
Adaptive Particle Swarm Optimizer:
 Response to Dynamic Systems through Rank-based Selection

Tauheed Ahmed, Farhad Kamangar

Department of Computer Science and Engineering
The University of Texas at Arlington

Arlington, TX 76019-0015
{tahmed, kamangar}@cse.uta.edu

Abstract

A response method to dynamic changes based on
evolutionary computation is proposed for the particle swarm
optimizer. The method uses rank-based selection to replace
half of the lower fitness population with the higher fitness
population, when changes are detected. Time-varying
values for the acceleration coefficients are proposed to keep
a higher degree of global search and a lower degree of local
search at the beginning stages of the search. Performance is
compared with two previous response methods using the
parabolic De Jong benchmark function. Experimental
results on the function with varying severity and dynamic
change frequency is analyzed.

Introduction
The world around us is constantly changing. As a result,
most real-world optimization problems are dynamic in
nature. One of the recent approaches to many optimization
problems in engineering and telecommunication has been
the use of a method known as the Particle Swarm
Optimization (PSO), which is based on the concept of
Swarm Intelligence. Although, this method has been
mostly applied to static optimization problems, some
recent research has proved PSO to be effective in dynamic
environments as well.
 Particle Swarm Optimization (PSO) was originally
developed and introduced by a social-psychologist named
James Kennedy and an electrical engineer named Russell
Eberhart [Kennedy and Eberhart 1995, Eberhart and
Kennedy 1995]. PSO is a population based search
optimization algorithm where each particle has a position,
velocity, and a memory that keeps track of the previous
position that evaluated to the best fitness. Particles in the
swarm adjust their velocity based on their momentum and
both individual and global memory. The stochastic nature
of the algorithm keeps particles from falling into fixed
routes. The original form of the particle swarm optimizer is
defined by the following equation:

Copyright © 2005, American Association for Artificial Intelligence
 (www.aaai.org). All rights reserved.

)()(2211 idgdidididid xprxprvv −+−+← ρρ (1a)

ididid vxx +← (1b)

where, vid is the velocity of particle i along dimension d,
xid is the position of particle i in dimension d, ρ1 and ρ2 are
acceleration coefficients, also known as the cognitive and
social learning rates. pid is the particle’s previous best
position (pbest) and pgd is the best position found in the
particle’s neighborhood, r1 and r2 are two random
functions in the range [0, 1] and g is the index of the best
fitness particle in the neighborhood. The PSO
implementation also includes the boundaries of the search
space (Xmin, Xmax) and a limit on the particle velocity
(Vmax). In [Kennedy 1997] four variations of the PSO
model are described. The model with equal influences on
both cognitive and social component is termed as the “full
model”. The model with no cognitive influence is called
the “social-only model”, the “cognition-only model” has
no social influence and the “selfless model” is the same as
the “social-only model” with the constraint that the
calculation of a particle’s neighborhood best does not
include the particle itself. A new parameter for the PSO
was introduced by Shi and Eberhart [Shi and Eberhart
1998] called the inertia weight, w, which was intended to
dampen the velocity over time and thus allowing
convergence with higher precision. The velocity formula
with the inertia weight is as follows:

)()(* 2211 idgdidididid xprxprvwv −+−+← ρρ (2)

To reduce the undesirable explosive nature of the particles,
Clerc [Clerc 1999] derived a constriction coefficient K,
which eliminated the need for a Vmax. The constriction
factor is computed as follows:

|42|
2

2 ρρρ −−−
=K (3)

where, ρ = ρ1 + ρ2, ρ > 4 and the velocity computations are
done using the following equation:

))()((2211 idgdidididid xprxprvKv −+−+← ρρ (4)

Recently a “fully informed” [Mendes, Kennedy and Neves
2004] PSO was proposed by making all neighboring
particles influence the velocity calculation, instead of just
using the influence of the best fitness particle.
 Various methods have been applied to the Standard
Particle Swarm Optimizer to adapt the algorithm for
dynamic environments. Carlisle and Dozier used the
change in one or more randomly picked particle’s fitness
value as a sign of change in the system and replaced the
previous best vector (P) by the current position vector (X)
to adapt PSO to the dynamic changes [Carlisle and Dozier
2002]. The change in the global optimum location or the
absence of change in the global optimum location for some
consecutive iterations was used by Hu and Eberhart as a
sign of change in the system and various re-randomization
methods were used to respond to the changes [Hu and
Eberhart 2002]. Parrott and Li used speciation and
crowding [Parrott and Li 2004] to create sub-population in
parallel to track multiple peaks in a dynamic environment
using PSO.
 In this paper, an adaptive particle swarm optimizer is
proposed that uses rank-based selection to respond to
dynamic changes. Variable values for the acceleration
coefficients are also proposed for improved search.

Dynamic Systems
The state of a dynamic system can change continuously, at
fixed intervals or just randomly. Eberhart and Shi defined
three kinds of dynamic systems [Eberhart and Shi 2001]
based on the way they change over time. They are: a
system where the location of the optimum changes, a
system where the location of the optima remains constant
but the value of the optima changes, and a system where
both the optimum location and the value changes. Also in a
multidimensional system, the change can happen in one or
more dimensions [Hu and Eberhart 2002]. Dynamic
systems can also be categorized according to the type of
changes. Changes can be classified based on dynamic
frequency, severity or predictability of the change [Branke
1999].
 In this paper, investigation is done on systems where the
location of the optimum changes. Dynamic environments
are simulated by applying various temporal dynamics to
the objective function using two variables called ‘severity’
and ‘dynamic change frequency’. Severity refers to the
amount of displacement of the objective function from its
current position. With increasing severities, the swarm has
less time to catch-up to the optima as it gets less time to
learn and propagate the updates. Dynamic change
frequency indicates the number of generations between
each displacement. Higher values of this variable allow the
swarm to have more time to react to changes and thus
result in a higher success rate.

PSO with Rank-based Selection (RS-PSO)
Selection [Bäck, Fogel and Michalewicz 2000] is the
process of choosing individuals for reproduction or
survival in an evolutionary algorithm. The main objective
of the selection operator is to emphasize better solutions in
a population. Selection doesn’t create any new solution,
but selects relatively good solutions from a population and
deletes the remaining solutions. A particular solution’s
fitness is used to identify how good or bad the solution is
compared to the neighboring solutions in the search space.
The idea is to assign higher probability of selection to
solutions having better fitness values. There are various
ways of implementing selection: proportional or roulette
wheel, boltzmann, tournament, rank-based, soft brood,
disruptive, competitive selection, etc. In this paper, linear
rank-based selection was chosen as the response method
for dynamic changes for the particle swarm optimizer.
 Linear ranking selection assigns a selection probability
to each individual that is proportional to the individual’s
rank. In linear ranking, the selection probability for
individual i is defined as follows [Bäck, Fogel and
Michalewicz 2000]:

µ
µ αβα)(*

1
)(

)(
_

rankrankrank

ranklin

irank

ip
−

−
+

= (5)

where, αrank is the number of offspring allocated to the
worst individual, βrank is the expected number of offspring
to be allocated to the best individual and µ is the
population size. Some of the major advantages of linear
rank selection over other selection methods are:

(1) Rank-based selection is simple and easy to
implement,

(2) This selection gives more selective pressure towards
the optimum when the fitness values of the
individuals are similar,

(3) One of the major drawbacks of proportional
selection is the presence of a ‘super’ individual,
which might completely take over the population in
a single generation because of its vastly superior
fitness value. Rank-based selection can avoid
premature convergence caused by ‘super’
individuals, since the best individual is always
assigned the same selection probability, regardless
of its fitness value.

 Along with rank-based selection, this paper
implemented variable values for the acceleration
coefficients in different stages of the search. The idea was
mostly influenced by the concept of time decreasing values
for the inertia weight [Shi and Eberhart 1998]. The
acceleration coefficients in the velocity formula control the
amount of global or local search. Kennedy recommended
[Kennedy, Eberhart 1995] the value of 2 for the

coefficients, as it makes the weights for social and
cognition parts to be 1 on the average. The rationale
behind the use of variable coefficients was to make the
particles move around in a larger area in the early stages of
the search process, by giving higher weight to the
cognition component. In the same way, a higher weight for
the social component in the latter stages of the search was
used to make the particles shrink their search in a smaller
area for a fine grained search. To give ρ1 (cognitive
learning rate) a higher initial value and ρ2 (social learning
rate) a lower initial value, the following equations were
used:

()initfinal
iterationallowedMax

iterationcurrentinit 1111 *
__

_ ρρρρ −+= (6a)

()initfinal
iterationallowedMax

iterationcurrentinit 2222 *
__

_ ρρρρ −+= (6b)

where, ρ1init and ρ1final are initial and final values of the
cognitive learning rate, ρ2init and ρ2final are initial and final
values of the social learning rate. Similar approach has
been used recently [Ratnaweera, Halgamuge and Watson
2004] to find faster convergence in static optimization
problems. Their experimental results showed that, the
initial value of 2.5 and the final value of 0.5 for ρ1 and the
initial value of 0.5 and the final value of 2.5 for ρ2 is a
good choice for most benchmark functions. The same
values were adopted for the experiments in this paper.

Experiments
The proposed model (RS-PSO) was tested in various
severities and dynamic change frequencies. For the
purpose of comparative analysis, two previously [Carlisle
and Dozier 2002, Eberhart and Shi 2001] proposed PSO
models were used, which are explained later in the
implementation section.

Design

Whenever changes were detected in the system, the
particles were given a rank, based on their fitness value,
with the lowest fitness particle getting a rank value of 1.
Then the entire population was sorted according to the
rank value and the position of the best half of the
population with higher ranks were used to replace the
position of the lower half of the population with lower
ranks. Angeline used a similar method [Angeline 1998] to
improve the standard particle swarm optimizer in static
environment. But he used tournament selection instead of
the rank-based selection where, a randomly chosen portion
of the population, instead of the entire population (as in
rank-based selection), was considered at each step. Also,
as he was investigating static optimization problems, there
were no dynamic changes involved and replacements were
done at every iteration.

 The rank-selection based replacement of the worse half
of the population ensures that in case of changes in the
system, half of the population would be moved to positions
of the search space that resulted in better fitness values.
The replacement wouldn’t destroy the memory of the
particles as the values of personal best were unchanged.
The objective of this method is to arm the optimizer with a
more exploitive search.
 The parabolic De Jong function, Equation (7), was
chosen as the benchmark (objective) function. This
selection, was made based on Angeline’s experiment
[Angeline 1997].

∑ −
=

=
3

1

2)()(
i

offsetxixf (7)

The movement of the optimum at various intervals was
controlled using the dynamic parameter offset. Only linear
motion was tested in the experiments. The position of the
particles was updated at specified intervals as

sxx dd += , where s is the severity and xd is the current
position in dimension d. This added a constant
displacement to the position of the particles in each
dimension equivalent to the severity.

Implementation

A Matlab program was developed to experiment with PSO
in various parameter settings. The parameters of the two
previously proposed PSO models [Carlisle and Dozier
2002, Eberhart and Shi 2001] were kept as close to their
original setting as possible for a fair comparison.
 Model-1: This model was designed according to
Carlisle and Dozier’s experiment [Carlisle and Dozier
2002]. The search space was restricted to [-50, 50] on all
dimensions, population size was 30, initially randomly
distributed over [-50, 50] in each dimension. The inertia
weight was a linearly decreasing function, initially set to
0.65, decreasing to 0.15 over the first 2/3 of the maximum
allowed iteration and remained at 0.15 later. The
acceleration coefficients were set to 2.05, Clerc’s [Clerc
1999] constriction factor was used, no Vmax was used and
the maximum allowed iteration was 500. Maximum
allowed error was set to 0.001. Average of 30 runs for
each experiment was used. In this model, sentry particles
were used to detect changes in the system and each
particle’s P vector was replaced with the X vector to
respond to the dynamic changes.
 Model-2: The parameters of this model were set closely
to Hu and Eberhart’s [Hu and Eberhart 2002] model. The
search space was restricted to [-50, 50] on all dimensions,
the population size was 30, initially randomly distributed
over [-50, 50]. The inertia weight was 0.5 + Rnd/2.0. The
maximum velocity was set to the dynamic range of each
dimension. Maximum allowed error was set to 0.001.
Acceleration coefficients were set to 2. “changed-gbest-
value” method [Hu and Eberhart 2002] was used to detect
changes in the system. Among the various re-
randomization methods applied by Hu and Eberhart, re-

randomization of 10% of the population was reported to be
a good choice. The same was used for the purpose of this
research.
 When comparing the proposed PSO model with the
other two models, only the response method (rank-based
selection) and acceleration coefficients (variable) differed,
while the other parameters were kept the same as the
model compared with.
 While presenting the experimental results, the model
proposed in this paper would be referred to as RS-PSO-1
when using the parameters of Model-1 and RS-PSO-2
when using parameters of Model-2. The tables and figures
used the label ‘f’ to refer to the dynamic change frequency
in the results.

Results
All experiments were repeated for the severity values of
0.00001, 0.00005, 0.0001, 0.0005, 0.001, 0.005, 0.01,
0.05, 0.1, 0.5 and 1.0. The values for the dynamic change
frequency were 1, 5, 10, 15, 20, 25, 30, 35 and 40. Result
of 30 runs for each parameter setup was recorded. The
reliability of the algorithm was recorded in terms of
solutions found (% solved) and the efficiency was
recorded in terms of average iterations per solution found.
The results showed that the proposed PSO model
successfully responded to dynamic changes and was able
to track the optimum. The results also showed
improvements over both the previous models in most
cases. Only selected values (randomly picked) for severity
and dynamic change frequency are presented in this paper.

Table 1: Percentage of success (reliability) of RS-PSO-1 in

various change frequency

Severity % solved
 f=1 f=10 f=20 f=30 f=40

0.00001 100 100 100 100 100
0.00005 100 100 100 100 100
0.0001 100 100 100 100 100
0.0005 100 100 100 100 100
0.001 100 100 100 100 100
0.005 70 100 100 100 100
0.01 40 100 100 100 100
0.05 0 75 95 100 100
0.1 0 20 80 90 90
0.5 0 0 15 40 35
1.0 0 0 5 5 40

Table-1 shows the percentage of success of the RS-PSO-1
model (the proposed methods with Model-1 parameter
settings) in various severities and various change
frequency. Here, percentage of success (reliability) is
defined by the percentage of success out of 30 runs, for
each pair of severity and change frequency. The values
show that with increasing values of change frequency, the
performance of RS-PSO-1 increased, as with higher

frequency, it was able to find solutions with higher
severity (as it gets more time to adapt). Figure-1 represents
the Table-1 data in graph format.

0

20

40

60

80

100

120

0 0.2 0.4 0.6 0.8 1

Severity

%
 S

ol
ve

d

f=1
f=10
f=20
f=30
f=40

Figure 1: Comparative performance of RS-PSO-1 in

various dynamic change frequency

Table 2: Percentage of success (reliability) of RS-PSO-2 in

various change frequency

Severity % solved
 f=1 f=10 f=20 f=30 f=40
0.00001 100 100 100 100 100
0.00005 100 100 100 100 100
0.0001 100 100 100 100 100
0.0005 100 100 100 100 100
0.001 100 100 100 100 100
0.005 95 100 100 100 100
0.01 30 100 100 100 100
0.05 0 75 100 100 100
0.1 0 10 65 95 100
0.5 0 0 25 15 30
1.0 0 0 0 0 15

0

20

40

60

80

100

120

0 0.2 0.4 0.6 0.8 1

Severity

%
 S

ol
ve

d

f=1
f=10
f=20
f=30
f=40

Figure 2: Comparative performance of RS-PSO-2 in

various dynamic change frequency

 Table-2 shows the percentage of success of the model
RS-PSO-2 (the proposed methods with Model-2 parameter
settings) in various severities and various change
frequency. Like RS-PSO-1 model, this model also
improved it’s percentage of success with higher change
frequency. Figure-2 shows the same result in a graph.
 Figure-3 shows the comparison between Model-1 and
RS-PSO-1 with respect to average number of iteration
required to find the optimum in various severities in

change frequencies of 5 and 20. For change frequency 5,
RS-PSO-1 requires lesser iterations to find the optimum
than Model-1 when severity is smaller. At frequency 20,
the performance difference is more visible as RS-PSO-1
finds the optima within only 50 iterations.
 Figure 4 shows the comparative performance of Model-
1 and RS-PSO-1 with respect to percentage of success of
finding the optimum in various change frequencies. RS-
PSO-1 shows a higher percentage of success in all three
change frequencies.

0
50

100
150
200
250
300
350
400
450
500

0 0.1 0.2 0.3 0.4 0.5

Severity

A
vg

 It
er

at
io

n Model-1, f=5
RS-PSO-1, f=5
Model-1, f=20
RS-PSO-1, f=20

Figure 3: Avg Iteration vs. Severity at dynamic change

frequency = 5 and 20

0

20

40

60

80

100

120

0 0.2 0.4 0.6

Severity

%
 S

ol
ve

d

Model-1, f=1
RS-PSO-1, f=1
Model-1, f=10
RS-PSO-1, f=10
Model-1, f=20
RS-PSO-1, f=20

Figure 4: Comparison of percentage of success at dynamic

change frequency = 1, 10 and 20

Figure-5 shows the comparison between Model-2 and RS-
PSO-2 with respect to average number of iteration required
to find the optimum in various severities, in change
frequencies of 1 and 15. For both frequency, RS-PSO-2
out performs Model-2.
 Figure 6 shows the comparative performance of Model-
2 and RS-PSO-2 with respect to percentage of success of
finding the optimum in various change frequencies. RS-
PSO-2 shows higher degree of success in finding the
optimum for higher severities than Model-2.

0

100

200

300

400

500

600

0 0.2 0.4 0.6 0.8 1

Severity

A
vg

 It
er

at
io

n Model-2, f=1
RS-PSO-2, f=1
Model-2, f=15
RS-PSO-2, f=15

Figure 5: Avg Iteration vs. Severity at change

 frequency = 1 and 15

0

20

40

60

80

100

120

0 0.2 0.4 0.6 0.8 1

Severity

%
 S

ol
ve

d

Model-2, f=1
RS-PSO-2, f=1
Model-2, f=10
RS-PSO-2, f=10
Model-2, f=20
RS-PSO-2, f=20

Figure 6: Comparison of percentage of success at change

frequency = 1, 10 and 20

Conclusion
A new response method to dynamic changes was proposed
for the particle swarm optimizer, where half of the swarm
with lower fitness was replaced with the higher fitness
particles. Constant values of the acceleration coefficients
were replaced with variable values to implement a more
effective search that takes into consideration, the amount
of local or global search needed in different stages of the
search.
 Performance of the proposed PSO model (RS-PSO) was
compared with two other previously proposed PSO models
using the parabolic De Jong function. Experimental results
under various severities and change frequencies showed
that the proposed model was successful at tracking the
optima of a dynamically changing function. The
combination of variable acceleration coefficients and
response through rank-based selection showed better
performance in both the number of iteration required to
converge (efficiency) and in the probability of success,
compared to the previous two methods. Further
experiments are required to determine to what degree the

two factors (rank selection and variable acceleration
coefficient) individually contribute to the performance
gain. The authors of this paper acknowledge the fact that
various other factors may have contributed to the
performance of the various PSO models tested and thus do
not claim to have proposed a superior PSO model than the
other models. Instead, this paper presents the preliminary
results and proposes rank-based selection and variable
acceleration coefficients as effective methods for dynamic
optimization problems.

Future Research
A simplistic dynamic system was simulated in this research
that applied uniform linear motion in a simple continuous
unimodal function. For applicability in a wide range of
real-world optimization problems, the proposed methods
need to be tested with highly chaotic motion in multimodal
functions. As an enhancement to the variable acceleration
coefficients method, a relation can be devised between the
coefficients and the overall performance of the swarm, so
that, the weight of the cognitive and the social component
can be proportionally increased or decreased depending on
the need, which could be calculated at any point in the
search from the fitness values.

References

Angeline, P. J. 1997. Tracking extrema in dynamic environments.
In Proceedings of the 6th International Conference on
Evolutionary Programming, Apr. 13-16. Indianapolis, Indiana,
USA, P. J. Angeline, R. G. Reynolds, J. R. McDonnell, and R. C.
Eberhart, Eds., vol. 1213 of Lecture Notes in Computer Science,
Springer Verlag.

Angeline, P. J. 1998. Using selection to improve particle swarm
optimization. In IEEE International Conference on Evolutionary
Computation, IEEE Press.

Bäck, T., and Fogel, D. B., and Michalewicz, T. Eds. 2000.
Evolutionary Computation 1: Basic Algorithms and Operators,
Institute of Physics Publishing, Bristol and Philadelphia.

Branke, J. 1999. Evolutionary algorithms for dynamic
optimization problems: A survey. Tech. Rep. 387, Institute
AIFB, University of Karlsruhe, Karlsruhe, Germany, 1999.

Carlisle, A., and Dozier, G. 2000. Adapting particle swarm
optimization to dynamic environments. In International
Conference on Artificial Intelligence, Monte Carlo Motel, Las
Vegas, NV, USA, 2000, vol. 1, pp. 429-434.

Carlisle, A., and Dozier, G. 2001. Tracking changing extrema
with particle swarm optimizer. Tech. Rep. CSSE01-08, Auburn
University, Auburn, AL, USA, 2001.

Carlisle, A., and Dozier, G. 2002. Tracking changing extrema
with adaptive particle swarm optimizer. In ISSCI,024 (2002
World Automation Congress, Orlando, FL, USA, 2002), vol. 3.

Clerc, M. 1999. The swarm and the queen: Towards a
deterministic and adaptive particle swarm optimization. In
Proceedings of the Congress on Evolutionary Computation
(Mayflower Hotel, Washington D.C., USA, 6-9 July 1999), P. J.
Angeline, Z. Michalewicz, M. Schoenauer, X. Yao, and A.
Zalzala, Eds., vol. 3, IEEE Press, pp. 1951-1957.

Eberhart, R. C., and Kennedy, J. 1995. A new optimizer using
particle swarm theory. In Sixth International Symposium on
Micro Machine and Human Science (Nagoya, Japan, 1995), IEEE
Press, pp. 39-43.

Eberhart, R. C., and Shi, Y. 2001. Tracking and Optimizing
Dynamic Systems with Particle Swarms. In the Proceedings of
the Congress on Evolutionary Computation 2001, Piscataway,
NJ: IEEE Press, pp. 94-97, 2001.

Hu, X., and Eberhart, R. C. 2002. Adaptive Particle Swarm
Optimization: Detection and Response to Dynamic Systems.
Proceedings of the Congress on Evolutionary Computation,
2002, pp. 1666-1670. Hawaii.

Kennedy, J. 1997. The particle swarm: Social adaptation of
knowledge. IEEE International Conference on Evolutionary
Computation (Indianapolis, Indiana), IEEE Service Center,
Piscataway, NJ, 303-308.

Kennedy, J., and Eberhart, R. C. 1995. Particle swarm
optimization. IEEE International Conference on Neural Networks
(Perth, Australia), IEEE Service Center, Piscataway, NJ, IV:
1942-1948.

Mendes, R., and Kennedy, J., and Neves, J. 2004. The Fully
Informed Particle Swarm: Simpler, Maybe Better. IEEE
Transactions on Evolutionary Computation, 8(3), pp. 204-210,
2004.

Parrott, D., and Li, X. 2004. A Particle Swarm Model for
Tracking Multiple Peaks in a Dynamic Environment using
Speciation. Proceedings of the 2004 Congress on Evolutionary
Computation (CEC’04), pp. 98-103, IEEE Service Center,
Piscataway, NJ 08855-1331.

Ratnaweera, A., and Halgamuge, S. K., and Watson, H. C. 2004.
Self-Organizing Hierarchical Particle Swarm Optimizer With
Time-Varying Acceleration Coefficients. IEEE Transaction on
Evolutionary Computation, 8(3), pp. 240-253, 2004.

Shi, Y., and Eberhart, R. C. 1998. Parameter selection in particle
swarm optimization. In Proceedings of the 7th Annual Congress
on Evolutionary Programming, San Diego, USA.

Shi, Y. H., and Eberhart, R. C. 1998 A modified particle swarm
optimizer. In IEEE International Congress on Evolutionary
Computation Piscataway, NJ: IEEE Press, pp. 69-73, 1998.

