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Abstract 

A response method to dynamic changes based on 
evolutionary computation is proposed for the particle swarm 
optimizer. The method uses rank-based selection to replace 
half of the lower fitness population with the higher fitness 
population, when changes are detected. Time-varying 
values for the acceleration coefficients are proposed to keep 
a higher degree of global search and a lower degree of local 
search at the beginning stages of the search. Performance is 
compared with two previous response methods using the 
parabolic De Jong benchmark function. Experimental 
results on the function with varying severity and dynamic 
change frequency is analyzed.  

Introduction   
The world around us is constantly changing. As a result, 
most real-world optimization problems are dynamic in 
nature. One of the recent approaches to many optimization 
problems in engineering and telecommunication has been 
the use of a method known as the Particle Swarm 
Optimization (PSO), which is based on the concept of 
Swarm Intelligence. Although, this method has been 
mostly applied to static optimization problems, some 
recent research has proved PSO to be effective in dynamic 
environments as well.  
 Particle Swarm Optimization (PSO) was originally 
developed and introduced by a social-psychologist named 
James Kennedy and an electrical engineer named Russell 
Eberhart [Kennedy and Eberhart 1995, Eberhart and 
Kennedy 1995]. PSO is a population based search 
optimization algorithm where each particle has a position, 
velocity, and a memory that keeps track of the previous 
position that evaluated to the best fitness. Particles in the 
swarm adjust their velocity based on their momentum and 
both individual and global memory. The stochastic nature 
of the algorithm keeps particles from falling into fixed 
routes. The original form of the particle swarm optimizer is 
defined by the following equation: 
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where, vid is the velocity of particle i along dimension d, 
xid is the position of particle i in dimension d, ρ1 and ρ2 are 
acceleration coefficients, also known as the cognitive and 
social learning rates. pid is the particle’s previous best 
position (pbest) and pgd is the best position found in the 
particle’s neighborhood, r1 and r2 are two random 
functions in the range [0, 1] and g is the index of the best 
fitness particle in the neighborhood. The PSO 
implementation also includes the boundaries of the search 
space (Xmin, Xmax) and a limit on the particle velocity 
(Vmax). In [Kennedy 1997] four variations of the PSO 
model are described. The model with equal influences on 
both cognitive and social component is termed as the “full 
model”. The model with no cognitive influence is called 
the “social-only model”, the “cognition-only model” has 
no social influence and the “selfless model” is the same as 
the “social-only model” with the constraint that the 
calculation of a particle’s neighborhood best does not 
include the particle itself. A new parameter for the PSO 
was introduced by Shi and Eberhart [Shi and Eberhart 
1998] called the inertia weight, w, which was intended to 
dampen the velocity over time and thus allowing 
convergence with higher precision. The velocity formula 
with the inertia weight is as follows: 
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To reduce the undesirable explosive nature of the particles, 
Clerc [Clerc 1999] derived a constriction coefficient K, 
which eliminated the need for a Vmax. The constriction 
factor is computed as follows: 
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where, ρ = ρ1 + ρ2, ρ > 4 and the velocity computations are 
done using the following equation: 
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Recently a “fully informed” [Mendes, Kennedy and Neves 
2004] PSO was proposed by making all neighboring 
particles influence the velocity calculation, instead of just 
using the influence of the best fitness particle. 
 Various methods have been applied to the Standard 
Particle Swarm Optimizer to adapt the algorithm for 
dynamic environments. Carlisle and Dozier used the 
change in one or more randomly picked particle’s fitness 
value as a sign of change in the system and replaced the 
previous best vector (P) by the current position vector (X) 
to adapt PSO to the dynamic changes [Carlisle and Dozier 
2002]. The change in the global optimum location or the 
absence of change in the global optimum location for some 
consecutive iterations was used by Hu and Eberhart as a 
sign of change in the system and various re-randomization 
methods were used to respond to the changes [Hu and 
Eberhart 2002]. Parrott and Li used speciation and 
crowding [Parrott and Li 2004] to create sub-population in 
parallel to track multiple peaks in a dynamic environment 
using PSO. 
 In this paper, an adaptive particle swarm optimizer is 
proposed that uses rank-based selection to respond to 
dynamic changes. Variable values for the acceleration 
coefficients are also proposed for improved search.                      

Dynamic Systems   
The state of a dynamic system can change continuously, at 
fixed intervals or just randomly. Eberhart and Shi defined 
three kinds of dynamic systems [Eberhart and Shi 2001] 
based on the way they change over time. They are: a 
system where the location of the optimum changes, a 
system where the location of the optima remains constant 
but the value of the optima changes, and a system where 
both the optimum location and the value changes. Also in a 
multidimensional system, the change can happen in one or 
more dimensions [Hu and Eberhart 2002]. Dynamic 
systems can also be categorized according to the type of 
changes. Changes can be classified based on dynamic 
frequency, severity or predictability of the change [Branke 
1999]. 
 In this paper, investigation is done on systems where the 
location of the optimum changes. Dynamic environments 
are simulated by applying various temporal dynamics to 
the objective function using two variables called ‘severity’ 
and ‘dynamic change frequency’. Severity refers to the 
amount of displacement of the objective function from its 
current position. With increasing severities, the swarm has 
less time to catch-up to the optima as it gets less time to 
learn and propagate the updates. Dynamic change 
frequency indicates the number of generations between 
each displacement. Higher values of this variable allow the 
swarm to have more time to react to changes and thus 
result in a higher success rate. 
 
 

PSO with Rank-based Selection (RS-PSO)   
Selection [Bäck, Fogel and Michalewicz 2000] is the 
process of choosing individuals for reproduction or 
survival in an evolutionary algorithm. The main objective 
of the selection operator is to emphasize better solutions in 
a population. Selection doesn’t create any new solution, 
but selects relatively good solutions from a population and 
deletes the remaining solutions. A particular solution’s 
fitness is used to identify how good or bad the solution is 
compared to the neighboring solutions in the search space. 
The idea is to assign higher probability of selection to 
solutions having better fitness values. There are various 
ways of implementing selection: proportional or roulette 
wheel, boltzmann, tournament, rank-based, soft brood, 
disruptive, competitive selection, etc. In this paper, linear 
rank-based selection was chosen as the response method 
for dynamic changes for the particle swarm optimizer. 
 Linear ranking selection assigns a selection probability 
to each individual that is proportional to the individual’s 
rank. In linear ranking, the selection probability for 
individual i is defined as follows [Bäck, Fogel and 
Michalewicz 2000]:  
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where, αrank is the number of offspring allocated to the 
worst individual, βrank is the expected number of offspring 
to be allocated to the best individual and µ is the 
population size. Some of the major advantages of linear 
rank selection over other selection methods are: 

(1) Rank-based selection is simple and easy to 
implement, 

(2) This selection gives more selective pressure towards 
the optimum when the fitness values of the 
individuals are similar, 

(3) One of the major drawbacks of proportional 
selection is the presence of a ‘super’ individual, 
which might completely take over the population in 
a single generation because of its vastly superior 
fitness value. Rank-based selection can avoid 
premature convergence caused by ‘super’ 
individuals, since the best individual is always 
assigned the same selection probability, regardless 
of its fitness value. 

 Along with rank-based selection, this paper 
implemented variable values for the acceleration 
coefficients in different stages of the search. The idea was 
mostly influenced by the concept of time decreasing values 
for the inertia weight [Shi and Eberhart 1998]. The 
acceleration coefficients in the velocity formula control the 
amount of global or local search. Kennedy recommended 
[Kennedy, Eberhart 1995] the value of 2 for the 
 
 
 



coefficients, as it makes the weights for social and 
cognition parts to be 1 on the average. The rationale 
behind the use of variable coefficients was to make the 
particles move around in a larger area in the early stages of 
the search process, by giving higher weight to the 
cognition component. In the same way, a higher weight for 
the social component in the latter stages of the search was 
used to make the particles shrink their search in a smaller 
area for a fine grained search. To give ρ1 (cognitive 
learning rate) a higher initial value and ρ2 (social learning 
rate) a lower initial value, the following equations were 
used: 
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where, ρ1init and ρ1final are initial and final values of the 
cognitive learning rate, ρ2init and  ρ2final are initial and final 
values of the social learning rate. Similar approach has 
been used recently [Ratnaweera, Halgamuge and Watson 
2004] to find faster convergence in static optimization 
problems. Their experimental results showed that, the 
initial value of 2.5 and the final value of 0.5 for ρ1 and the 
initial value of 0.5 and the final value of 2.5 for ρ2 is a 
good choice for most benchmark functions. The same 
values were adopted for the experiments in this paper.  

Experiments   
The proposed model (RS-PSO) was tested in various 
severities and dynamic change frequencies. For the 
purpose of comparative analysis, two previously [Carlisle 
and Dozier 2002, Eberhart and Shi 2001] proposed PSO 
models were used, which are explained later in the 
implementation section.  

Design 

Whenever changes were detected in the system, the 
particles were given a rank, based on their fitness value, 
with the lowest fitness particle getting a rank value of 1. 
Then the entire population was sorted according to the 
rank value and the position of the best half of the 
population with higher ranks were used to replace the 
position of the lower half of the population with lower 
ranks. Angeline used a similar method [Angeline 1998] to 
improve the standard particle swarm optimizer in static 
environment. But he used tournament selection instead of 
the rank-based selection where, a randomly chosen portion 
of the population, instead of the entire population (as in 
rank-based selection), was considered at each step. Also, 
as he was investigating static optimization problems, there 
were no dynamic changes involved and replacements were 
done at every iteration.  
 
 

 The rank-selection based replacement of the worse half 
of the population ensures that in case of changes in the 
system, half of the population would be moved to positions 
of the search space that resulted in better fitness values. 
The replacement wouldn’t destroy the memory of the 
particles as the values of personal best were unchanged. 
The objective of this method is to arm the optimizer with a 
more exploitive search. 
 The parabolic De Jong function, Equation (7), was 
chosen as the benchmark (objective) function. This 
selection, was made based on Angeline’s experiment 
[Angeline 1997].  
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The movement of the optimum at various intervals was 
controlled using the dynamic parameter offset. Only linear 
motion was tested in the experiments. The position of the 
particles was updated at specified intervals as 

sxx dd += , where s is the severity and xd is the current 
position in dimension d. This added a constant 
displacement to the position of the particles in each 
dimension equivalent to the severity.  

Implementation 

A Matlab program was developed to experiment with PSO 
in various parameter settings. The parameters of the two 
previously proposed PSO models [Carlisle and Dozier 
2002, Eberhart and Shi 2001] were kept as close to their 
original setting as possible for a fair comparison. 
 Model-1: This model was designed according to 
Carlisle and Dozier’s experiment [Carlisle and Dozier 
2002]. The search space was restricted to [-50, 50] on all 
dimensions, population size was 30, initially randomly 
distributed over [-50, 50] in each dimension. The inertia 
weight was a linearly decreasing function, initially set to 
0.65, decreasing to 0.15 over the first 2/3 of the maximum 
allowed iteration and remained at 0.15 later. The 
acceleration coefficients were set to 2.05, Clerc’s [Clerc 
1999] constriction factor was used, no Vmax was used and 
the maximum allowed iteration was 500. Maximum 
allowed error was set to 0.001. Average of 30 runs for 
each experiment was used. In this model, sentry particles 
were used to detect changes in the system and each 
particle’s P vector was replaced with the X vector to 
respond to the dynamic changes. 
 Model-2: The parameters of this model were set closely 
to Hu and Eberhart’s [Hu and Eberhart 2002] model. The 
search space was restricted to [-50, 50] on all dimensions, 
the population size was 30, initially randomly distributed 
over [-50, 50]. The inertia weight was 0.5 + Rnd/2.0. The 
maximum velocity was set to the dynamic range of each 
dimension. Maximum allowed error was set to 0.001. 
Acceleration coefficients were set to 2. “changed-gbest-
value” method [Hu and Eberhart 2002] was used to detect 
changes in the system. Among the various re-
randomization methods applied by Hu and Eberhart, re-



randomization of 10% of the population was reported to be 
a good choice. The same was used for the purpose of this 
research. 
 When comparing the proposed PSO model with the 
other two models, only the response method (rank-based 
selection) and acceleration coefficients (variable) differed, 
while the other parameters were kept the same as the 
model compared with.  
 While presenting the experimental results, the model 
proposed in this paper would be referred to as RS-PSO-1 
when using the parameters of Model-1 and RS-PSO-2 
when using parameters of Model-2. The tables and figures 
used the label ‘f’ to refer to the dynamic change frequency 
in the results.   

Results   
All experiments were repeated for the severity values of 
0.00001, 0.00005, 0.0001, 0.0005, 0.001, 0.005, 0.01, 
0.05, 0.1, 0.5 and 1.0. The values for the dynamic change 
frequency were 1, 5, 10, 15, 20, 25, 30, 35 and 40. Result 
of 30 runs for each parameter setup was recorded. The 
reliability of the algorithm was recorded in terms of 
solutions found (% solved) and the efficiency was 
recorded in terms of average iterations per solution found. 
The results showed that the proposed PSO model 
successfully responded to dynamic changes and was able 
to track the optimum. The results also showed 
improvements over both the previous models in most 
cases. Only selected values (randomly picked) for severity 
and dynamic change frequency are presented in this paper. 
 
Table 1: Percentage of success (reliability) of RS-PSO-1 in 

various change frequency 
 

Severity % solved 
 f=1 f=10 f=20 f=30 f=40 

0.00001 100 100 100 100 100 
0.00005 100 100 100 100 100 
0.0001 100 100 100 100 100 
0.0005 100 100 100 100 100 
0.001 100 100 100 100 100 
0.005 70 100 100 100 100 
0.01 40 100 100 100 100 
0.05 0 75 95 100 100 
0.1 0 20 80 90 90 
0.5 0 0 15 40 35 
1.0 0 0 5 5 40 

 
Table-1 shows the percentage of success of the RS-PSO-1 
model (the proposed methods with Model-1 parameter 
settings) in various severities and various change 
frequency. Here, percentage of success (reliability) is 
defined by the percentage of success out of 30 runs, for 
each pair of severity and change frequency. The values 
show that with increasing values of change frequency, the 
performance of RS-PSO-1 increased, as with higher 
 
 
 

frequency, it was able to find solutions with higher 
severity (as it gets more time to adapt). Figure-1 represents 
the Table-1 data in graph format. 
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Figure 1: Comparative performance of RS-PSO-1 in 

various dynamic change frequency 
 
Table 2: Percentage of success (reliability) of RS-PSO-2 in 

various change frequency 
 

Severity % solved 
 f=1 f=10 f=20 f=30 f=40 
0.00001 100 100 100 100 100 
0.00005 100 100 100 100 100 
0.0001 100 100 100 100 100 
0.0005 100 100 100 100 100 
0.001 100 100 100 100 100 
0.005 95 100 100 100 100 
0.01 30 100 100 100 100 
0.05 0 75 100 100 100 
0.1 0 10 65 95 100 
0.5 0 0 25 15 30 
1.0 0 0 0 0 15 
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Figure 2: Comparative performance of RS-PSO-2 in 

various dynamic change frequency 
 

 Table-2 shows the percentage of success of the model 
RS-PSO-2 (the proposed methods with Model-2 parameter 
settings) in various severities and various change 
frequency. Like RS-PSO-1 model, this model also 
improved it’s percentage of success with higher change 
frequency. Figure-2 shows the same result in a graph.  
 Figure-3 shows the comparison between Model-1 and 
RS-PSO-1 with respect to average number of iteration 
required to find the optimum in various severities in 



change frequencies of 5 and 20. For change frequency 5, 
RS-PSO-1 requires lesser iterations to find the optimum 
than Model-1 when severity is smaller. At frequency 20, 
the performance difference is more visible as RS-PSO-1 
finds the optima within only 50 iterations. 
 Figure 4 shows the comparative performance of Model-
1 and RS-PSO-1 with respect to percentage of success of 
finding the optimum in various change frequencies. RS-
PSO-1 shows a higher percentage of success in all three 
change frequencies. 
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Figure 3: Avg Iteration vs. Severity at dynamic change 

frequency = 5 and 20 
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Figure 4: Comparison of percentage of success at dynamic 

change frequency = 1, 10 and 20 
 

Figure-5 shows the comparison between Model-2 and RS-
PSO-2 with respect to average number of iteration required 
to find the optimum in various severities, in change 
frequencies of 1 and 15. For both frequency, RS-PSO-2 
out performs Model-2. 
 Figure 6 shows the comparative performance of Model-
2 and RS-PSO-2 with respect to percentage of success of 
finding the optimum in various change frequencies. RS-
PSO-2 shows higher degree of success in finding the 
optimum for higher severities than Model-2. 
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Figure 5: Avg Iteration vs. Severity at change 

 frequency = 1 and 15 
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Figure 6: Comparison of percentage of success at change 

frequency = 1, 10 and 20 

Conclusion   
A new response method to dynamic changes was proposed 
for the particle swarm optimizer, where half of the swarm 
with lower fitness was replaced with the higher fitness 
particles. Constant values of the acceleration coefficients 
were replaced with variable values to implement a more 
effective search that takes into consideration, the amount 
of local or global search needed in different stages of the 
search. 
 Performance of the proposed PSO model (RS-PSO) was 
compared with two other previously proposed PSO models 
using the parabolic De Jong function. Experimental results 
under various severities and change frequencies showed 
that the proposed model was successful at tracking the 
optima of a dynamically changing function. The 
combination of variable acceleration coefficients and 
response through rank-based selection showed better 
performance in both the number of iteration required to 
converge (efficiency) and in the probability of success, 
compared to the previous two methods. Further 
experiments are required to determine to what degree the 
 
 
 



two factors (rank selection and variable acceleration 
coefficient) individually contribute to the performance 
gain. The authors of this paper acknowledge the fact that 
various other factors may have contributed to the 
performance of the various PSO models tested and thus do 
not claim to have proposed a superior PSO model than the 
other models. Instead, this paper presents the preliminary 
results and proposes rank-based selection and variable 
acceleration coefficients as effective methods for dynamic 
optimization problems.  

Future Research   
A simplistic dynamic system was simulated in this research 
that applied uniform linear motion in a simple continuous 
unimodal function. For applicability in a wide range of 
real-world optimization problems, the proposed methods 
need to be tested with highly chaotic motion in multimodal 
functions. As an enhancement to the variable acceleration 
coefficients method, a relation can be devised between the 
coefficients and the overall performance of the swarm, so 
that, the weight of the cognitive and the social component 
can be proportionally increased or decreased depending on 
the need, which could be calculated at any point in the 
search from the fitness values.  
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