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Abstract 
Local search (LS) methods heuristically find a solution for 
constraint satisfaction problems (CSP). LS starts the search 
for a solution from a random assignment. LS then examines 
the neighbours of this assignment to determine a better 
neighbour valuation to move to. It repeats this process of 
moving from the current assignment to a better assignment 
until it finds a solution that satisfies all constraints.  
ICM considers some of the constraints as hard constraints 
that are always satisfied. In this way, ICM reduces the 
possible neighbours in each move and hence the overall 
search space. ICM chooses the hard constraints in such 
away that the space of valuations that satisfies these 
constraints is connected in order to guarantee that a local 
search can reach any solution from any valuation in this 
space.  
In this paper, we incorporate ICM into one of the most 
recent local search algorithm, ESG, and we show the 
improvement of the new algorithm. We ran this algorithm in 
different SAT problems. 

Introduction 
A (CSP) (Makworth, 1977) is a tuple (Z, D, C), where Z is 
a finite set of variables, D defines a finite set Dx, called the 
domain of x, for each x ∈ Z, and C is a finite set of 
constraints restricting the combination of values that the 
variables can take (Fang et al. 2002). A solution is an 
assignment of values from the domains to their respective 
variables so that all constraints are satisfied simultaneously 
(Fang et al. 2002). CSPs are known to be NP-hard in 
general (Fang et al. 2002).  
LS techniques, for example GSAT (Selman, Levesque, and 
Mitchell 1992), WalkSAT (Selman and Kauts 1993), DLM 
(Wu and Wah, 1999, Wu and Wah 2000) the min-conflicts 
heuristic (Minton 1992) and ESG (Wu and Wah 2000) 
have been successful in solving large CSPs (Fang et al. 
2002). LS starts the search by generating an initial random 
variable assignment (or state). It then makes local 
adjustments to the assignment iteratively until a solution is 
reached. The local adjustment happened by changing one 
variable assignment for instance. One criteria for this 
change is to change the variable’s assignment to a new 
assignment so that the new state after this change satisfies 
more number of constraints. 

LS searches the search space to look for solutions using 
some heuristic function. (Schuurmans and Southey, 
2000).introduced three measures of LS performance: 
depth, mobility and coverage. Depth measures how many 
clauses remain unsatisfied as the search proceeds, mobility 
measures how rapidly a local search moves in the search 
space and coverage measures how systematically the 
search explores the entire space. The efficiency of a LS 
algorithm depends on three things (Fang et al. 2002): (1) 
the size of the search space (the number of variables and 
the size of the domain of each variable), (2) the search 
surface (the structure of each constraint and the topology 
of the constraint connection) and (3) the heuristic function 
(the definition of neighbourhood and how a ``good'' 
neighbour is picked). The Island Confinement Method 
(ICM) aims to reduce the size of the search space (Fang et 
al. 2002).  
In this paper, we incorporate ICM into ESG and we show 
the gained performance by experimenting with different 
SAT instances. 
The rest of this paper is organized as follows. First, we 
give the necessary background and definitions. Second, we 
demonstrate the general process of any LS algorithm. 
Third, we describe the idea of ICM we used to improve 
ESG.  After that we demonstrate how we incorporate the 
ICM into ESG. This is followed by the experimental 
results, conclusion and the future work. 

Background 
Given a CSP(Z, D, C) (or simply C), we use var(c) to 
denote the set of variables that occur in constraint c ∈ C. If 
|var(c)| = 2 then c is a binary constraint. In a binary CSP, 
each constraint c ∈ C is binary. A valuation for variable 
set {x1,…, xn} = Z is a mapping from variables to values 
denoted {x1 → a1, …, xn → an}, where ai  ∈ Dxi. A state of 
a CSP is a valuation for Z. A state s is a solution of a 
constraint c if s makes c true. A state s is a solution of a 
CSP (Z, D, C) if s is a solution to all constraints in C 
simultaneously. Let unsat to be the set of literals occurring 
in the unsatisfied clauses. 
SAT problems are a special problem of CSPs. A 
propositional variable can take the value of either 0 (false) 



or 1 (true). A literal is either a variable x or its complement 
x’. A literal l is true if l assumes the value 1; l is false 
otherwise. A clause is a disjunction of literals which is true 
when one of its literals is true. For simplicity we assume 
that no literal appears in a clause more than once and no 
literal and its negation appear in a clause. A satisfiability 
problem (SAT) consists of a finite set of clauses (treated as 
a conjunction). Let l’ denote the complement of literal l: l’ 
= x’ if l = x, and l’ = x if l = x’. Let L’ = {l’ | l ∈ L} for a 
literal set L. Since we are dealing with SAT problems we 
will often treat states as sets of literals. A state {x1→a1, …, 
xn→an} corresponds to the set of literals { xj | aj = 1} ∪ 
{x’j | aj = 0}. 
In this research, we focus on a specific class of SAT 
problems, namely those encoding from a binary CSP. We 
can encode any binary CSP (Z, D, C) to a SAT problem as 
follows. Every CSP variable x ∈ Z is mapped to a set of 
propositional variables {xa1,…, xan} where Dx = {a1, …, 
an}. For every x ∈ Z, SAT(Z, D, C) contains the at-least-
one-on clause xa1 ∨ … ∨ xan which ensures that any 
solution to the SAT problem gives a value to x. Each 
binary constraint c ∈ C with var(c) = {x, y} is mapped to a 
series of clauses. If {x → a, y → b} is not a solution of c 
we add the clause xa’ ∨ yb’ to SAT(Z, D, C), where {x, y} 
⊆ Z. This ensures that the constraint c holds in any 
solution to the SAT problem. We call these clauses 
problem clauses. 
The previous formulation allows the possibility that in a 
solution, some CSP variable x is assigned two values. 
Choosing either value is guaranteed to solve the original 
CSP. This method is used in the encoding of CSPs into 
SAT in the DIMACS archive. When a binary CSP (Z, D, 
C) is translated to a SAT problem SAT(Z, D, C), all the 
clauses have the form x’ ∨ y’ except the at-least-one-on 
clauses.  
There are two types of algorithms for solving CSP: 
complete search algorithms and incomplete search 
algorithms. The complete search algorithms include  
chronological backtracking and dynamic backtracking. The 
incomplete search algorithms include: neural network, the 
genetic and LS algorithms. Our interes is in LS.  

Local Search 
A LS solver moves from one state to another by a local 
move. The neighbourhood n(s) is the set of neighbour 
states to s that are reachable in a single move from state s. 
The single move depends on the actual heuristic function 
used. This function decides the neighbour state to move to. 
A Hamming distance between states s1 and s2 measures the 
number of differences in variable assignment of s1 and s2. 
A vector variable vec(x) = (x1, …, xn). In this paper, we 
are interested in SAT problems. We assume n(s) as the 
states which are at a Hamming distance of 1 from the state 
s. We refer to flipping a literal l to mean flipping the 
variable occurring in the literal. A local move from state s 

is a transition, s ⇒ s', from s to s' ∈ n(s).We consider a 
SAT problem as a vector of clauses vec(c). The general LS 
algorithm starts the search from a random assignment s. 
This assignment represents the current state. Some LS 
algorithms may start the search from a heuristically chosen 
valuation instead of a random one. LS then moves from the 
current state s to a better neighbour n(s). If there is no 
better neighbour then it is local minima, trap. A trap is a 
non-solution state in which no further improvement can be 
made. Different LS algorithms follow different ways in 
escaping this local minimum. GSAT (Selman, Levesque, 
and Mitchell 1992) and the min-conflicts heuristic (Minton 
1992) use random restart, while DLM (Wu and Wah, 
1999, Wu and Wah 2000) and ESG (Schuurmans and 
Southey 2000). modify the landscape of the search surface. 
It escapes this trap. Some LS algorithms may include a 
restart and/or tabu list.  The restart prevents LS from 
spending very long time in searching one part of the search 
space. During the process of searching, some variables 
may be chosen frequently for flipping within a short time 
which in turn stagnates the search. Therefore, once a 
variable is flipped, tabu list prevents this variable from 
flipping in the coming few flips.  
If the search could not find a solution within a number of 
flips it restarts the search. In general, different local search 
algorithms have different structure. For instance, some 
local search algorithms do not use the tabu list, others do 
not do a restart after a certain number of flips, others have 
different way of escaping from the trap etc. Sometimes, 
even though the difference is very tiny but it has very big 
influence in the results.  
The theoretical understanding of the behavior of the local 
search algorithm is still not yet known and most of the 
research in this area depends on the experiments. 

 The Island Confinement Method 
The ICM (Fang et al. 2002). is based on the observation: 
the solution space of the conjunction of any subset of 
constraints in P encloses all solutions of P. Solving a CSP 
thus amounts to locating this space to all the constraints in 
P, which could be either points or regions scattered around 
in the entire search space. The solution space of constraints 
D is connected if the search can move between any two 
solutions of D without violating any constraint in D. The 
idea of ICM works by finding a set of constraints which 
are connected, it then starts the search from an assignment 
which satisfies all these constraints and finally restrict LS 
to search within this space instead of searching in the 
entire problem space. Therefore, the search space becomes 
smaller and it contains all the solutions giving higher 
chance to LS to find a solution in a short time. 
Let sol(C) denotes the set of all solutions to a conjunction 
of a set of constraints C, in other words the solution space 
of C. A set of constraints C is an island if, for any two 
states s0, sn ∈ sol(C), there exist states s1,…,sn-1 ∈ sol(C) 



such that si  ⇒ si+1 for all i ∈ {0,…, n-1}. That is we can 
move from any solution of C to any other solution using 
local moves that stay within the solution space of C.  
Let lit(c) denote the set of all literals of a set of clause c. A 
set C of clauses is non-conflicting if there does not exist a 
variable x such that x, x’ ∈ lit(C). A non-conflicting set C 
of clauses forms an island (Fang et al. 2002). Therefore, in 
a SAT encoded from a binary CSP, the problem clauses are 
an island/island clauses since no variable and its 
complement appear in these clauses. Given a SAT 
problem, we can incorporate ICM into any LS algorithm 
by the following steps: we split the clauses into ci and cr, 
where ci and cr are the island and the at least-one-on 
clauses respectively. Make an initial valuation that satisfies 
ci; getting inside the island. ci consists of clauses of the 
form x’ ∨ y’. An arbitrary extension of lit(ci) to all 
variables can always be such an initial valuation. 
Restricting the search to search within the at-least-one-on 
clauses while satisfying the problem (island) clauses. To 
do so, when we are in a state s, we exclude literals l from 
flipping when s' = s - l ∪ l’ does not satisfy ci. Hence we 
only examine states that are in n(s) and satisfy c i’. 

Incorporating ICM into the ESG Algorithm 
The exponentiated subgradient algorithm (ESG) ( 
Downloadable from 
http://ai.uwaterloo.ca/\~dale/papers.html) is a general-
purpose Boolean linear program (BLP) search technique 
(Schuurmans and Southey 2000). A BLP is a constrained 
optimization problem where one must choose a set of 
binary assignments to variables vec(x) = (x1,…, xn) to 
satisfy a given set of m linear inequalities vec(d1). vec(x) ≤ 
b1,..., vec(dm) vec(x) ≤ bm, where vec(di) and bi are 
constants, where i=1,…, m, while simultaneously 
optimizing a linear side objective vec(a). vec(x) 
(Schuurmans and Southey, F. 2000). (Schuurmans and 
Southey, F. 2000) describe how to encode a SAT problem 
as BLP. The Lagrangian function (LG) for a SAT problem 
of m clauses vec(c) = (c1,…, cm) and ki literals in each ci 
can be given by the following equation:   
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where yi is the real valued Lagrangian multiplier (LM) 
associated with constraint ci, ZO(ci) = 1 or 0 when ci  is 
violated or satisfied by s respectively and s is the current 
assignment. The objective is to minimize L(s, vec(c)). The 
following is the ESG algorithm: 
 
ESG(vec(c)) 
  Let s be a random valuation 
  vec(y) := 1,  tabulit  := ∅ 
  while (max number of tries not reached yet)  
    while L(s, vec(c)) > 0 and (max n. flips is not over))  
       un = unsat       

       if (un is empty) then it is a trap 
         rand  := choose a random number between 0-100 
         var    := choose any variable randomly 
         if ((rand) < noise) s - {var} ∪ {var’} 
         else learn: increase the LMs for the unsat clauses  
      else choose the best l from unsat  
            s = s - {l} ∪  {l’} 
      If (weight update condition holds) update vec(y) 
   return s 
 
ESG starts the search from a random assignment. It then 
searches for a solution and stops if it reaches a maximum 
number of flips. In each try, ESG restarts the search. ESG 
flips one of the best variables from the unsatisfied clauses 
of the current assignment to move to a better neighbour 
state. The better neighbour state is the state which has 
smaller LG than the LG of the current state. Note that 
flipping a variable from the unsatisfied clauses to move to 
a better neighbour is a common practice in local search 
algorithms like DLM and WalkSAT. When there is an 
ESG trap, with probability noise, where noise ≤ 100, ESG 
makes noise by flipping any variable randomly and with 
probability 100-noise, ESG learns by increasing the LMs 
of the currently unsatisfied clauses. Note that a clause has 
higher LM means this clause has been involved in a higher 
number of traps. Therefore, in each move, ESG chooses to 
flip a variable from the unsatisfied clauses to satisfy the 
clauses of higher LMs in the next move in order to reduce 
LG. LG = 0 means all the clauses are satisfied. ESG 
updates the LMs after a certain number of flips to prevent 
the clauses from having very high LMs. 
The following is the EI algorithm, the ICM incorporating 
into ESG: 

   
EI(vec(c)) 

      split vec(c) into vec(ci) and vec(cr)  
    make an initial valuation s that satisfies vec(ci) 
    vec(y) := 1,  tabulit  := ∅ 
    while (max number of tries not reached yet)  
      while (L(s, vec(c)) > 0 and (max n. flips is not over))  
         un = {l ∈ unsat | s ∉ sol(cr) and  
                      (s - l ∪ l’) ∈ sol(ci)} 
          if (un is empty) then it is an island trap 
              rand := choose a random number between 0-100 
              vars := ∪ {every var in the problem | if  
                                  (s-{var} ∪ {var’}) ∈ sol(ci)} 
              var  := choose a variable from vars randomly 
              if ((rand) < noise) s - {var} ∪ {var’} 
              else escapes this island trap in the same way 
                    mentioned in (Fang et al. 2002)  
          else choose the best l from un  
                  s = s - { l } ∪ { l’} 
    return s 
             
We implemented EI (the source code file can be taking by 
emailing the authors) by modifying the code of distribution 



of ESG. The input to EI is the set of SAT clauses. EI splits 
the clauses into island clauses and none island clauses. EI 
starts the search from a random valuation inside the island 
by initial assignment which satisfies all the island clauses. 
By doing so, we are getting inside the island. As we 
mentioned previously that an arbitrary extension to lit(ci’) 
can be such an initial assignment. A free literal is a literal 
once flipped the search will not violate any of the island 
clauses so that the search will remain searching inside the 
island. un saves the free literals from the unsatisfied 
clauses. An island trap happens when flipping any of the 
literals in the unsatisfied clauses violates at least one of the 
island clauses and hence gets the search outside of the 
island. To escape this trap, EI makes noise by flipping any 
free literal if the chosen probability is less than noise, 
where noise is a parameter. EI escapes the island trap using 
the same strategy used when escaping from the island trap 
in DLMI (Fang et al. 2002). In this strategy, we 
heuristically choose to free one of the literals in the 
unsatisfied clauses by flipping some literals from the 
satisfied clauses. For instance, suppose we want to free the 
literal x from the unsatisfied clauses. We know that 
flipping x violates the island clauses, say, c1 and c2.  
Flipping x violates c1 and c2  means x is the only true literal 
in each of c1 and c2. Therefore, we try to make one more 
literal true in each of c1 and c2. After doing so, there are 
two true literals, where x is one of them, in each of c1 and 
c2. Therefore, c1 and c2  still be satisfied after flipping x. If 
there is no island trap or after escaping from the island 
trap, EI flips the best literal l from unsat in order to move 
to a better neighbour. 

The Experiments 
The ESG implementation has the following parameters: –
mf : max flips before restarting, -mr: max restarts before 
aborting,  -cp : number of reweights between corrections,  -
alpha: scaled reweight step size (1+alpha*n/m), -rho: rate 
of weight shrinkage to mean for SAT clauses, -noise: 
probability of noise in a trap and -rawalpha: raw reweight 
step size, (never used with  -alpha together). The -cp, -
alpha, -rho and -rawalpha are the parameters used to 
update the LMs for the clauses. We have chosen to set the 
-alpha parameter instead of -rawalpha because of better 
performance. In all ESG experiments reported by 
(Schuurmans and Southey 2000), the -nr flag is used to fix 
the random number generator seed to 0. We follow the 
same practice. We ran all the instances on the same 
machine: a PC with Pentium III 8000 Mhs and 256 
memory. 
The ESG distribution does not come with any 
recommended parameters sets. We tuned, with the help of 
the original authors, the parameter settings for each of the 
benchmark sets. 

The following table gives the parameter sets adopted for 
ESG and EI. -rho and –mr are equal to 0.99 and 10 
respectively for all the instances.  
 

Set -alpha -noise -cp -rawalpha -mf 
1 0.995 0.02 50 - 500 
2 0.999 0.09 300 - 1000 
3 1.0 0.03 1000 - 10000000 
4 0.999 0.09 500 - 100000 
5 0.995 0.02 400 - 7000000 
6 0.2401 0.24 400 - 2000000 
7    - 0.008 500 1.3 100000000 
8 0.995 0.09 300 - 100000000 

 
We compare EI with ESG using the best parameter settings 
for ESG. 
The following two tables gives a comparison of ESG and 
EI. The first table gives the results of ESG while the 
second gives the results of EI. We give the P value for EI, 
the parameter needed when escaping from the island trap.  
 
 

ESG 
Instance Succ Time Flips 
    Increasing permutation generation problems 
                          set =3 
ap-10 20/20 1.00 104173 
ap-20 3/20 5623.22 40057253 

Latin Square problems, set =4 
Magic-10 20/20 0.90 699 
Magic-15 20/20 0.31 2426 
Magic-20 20/20 1.29 5711 
Magic-25 20/20 14.08 10655 
Magic-30 20/20 16.74 18564 
Magic-35 20/20 54.20 38428 
Hard graph-coloring problem, set = 5 
g125n-18c 20/20 3.27 19147 
g250n-15c 20/20 2.30 2420 
g125n-17c 20/20 2494.2 1134850 
g250n-29c 20/20 20650.3 22785693 
             Tight random CSP, set = 6 
rcsp-120-75 20/20 21.7 14965 
rcsp-130-75 20/20 24.55 16012 
rcsp-140-75 20/20 44.2 17699 
rcsp-150-75 20/20 68.04 23576 
rcsp-160-75 20/20 83.21 26497 
rcsp-170-75 20/20 679.27 165708 

Phase transition CSPs, set = 7 
rcsp-120-5.9 Seg- Ment- Ation 
rcsp-130-5.5  fault  
rcsp-140-5.0 Seg- Ment- Ation 
rcsp-150-4.7  fault  
rcsp-160-4.4 Seg- Ment- Ation 
rcsp-170-4.1  fault  



  Slightly easier phase transition CSPs, set =8 
rcsp-120-5.8 20/20 1205.2   12844605 
rcsp-130-5.4 17/20 24890.2 239966515 
rcsp-140-4.9 20/20 196.9     3425882 
rcsp-150-4.6 20/20 537.6     7843960 
rcsp-160-4.3 20/20 965.3   11813274 
rcsp-170-4.0 20/20 221.7     1863285 

 
EI 

Instance Succ Time Flips 
    Increasing permutation generation problems 
                          set =3 and P = 0.3 
ap-10 20/20  0.14 8681 
ap-20 20/20  320.27 4213672 

Latin Square problems, set = 4, P  = 0.8 
Magic-10 20/20  0.02  342 
Magic-15 20/20  0.22  973 
Magic-20 20/20  0.51  2253 
Magic-25 20/20   6.87  4908 
Magic-30 20/20  5.2   8874 
Magic-35 20/20 20.35  26204 
Hard graph-coloring problem, set = 5, P = 0.07 
g125n-18c 20/20 1.98 15385  
g250n-15c 20/20 0.51 1196  
g125n-17c 20/20 95.28  1549445 
g250n-29c 20/20 310.65   1084154 
             Tight random CSP, set = 6, P =0.7 
rcsp-120-75 20/20  2.17  3699 
rcsp-130-75 20/20  1.61  2196 
rcsp-140-75 20/20  2.50  3160 
rcsp-150-75 20/20  2.16  2301 
rcsp-160-75 20/20  2.60  2572 
rcsp-170-75 20/20  6.60  7025 

Phase transition CSPs, set = 7, P = 0.7 
rcsp-120-5.9 20/20   117.2 2082685  
rcsp-130-5.5 20/20  346.28 10592183 
rcsp-140-5.0 20/20  89.09 1330117 
rcsp-150-4.7 20/20  252.01 1984370 
rcsp-160-4.4 20/20   108.9  1073215 
rcsp-170-4.1 20/20  140.60 1598530 
  Slightly easier phase transition CSPs, set =8 
rcsp-120-5.8 20/20  32.7  882129 
rcsp-130-5.4 20/20  143.50  5084328 
rcsp-140-4.9 20/20  13.55    274665 
rcsp-150-4.6 20/20  33.89   673475     
rcsp-160-4.3 20/20  18.60   727281 
rcsp-170-4.0 20/20  7.50   289210    

 
The tables give the success ratio, average solution time (in 
seconds) and average flips on solved instances for ESG 
and EI. 
ESG gives segmentation fault while running the phase 
transition instances.  
The advantages of the ICM is evident in improving ESG. 

EI gives substantial improvement over ESG in term of both 
time and number of flips in all benchmark instances. In 
addition, ESG has 17/20 success ratio for one instance in 
the slightly easier phase transition CSPs while EI could 
have 20/20 success ratio for the same instance.   

 Conclusion 
We have presented the EI algorithm which is the ICM 
incorporated into ESG. We have seen the improvement 
gained by EI. We believe that there is a plenty of scope for 
using the ICM concept to improve other LS algorithms, 
such as WalkSAT and the min-conflicts heuristic.   
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