape changes (changes in the coor-
dinates) as the fish swims. An iterative loop is used
to calculate the coordinates of the corresponding points
on the fish model. Each iteration corresponds to an im-
age frame. The coordinates of positions of the digital
fish body are then extracted for each time interval of the
simulation. The computed coordinates are then com-
pared with coordinates extracted from the video of the
actual fish. Thévadnes®f a particular solution (set of
parameter values) is defined by as the sum of the least
squares difference between the actual and computed co-
ordinates over the entire time interval (all iterations). In
this case, the optimizer is trying to minimize the errors.

The behaviors of the two models are controlled by
setting values for fourteen parametergthe initial po-
sitions, velocities and angles for the plates and hinges
and the viscosity of the fluid. The problem is defined as
an optimization problem in fourteen dimensions where
the goal is to find théest valuegor the controlling pa-



rameters of the models that minimize the difference in
motion between the actual and digital fish.

Value
140

GA Parameter
populationsize

numberof_evaluations| 350
convergeseedpoints | 140
exploreseedpoints 20

Table 3: GA Parameters for Fish Problem

The GA parameter settings used for this problem
are shown in Table 3. All the values other thax-
plore_seedpointswere derived by multiplying the cor-
responding values from the snake jaw problem with a
factor of14/8 (the change in the number of dimensions
of the problem). A similar multiplicative factor was ap-
plied to the other parameters used by GADO.

Percent of Best Solution GA_lter
50% 8%
75% 9%
90% 10%
95% 8%
100% 12.1%

Table 4: Evaluation of GATER on Fish Model

The GAITER algorithm performed very well in this
second domain. Table 4 shows the data that was ob-
tained for this second problem in comparing the perfor-
mance of GAITER and GADO. Each row shows the
number of evaluations taken by GAER (as a per-
centage of that taken by GADO) to find solutions that
are within a certain range of the best known solution.
For example, the table shows that to find a solution
that is within 90% of the best solution GAER only
evaluates 10% of the solutions that GADO examines to
achieve the same solution quality. The GPER al-
gorithm is particularly useful in this problem domain
because of the computational requirements. Each point
(potential solution) takes thirty seconds to generate and
using the default parameters for GADO requires a four-
teen day computational run. The GAER algorithm
finds a good solution (within 5% of the best known) in
less than ten percent of the time that GADO takes.

Discussion

The experimental results from the two domains show
the GALITER algorithm algorithm converges on good
solutions much faster than GADO and generates solu-
tions that are just as good. There were some problem
instances where GADO had better solutions and other
problem instances where the inverse was true. In all

cases, the best solution from GAER was within 2%

of the best solution of GADO. The combination of (1)
the iterative approach with (2) a small number of eval-
uations per iteration and (3) clustering of points is what
makes the approach effective. We have systematically
tried clustering and iteration separately but they both
lead to little or no improvement.

Conclusion

This paper has described an iterative algorithm for con-
trolling GA's that provides a better ability to reason and
control the tradeoff between exploration and conver-
gence. The algorithm generates good solutions more
efficiently, an important factor with problems that (1)
have large solution spaces and (2) require significant
computational resources to generate solutions. The
algorithm has been evaluated on two such real-world
problems, one of modeling snake jaws and the second
the modeling of the swimming motion of fish.
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