
Speeding Up the ESG Algorithm

Yousef Kilani1 and Abdullah. Mohdzin2

1Prince Hussein bin Abdullah Information Technology College, Al Al-Bayt University, Jordan
2Faculty of Information Science and Technology, Universiti Kebangsaan Malaysia , Malaysia

E-mail: y_kilani@yahoo.com and amz@ftsm.ukm.my

Abstract
Local search (LS) methods heuristically find a solution for
constraint satisfaction problems (CSP). LS starts the search
for a solution from a random assignment. LS then examines
the neighbours of this assignment to determine a better
neighbour valuation to move to. It repeats this process of
moving from the current assignment to a better assignment
until it finds a solution that satisfies all constraints.
ICM considers some of the constraints as hard constraints
that are always satisfied. In this way, ICM reduces the
possible neighbours in each move and hence the overall
search space. ICM chooses the hard constraints in such
away that the space of valuations that satisfies these
constraints is connected in order to guarantee that a local
search can reach any solution from any valuation in this
space.
In this paper, we incorporate ICM into one of the most
recent local search algorithm, ESG, and we show the
improvement of the new algorithm. We ran this algorithm in
different SAT problems.

Introduction
A (CSP) (Makworth, 1977) is a tuple (Z, D, C), where Z is
a finite set of variables, D defines a finite set Dx, called the
domain of x, for each x ∈ Z, and C is a finite set of
constraints restricting the combination of values that the
variables can take (Fang et al. 2002). A solution is an
assignment of values from the domains to their respective
variables so that all constraints are satisfied simultaneously
(Fang et al. 2002). CSPs are known to be NP-hard in
general (Fang et al. 2002).
LS techniques, for example GSAT (Selman, Levesque, and
Mitchell 1992), WalkSAT (Selman and Kauts 1993), DLM
(Wu and Wah, 1999, Wu and Wah 2000) the min-conflicts
heuristic (Minton 1992) and ESG (Wu and Wah 2000)
have been successful in solving large CSPs (Fang et al.
2002). LS starts the search by generating an initial random
variable assignment (or state). It then makes local
adjustments to the assignment iteratively until a solution is
reached. The local adjustment happened by changing one
variable assignment for instance. One criteria for this
change is to change the variable’s assignment to a new
assignment so that the new state after this change satisfies
more number of constraints.

LS searches the search space to look for solutions using
some heuristic function. (Schuurmans and Southey,
2000).introduced three measures of LS performance:
depth, mobility and coverage. Depth measures how many
clauses remain unsatisfied as the search proceeds, mobility
measures how rapidly a local search moves in the search
space and coverage measures how systematically the
search explores the entire space. The efficiency of a LS
algorithm depends on three things (Fang et al. 2002): (1)
the size of the search space (the number of variables and
the size of the domain of each variable), (2) the search
surface (the structure of each constraint and the topology
of the constraint connection) and (3) the heuristic function
(the definition of neighbourhood and how a ``good''
neighbour is picked). The Island Confinement Method
(ICM) aims to reduce the size of the search space (Fang et
al. 2002).
In this paper, we incorporate ICM into ESG and we show
the gained performance by experimenting with different
SAT instances.
The rest of this paper is organized as follows. First, we
give the necessary background and definitions. Second, we
demonstrate the general process of any LS algorithm.
Third, we describe the idea of ICM we used to improve
ESG. After that we demonstrate how we incorporate the
ICM into ESG. This is followed by the experimental
results, conclusion and the future work.

Background
Given a CSP(Z, D, C) (or simply C), we use var(c) to
denote the set of variables that occur in constraint c ∈ C. If
|var(c)| = 2 then c is a binary constraint. In a binary CSP,
each constraint c ∈ C is binary. A valuation for variable
set {x1,…, xn} = Z is a mapping from variables to values
denoted {x1 → a1, …, xn → an}, where ai ∈ Dxi. A state of
a CSP is a valuation for Z. A state s is a solution of a
constraint c if s makes c true. A state s is a solution of a
CSP (Z, D, C) if s is a solution to all constraints in C
simultaneously. Let unsat to be the set of literals occurring
in the unsatisfied clauses.
SAT problems are a special problem of CSPs. A
propositional variable can take the value of either 0 (false)

or 1 (true). A literal is either a variable x or its complement
x’. A literal l is true if l assumes the value 1; l is false
otherwise. A clause is a disjunction of literals which is true
when one of its literals is true. For simplicity we assume
that no literal appears in a clause more than once and no
literal and its negation appear in a clause. A satisfiability
problem (SAT) consists of a finite set of clauses (treated as
a conjunction). Let l’ denote the complement of literal l: l’
= x’ if l = x, and l’ = x if l = x’. Let L’ = {l’ | l ∈ L} for a
literal set L. Since we are dealing with SAT problems we
will often treat states as sets of literals. A state {x1→a1, …,
xn→an} corresponds to the set of literals { xj | aj = 1} ∪
{x’j | aj = 0}.
In this research, we focus on a specific class of SAT
problems, namely those encoding from a binary CSP. We
can encode any binary CSP (Z, D, C) to a SAT problem as
follows. Every CSP variable x ∈ Z is mapped to a set of
propositional variables {xa1,…, xan} where Dx = {a1, …,
an}. For every x ∈ Z, SAT(Z, D, C) contains the at-least-
one-on clause xa1 ∨ … ∨ xan which ensures that any
solution to the SAT problem gives a value to x. Each
binary constraint c ∈ C with var(c) = {x, y} is mapped to a
series of clauses. If {x → a, y → b} is not a solution of c
we add the clause xa’ ∨ yb’ to SAT(Z, D, C), where {x, y}
⊆ Z. This ensures that the constraint c holds in any
solution to the SAT problem. We call these clauses
problem clauses.
The previous formulation allows the possibility that in a
solution, some CSP variable x is assigned two values.
Choosing either value is guaranteed to solve the original
CSP. This method is used in the encoding of CSPs into
SAT in the DIMACS archive. When a binary CSP (Z, D,
C) is translated to a SAT problem SAT(Z, D, C), all the
clauses have the form x’ ∨ y’ except the at-least-one-on
clauses.
There are two types of algorithms for solving CSP:
complete search algorithms and incomplete search
algorithms. The complete search algorithms include
chronological backtracking and dynamic backtracking. The
incomplete search algorithms include: neural network, the
genetic and LS algorithms. Our interes is in LS.

Local Search
A LS solver moves from one state to another by a local
move. The neighbourhood n(s) is the set of neighbour
states to s that are reachable in a single move from state s.
The single move depends on the actual heuristic function
used. This function decides the neighbour state to move to.
A Hamming distance between states s1 and s2 measures the
number of differences in variable assignment of s1 and s2.
A vector variable vec(x) = (x1, …, xn). In this paper, we
are interested in SAT problems. We assume n(s) as the
states which are at a Hamming distance of 1 from the state
s. We refer to flipping a literal l to mean flipping the
variable occurring in the literal. A local move from state s

is a transition, s ⇒ s', from s to s' ∈ n(s).We consider a
SAT problem as a vector of clauses vec(c). The general LS
algorithm starts the search from a random assignment s.
This assignment represents the current state. Some LS
algorithms may start the search from a heuristically chosen
valuation instead of a random one. LS then moves from the
current state s to a better neighbour n(s). If there is no
better neighbour then it is local minima, trap. A trap is a
non-solution state in which no further improvement can be
made. Different LS algorithms follow different ways in
escaping this local minimum. GSAT (Selman, Levesque,
and Mitchell 1992) and the min-conflicts heuristic (Minton
1992) use random restart, while DLM (Wu and Wah,
1999, Wu and Wah 2000) and ESG (Schuurmans and
Southey 2000). modify the landscape of the search surface.
It escapes this trap. Some LS algorithms may include a
restart and/or tabu list. The restart prevents LS from
spending very long time in searching one part of the search
space. During the process of searching, some variables
may be chosen frequently for flipping within a short time
which in turn stagnates the search. Therefore, once a
variable is flipped, tabu list prevents this variable from
flipping in the coming few flips.
If the search could not find a solution within a number of
flips it restarts the search. In general, different local search
algorithms have different structure. For instance, some
local search algorithms do not use the tabu list, others do
not do a restart after a certain number of flips, others have
different way of escaping from the trap etc. Sometimes,
even though the difference is very tiny but it has very big
influence in the results.
The theoretical understanding of the behavior of the local
search algorithm is still not yet known and most of the
research in this area depends on the experiments.

 The Island Confinement Method
The ICM (Fang et al. 2002). is based on the observation:
the solution space of the conjunction of any subset of
constraints in P encloses all solutions of P. Solving a CSP
thus amounts to locating this space to all the constraints in
P, which could be either points or regions scattered around
in the entire search space. The solution space of constraints
D is connected if the search can move between any two
solutions of D without violating any constraint in D. The
idea of ICM works by finding a set of constraints which
are connected, it then starts the search from an assignment
which satisfies all these constraints and finally restrict LS
to search within this space instead of searching in the
entire problem space. Therefore, the search space becomes
smaller and it contains all the solutions giving higher
chance to LS to find a solution in a short time.
Let sol(C) denotes the set of all solutions to a conjunction
of a set of constraints C, in other words the solution space
of C. A set of constraints C is an island if, for any two
states s0, sn ∈ sol(C), there exist states s1,…,sn-1 ∈ sol(C)

such that si ⇒ si+1 for all i ∈ {0,…, n-1}. That is we can
move from any solution of C to any other solution using
local moves that stay within the solution space of C.
Let lit(c) denote the set of all literals of a set of clause c. A
set C of clauses is non-conflicting if there does not exist a
variable x such that x, x’ ∈ lit(C). A non-conflicting set C
of clauses forms an island (Fang et al. 2002). Therefore, in
a SAT encoded from a binary CSP, the problem clauses are
an island/island clauses since no variable and its
complement appear in these clauses. Given a SAT
problem, we can incorporate ICM into any LS algorithm
by the following steps: we split the clauses into ci and cr,
where ci and cr are the island and the at least-one-on
clauses respectively. Make an initial valuation that satisfies
ci; getting inside the island. ci consists of clauses of the
form x’ ∨ y’. An arbitrary extension of lit(ci) to all
variables can always be such an initial valuation.
Restricting the search to search within the at-least-one-on
clauses while satisfying the problem (island) clauses. To
do so, when we are in a state s, we exclude literals l from
flipping when s' = s - l ∪ l’ does not satisfy ci. Hence we
only examine states that are in n(s) and satisfy c i’.

Incorporating ICM into the ESG Algorithm
The exponentiated subgradient algorithm (ESG) (
Downloadable from
http://ai.uwaterloo.ca/\~dale/papers.html) is a general-
purpose Boolean linear program (BLP) search technique
(Schuurmans and Southey 2000). A BLP is a constrained
optimization problem where one must choose a set of
binary assignments to variables vec(x) = (x1,…, xn) to
satisfy a given set of m linear inequalities vec(d1). vec(x) ≤
b1,..., vec(dm) vec(x) ≤ bm, where vec(di) and bi are
constants, where i=1,…, m, while simultaneously
optimizing a linear side objective vec(a). vec(x)
(Schuurmans and Southey, F. 2000). (Schuurmans and
Southey, F. 2000) describe how to encode a SAT problem
as BLP. The Lagrangian function (LG) for a SAT problem
of m clauses vec(c) = (c1,…, cm) and ki literals in each ci
can be given by the following equation:

)())(,(1 icZOiycvecsL
m

i∑ ==

where yi is the real valued Lagrangian multiplier (LM)
associated with constraint ci, ZO(ci) = 1 or 0 when ci is
violated or satisfied by s respectively and s is the current
assignment. The objective is to minimize L(s, vec(c)). The
following is the ESG algorithm:

ESG(vec(c))
 Let s be a random valuation
 vec(y) := 1, tabulit := ∅
 while (max number of tries not reached yet)
 while L(s, vec(c)) > 0 and (max n. flips is not over))
 un = unsat

 if (un is empty) then it is a trap
 rand := choose a random number between 0-100
 var := choose any variable randomly
 if ((rand) < noise) s - {var} ∪ {var’}
 else learn: increase the LMs for the unsat clauses
 else choose the best l from unsat
 s = s - {l} ∪ {l’}
 If (weight update condition holds) update vec(y)
 return s

ESG starts the search from a random assignment. It then
searches for a solution and stops if it reaches a maximum
number of flips. In each try, ESG restarts the search. ESG
flips one of the best variables from the unsatisfied clauses
of the current assignment to move to a better neighbour
state. The better neighbour state is the state which has
smaller LG than the LG of the current state. Note that
flipping a variable from the unsatisfied clauses to move to
a better neighbour is a common practice in local search
algorithms like DLM and WalkSAT. When there is an
ESG trap, with probability noise, where noise ≤ 100, ESG
makes noise by flipping any variable randomly and with
probability 100-noise, ESG learns by increasing the LMs
of the currently unsatisfied clauses. Note that a clause has
higher LM means this clause has been involved in a higher
number of traps. Therefore, in each move, ESG chooses to
flip a variable from the unsatisfied clauses to satisfy the
clauses of higher LMs in the next move in order to reduce
LG. LG = 0 means all the clauses are satisfied. ESG
updates the LMs after a certain number of flips to prevent
the clauses from having very high LMs.
The following is the EI algorithm, the ICM incorporating
into ESG:

EI(vec(c))

 split vec(c) into vec(ci) and vec(cr)
 make an initial valuation s that satisfies vec(ci)
 vec(y) := 1, tabulit := ∅
 while (max number of tries not reached yet)
 while (L(s, vec(c)) > 0 and (max n. flips is not over))
 un = {l ∈ unsat | s ∉ sol(cr) and
 (s - l ∪ l’) ∈ sol(ci)}
 if (un is empty) then it is an island trap
 rand := choose a random number between 0-100
 vars := ∪ {every var in the problem | if
 (s-{var} ∪ {var’}) ∈ sol(ci)}
 var := choose a variable from vars randomly
 if ((rand) < noise) s - {var} ∪ {var’}
 else escapes this island trap in the same way
 mentioned in (Fang et al. 2002)
 else choose the best l from un
 s = s - { l } ∪ { l’}
 return s

We implemented EI (the source code file can be taking by
emailing the authors) by modifying the code of distribution

of ESG. The input to EI is the set of SAT clauses. EI splits
the clauses into island clauses and none island clauses. EI
starts the search from a random valuation inside the island
by initial assignment which satisfies all the island clauses.
By doing so, we are getting inside the island. As we
mentioned previously that an arbitrary extension to lit(ci’)
can be such an initial assignment. A free literal is a literal
once flipped the search will not violate any of the island
clauses so that the search will remain searching inside the
island. un saves the free literals from the unsatisfied
clauses. An island trap happens when flipping any of the
literals in the unsatisfied clauses violates at least one of the
island clauses and hence gets the search outside of the
island. To escape this trap, EI makes noise by flipping any
free literal if the chosen probability is less than noise,
where noise is a parameter. EI escapes the island trap using
the same strategy used when escaping from the island trap
in DLMI (Fang et al. 2002). In this strategy, we
heuristically choose to free one of the literals in the
unsatisfied clauses by flipping some literals from the
satisfied clauses. For instance, suppose we want to free the
literal x from the unsatisfied clauses. We know that
flipping x violates the island clauses, say, c1 and c2.
Flipping x violates c1 and c2 means x is the only true literal
in each of c1 and c2. Therefore, we try to make one more
literal true in each of c1 and c2. After doing so, there are
two true literals, where x is one of them, in each of c1 and
c2. Therefore, c1 and c2 still be satisfied after flipping x. If
there is no island trap or after escaping from the island
trap, EI flips the best literal l from unsat in order to move
to a better neighbour.

The Experiments
The ESG implementation has the following parameters: –
mf : max flips before restarting, -mr: max restarts before
aborting, -cp : number of reweights between corrections, -
alpha: scaled reweight step size (1+alpha*n/m), -rho: rate
of weight shrinkage to mean for SAT clauses, -noise:
probability of noise in a trap and -rawalpha: raw reweight
step size, (never used with -alpha together). The -cp, -
alpha, -rho and -rawalpha are the parameters used to
update the LMs for the clauses. We have chosen to set the
-alpha parameter instead of -rawalpha because of better
performance. In all ESG experiments reported by
(Schuurmans and Southey 2000), the -nr flag is used to fix
the random number generator seed to 0. We follow the
same practice. We ran all the instances on the same
machine: a PC with Pentium III 8000 Mhs and 256
memory.
The ESG distribution does not come with any
recommended parameters sets. We tuned, with the help of
the original authors, the parameter settings for each of the
benchmark sets.

The following table gives the parameter sets adopted for
ESG and EI. -rho and –mr are equal to 0.99 and 10
respectively for all the instances.

Set -alpha -noise -cp -rawalpha -mf
1 0.995 0.02 50 - 500
2 0.999 0.09 300 - 1000
3 1.0 0.03 1000 - 10000000
4 0.999 0.09 500 - 100000
5 0.995 0.02 400 - 7000000
6 0.2401 0.24 400 - 2000000
7 - 0.008 500 1.3 100000000
8 0.995 0.09 300 - 100000000

We compare EI with ESG using the best parameter settings
for ESG.
The following two tables gives a comparison of ESG and
EI. The first table gives the results of ESG while the
second gives the results of EI. We give the P value for EI,
the parameter needed when escaping from the island trap.

ESG
Instance Succ Time Flips
 Increasing permutation generation problems
 set =3
ap-10 20/20 1.00 104173
ap-20 3/20 5623.22 40057253

Latin Square problems, set =4
Magic-10 20/20 0.90 699
Magic-15 20/20 0.31 2426
Magic-20 20/20 1.29 5711
Magic-25 20/20 14.08 10655
Magic-30 20/20 16.74 18564
Magic-35 20/20 54.20 38428
Hard graph-coloring problem, set = 5
g125n-18c 20/20 3.27 19147
g250n-15c 20/20 2.30 2420
g125n-17c 20/20 2494.2 1134850
g250n-29c 20/20 20650.3 22785693
 Tight random CSP, set = 6
rcsp-120-75 20/20 21.7 14965
rcsp-130-75 20/20 24.55 16012
rcsp-140-75 20/20 44.2 17699
rcsp-150-75 20/20 68.04 23576
rcsp-160-75 20/20 83.21 26497
rcsp-170-75 20/20 679.27 165708

Phase transition CSPs, set = 7
rcsp-120-5.9 Seg- Ment- Ation
rcsp-130-5.5 fault
rcsp-140-5.0 Seg- Ment- Ation
rcsp-150-4.7 fault
rcsp-160-4.4 Seg- Ment- Ation
rcsp-170-4.1 fault

 Slightly easier phase transition CSPs, set =8
rcsp-120-5.8 20/20 1205.2 12844605
rcsp-130-5.4 17/20 24890.2 239966515
rcsp-140-4.9 20/20 196.9 3425882
rcsp-150-4.6 20/20 537.6 7843960
rcsp-160-4.3 20/20 965.3 11813274
rcsp-170-4.0 20/20 221.7 1863285

EI

Instance Succ Time Flips
 Increasing permutation generation problems
 set =3 and P = 0.3
ap-10 20/20 0.14 8681
ap-20 20/20 320.27 4213672

Latin Square problems, set = 4, P = 0.8
Magic-10 20/20 0.02 342
Magic-15 20/20 0.22 973
Magic-20 20/20 0.51 2253
Magic-25 20/20 6.87 4908
Magic-30 20/20 5.2 8874
Magic-35 20/20 20.35 26204
Hard graph-coloring problem, set = 5, P = 0.07
g125n-18c 20/20 1.98 15385
g250n-15c 20/20 0.51 1196
g125n-17c 20/20 95.28 1549445
g250n-29c 20/20 310.65 1084154
 Tight random CSP, set = 6, P =0.7
rcsp-120-75 20/20 2.17 3699
rcsp-130-75 20/20 1.61 2196
rcsp-140-75 20/20 2.50 3160
rcsp-150-75 20/20 2.16 2301
rcsp-160-75 20/20 2.60 2572
rcsp-170-75 20/20 6.60 7025

Phase transition CSPs, set = 7, P = 0.7
rcsp-120-5.9 20/20 117.2 2082685
rcsp-130-5.5 20/20 346.28 10592183
rcsp-140-5.0 20/20 89.09 1330117
rcsp-150-4.7 20/20 252.01 1984370
rcsp-160-4.4 20/20 108.9 1073215
rcsp-170-4.1 20/20 140.60 1598530
 Slightly easier phase transition CSPs, set =8
rcsp-120-5.8 20/20 32.7 882129
rcsp-130-5.4 20/20 143.50 5084328
rcsp-140-4.9 20/20 13.55 274665
rcsp-150-4.6 20/20 33.89 673475
rcsp-160-4.3 20/20 18.60 727281
rcsp-170-4.0 20/20 7.50 289210

The tables give the success ratio, average solution time (in
seconds) and average flips on solved instances for ESG
and EI.
ESG gives segmentation fault while running the phase
transition instances.
The advantages of the ICM is evident in improving ESG.

EI gives substantial improvement over ESG in term of both
time and number of flips in all benchmark instances. In
addition, ESG has 17/20 success ratio for one instance in
the slightly easier phase transition CSPs while EI could
have 20/20 success ratio for the same instance.

 Conclusion
We have presented the EI algorithm which is the ICM
incorporated into ESG. We have seen the improvement
gained by EI. We believe that there is a plenty of scope for
using the ICM concept to improve other LS algorithms,
such as WalkSAT and the min-conflicts heuristic.

References
Makworth, A. 1977. Consistency in Networks of
Relations. AI 8(1): 99–118.

Fang, H.; Kilani, Y.; Lee, J.; and Stucky., P. 2002.
Reducing Search Space in Local Search for Constraint
Satisfaction. In Proceeding of AAAI, 200–207. AAAI
Press/MIT Press.

Selman, B.; Levesque, H.; and Mitchell, D. 1992. A New
Method for Solving Hard Satisfiability Problems. In
Proceeding of AAAI, 440–446. AAAI Press/MIT Press.

Selman, B., and Kauts, H.; 1993 Domain-Independent
Extensions to GSAT: Solving Large Structured
Satisfiability Problems. In proceeding of IJCAI, 290–295.

Wu, Z., and Wah, B. 1999 Trap Escaping Strategies in
Discrete Lagrangian Methods for Solving Hard
Satisfiability Problems. In Proceeding of AAAI, 673–678.
AAAI Press/MIT Press

Wu, Z., and Wah, B. 2000 An Efficient Global-Search
Strategy in Discrete Lagrangian Methods for Solving Hard
Satisfiability Problems. In Proceeding of AAAI, 310–315.
AAAI Press/MIT Press.

Minton, S.; Johnston, M.; Philips, A.; and Laird, P. 1992.
Minimizing Conflicts: a Heuristic Repair Method for
Constraint Satisfaction and Scheduling Problems. AI 58:
161–205.

Wu, Z., and Wah, B. 2000. An Efficient Global-Search
Strategy in Discrete Lagrangian Methods for Solving Hard
Satisfiability Problems. In Proceeding of AAAI, 310–315.
AAAI Press/MIT Press.

Selman, B.; Kauts, H.; and Cohen, B. 1994. Noise
Strategies for Improving Local Search. In proceeding of
AAAI, 337–343. AAAI Press/MIT Press.

Schuurmans, D., and Southey, F. 2000. Local Search
Characteristics of Incomplete SAT Procedures. In
Proceeding of AAAI, 297–302. AAAI Press/MIT Press.

