
InfoSift: Adapting Graph Mining Techniques for Text Classification∗

Manu Aery and Sharma Chakravarthy
IT Laboratory and CSE Department
The University of Texas at Arlington

{aery, sharma}@ cse.uta.edu

Abstract

Text classification is the problem of assigning pre-defined
class labels to incoming, unclassified documents. The class
labels are defined based on a set of examples of pre-classified
documents used as a training corpus. Various machine learn-
ing, information retrieval and probability based techniques
have been proposed for text classification. In this paper we
propose a novel, graph mining approach for text classifica-
tion. Our approach is based onthe premise that representa-
tive – common and recurring –structures/patterns can be ex-
tracted from a pre-classified document class using graph min-
ing techniques and the same can be used effectively for clas-
sifying unknown documents. A number of factors that influ-
ence representative structure extraction and classification are
analyzed conceptually and validated experimentally. In our
approach, the notion of inexact graph match is leveraged for
deriving structures that provide coverage for characterizing
class contents. Extensive experimentation validate the selec-
tion of parameters and the effectiveness of our approach for
text classification. We also compare the performance of our
approach with the naive Bayesian classifier.

Introduction

Today, instant access to large amounts of information is
available through the Internet. This ability to access large
amounts of information also entails a need for mechanisms
that automate information access based on relevance. One
such mechanism is text classification, which allows a user to
retrieve information that falls into categories of interest. Text
classification is the problem of assigning pre-defined class
labels to incoming, unclassified documents. The class la-
bels are defined based on a set of examples of pre-classified
documents used as a training corpus. Text classification has
traditionally been applied to documents in the context of in-
formation retrieval and there exists a large body of work on
the same. There is reason to believe that documents within
a class adhere to a set of patterns and that these patterns
closely correspond to, and can be derived from the docu-
ments of that class. A classification system that determines
the patterns of various term associations that emerge from
documents of a class and uses these patterns for classifying
similar documents is required. The ability to classify based
on similar and not exact occurrences is singularly important
in most classification tasks, as no two samples are exactly
alike. In this paper, we propose a novel approach that adapts
graph mining techniques for text classification. To the best
of our knowledge, ours is the first attempt at applying graph

∗This work is supported, in part, by NSF grants IIS-0097517
and IIS-0326505
Copyright c© 2005, American Association for Artificial Intelli-
gence (www.aaai.org). All rights reserved.

mining techniques for classification (Aery & Chakravarthy
2004).

Related Work

For text classification, a number of approaches have been
proposed, these include Support Vector Machines (SVM)
(Joachims 1998), Decision trees (Apte, Damerau, & Weiss
1998; Joachims 1998), k-Nearest-Neighbor (k-NN) classi-
fication (Lam & Ho 1998; Masand, Linoff, & Waltz 1992;
Yang 1994), Linear Least Squares Fit technique (Yang &
Chute 1994), rule induction (Apte, F.Damerau, & Weiss
1994; Cohen 1995; Moulinier, Raskinis, & Ganascia 1996),
neural networks (Weiner, Pederson, & Weigend 1995; Ng,
Goh, & Low 1997) and Bayesian probabilistic classifica-
tion (McCallum & Nigam 1992; Baker & McCallum 1998;
Koller & Sahami 1997; Tzeras & Hartman 1993). Support
Vector Machines work by constructing a hyperplane that
separates positive and negative examples of a class. A de-
cision tree makes recursive splits based on discriminating
attributes to determine the class of an unknown sample. k-
NN techniques work by assigning the unknown document
the class label corresponding to the majority of the k known
documents it matches closely. While these techniques work
well, they rely on extracting keywords or highly frequent
words for classification and ignore the importance of a group
of related words that co-occur. As stated before, documents
of a class exhibit structures/patterns, which can be learnt and
used for classifying unknown documents. Data mining is the
process of discovering implicit and previously unknown pat-
terns in data (Frawley, Piatetsky-Shapiro, & Matheus 1991).
Therefore, we believe data mining techniques can be mean-
ingfully applied to the task at hand and we have chosen
graph data mining for our work as we intend to extract pat-
terns occurrences instead of word occurrences. Graph mod-
els have been used to classify web documents (Schenker
et al. 2003), but an extension of the k-NN algorithm is
used to handle graph based data. The graph theoretical-
distance measure for computing the distance translates to the
maximal common subgraph distance proposed in (Bunke &
Shearer 2001). A graph-encoded linguistic scheme has been
applied for text classification in (Gee & Cook 2005).

Contribution

The main contribution of this paper is in the adaptation of a
novel, but powerful approach, viz. graph mining for text
classification and demonstrating its effectiveness. To the
best of our knowledge, ours is the first attempt to assess
the applicability of graph mining for classification. Another
contribution is the identification of the graph mining ap-



proach (from among the alternatives) that is suited for clas-
sification. Graph mining (or any other mining technique)
does not perform classification and hence its adaptation for
classification is not straightforward. A number of param-
eters have been analyzed for our problem and their values
have been identified both analytically and experimentally for
performing classification. Finally, the last but not the least
contribution of this paper is an extensive evaluation of the
chosen graph mining technique and its comparison with a
traditional classification technique.

Graph Based Data Mining

Graph mining, as opposed to transaction mining (association
rules, decision trees and others) is suitable for mining struc-
tural data (chemical compounds, proteins, DNA, etc.) which
have an inherent structure. The complex relationships that
exist between entities that comprise these structures can be
represented in graph format. The representation preserves
the structural information of the original application which
may be lost when the problem is translated to other repre-
sentation schemes. Also, the various associations between
objects in a complex structure are easy to understand and
represent graphically. Documents and web pages have a
structure in the form of the title, keywords, section headings,
the HTML tag elements in case of web pages and the doc-
ument body. By using the structural information present in
the text, the inherent structure in the document is preserved,
but graph mining approaches ar required for analysis. Rel-
evant work in graph mining includes the Subdue substruc-
ture discovery system by Cook and Holder (Cook & Holder
2000). Subdue employs beam search to discover interesting
and repetitive subgraphs, and compresses the original graph
with instances of the discovered substructures. The frequent
subgraphs approach by Kuramochi and Karypis (Kuramochi
& Karypis 2001) maps the apriori algorithm to structural
data represented in the form of a labeled graph and finds
frequent itemsets that correspond to recurring subgraphs in
the input. gSpan (Yan & Han 2002) uses a canonical repre-
sentation by mapping each graph to a code and uses depth-
first search to mine frequent subgraphs. Briefly, our work
requires a means of substructure discovery directed by spe-
cific constraints (explained later). The notion of matching
inexactly within bounds dictated by various domain charac-
teristics is necessary. FSG and gSpan do not have this no-
tion of matching inexactly within a threshold value as they
use canonical labeling. Subdue satisfies our requirements of
guided discovery and hence we have chosen the same for our
work. For additional explanation, refer to (Aery Dec 2004).

Subdue Substructure Discovery System

Subdue (Cook & Holder 2000) is a graph based mining al-
gorithm. It accepts a forest as input and identifies the best
subgraph that minimizes the input graph using the minimum
description length (MDL) principle (Rissanen 1989). It out-
puts subgraphs of different sizes and their occurrence fre-
quency in the input graph. Subdue is capable of identifying
both exact and inexact (or isomorphic) substructures in the
input graph. It uses a branch and bound algorithm that runs
in polynomial time for inexact graph match and identifies

graphs that differ by vertex or edge labels using a threshold
parameter that characterizes the inexactness.
Inexact graph Match: A substructure is a connected sub-
graph within the graph representation. Though exact graph
match comparison discovers interesting substructures, most
of the substructures in the graph may be slight variations of
another substructure. Inexact graph match allows us to com-
bine multiple structures into a single structure both for repre-
sentation and identification. In order to detect substructures
that match inexactly or vary slightly in their edge or vertex
descriptions, the algorithm developed by Bunke and Aller-
man (Bunke & Allerman 1983) is used where each distor-
tion (addition, deletion or substitution of vertices or edges)
is assigned a cost. The two graphs are said to be isomorphic
as long as the cost difference falls within the user specified
threshold.
Subdue Parameters: Subdue accepts as input a number of
parameters that not only affect substructure discovery, but
also the set of substructures returned as best. The parameters
that are relevant to our work are discussed below:

1. Threshold: The threshold parameter provides a simi-
larity measure for the inexact graph match. It specifies
the amount of variation between instances of a substruc-
ture. The instances match if matchcost(sub, inst) <=
size(inst) ∗ threshold.

2. Nsubs: This argument specifies the maximum number of
the best substructures returned.

3. Beam: Substructure discovery is performed by expand-
ing the vertices of the input graph by the edges that are
incident on them. During each iteration of the algorithm,
beam specifies the maximum number of substructures
(the best substructures from all the iterations up to the cur-
rent one) that are retained for expansion during the next
iteration.

4. Size: This parameter is used to limit the size of the sub-
structures that are considered. Size refers to the number
of vertices in the substructure. A minimum and maximum
value is specified that determines the range of the size pa-
rameter.

With this discussion of graph mining and Subdue, we will
now discuss the adaptation of graph mining techniques for
text classification.

InfoSift: Overview
The InfoSift system uses graph mining techniques to classify
unknown documents into pre-classified document classes.
The overall flow is as shown in Fig. 1. Each of the steps
in the process are briefly described below:
Document pre-Processing: The pre-classified document
classes form the training set for generating interesting and
repetitive patterns. Stop word removal is peformed during
document pre-processing and the same is carried out on the
unknown document to eliminate commonly occurring words
that carry no special meaning. Various characteristics of the
class (e.g., the number of documents in the class, their size
and so on) need to be taken into account in order to derive
the optimal set of parameters for substructure discovery.



Graph

Generator


 Pre-

processing


Document

classes


Substructure

Pruning


 &

Ranking


Representative

Substructures


Classifier


Ema

il
Fold

er


Class


Graph Mining

Techniques


(Subdue)


Unknown

sample


Ema

il
Fold

er


Class


Figure 1: InfoSift Text Classification System

Graph Representation: The next step is to choose an ap-
propriate graph representation and use it for representing
documents in a class. We will discuss a canonical graph rep-
resentation scheme that can be used for general text, emails
and web pages.
Substructure Extraction: Graph mining techniques are
used for extracting representative substructures. The sub-
structure discovery process is driven by parameters derived
from the characteristics of the class under consideration.
Representative Substructure Pruning: The output of the
discovery process may contain a large number of substruc-
tures. Retaining all of them may not be necessary and the
goal of pruning is to identify the subset needed for discrim-
inating incoming unknown documents during classification.
Representative Substructure Ranking: It is important to
discriminate among the set of pruned representatives from
the viewpoint of classification. Each representative sub-
structure needs to be ranked in some way to indicate its rep-
resentativeness. The rank associated is used in classifying
incoming documents.
Classification: The representative substructures obtained
and ranked for that class are compared with the unknown
document to determine if any of them appear in the same.
If a match is found, the document is classified to the corre-
sponding category. For multi-way classification, in case of
more than one match, the ranks associated with the matched
substructures are used for resolving the class association.
The document is classified into the category with the highest
ranked substructure match.

Component Details & Discussion of Parameters

This section presents a detailed discussion of each step in the
classification process. The influence of class characteristics
and their mapping into parameters that affect substructure
discovery along with the rationale for the choice of parame-
ters and alternatives considered are discussed.
Document Pre-processing: Information retrieval uses sev-
eral techniques for pre-processing documents to prune the
size of the input without affecting the final outcome. For

our purposes, we need to determine what can be pruned
and why, and what need to be retained. Before generating
the input graph for a class, the documents in the same are
processed to eliminate stop words. Since the goal is to re-
tain substructures that are frequent across documents in a
given category or class, the terms that comprise the sub-
structures have to be frequent as well. These terms must
occur frequently, preferably across a large percentage of the
documents in the class. This choice of retaining words that
are common across documents takes care of the disparity
in document size, as some are considerably larger than oth-
ers. Words are ranked based on their occurrence frequency
across all documents in a class and those whose frequencies
account for more than f% of the sum of all frequencies are
retained. Currently, this parameter is set to 80%. To con-
struct the graph, only those words in the message body that
are a member of this frequent set are used. The documents in
the class are pre-processed as explained above and converted
into a graph (actually a forest) for substructure discovery.

Graph Representation: The first step in discovering repre-
sentative patterns is to transform the documents into a graph
format for mining. The choice of graph representation can
have an impact on the classification as structures identified
will have different set of relationships. Also, based on the
domain knowledge, it is possible to choose a representation
that provides different emphasis for different domains. As
we believe that our current approach can be useful for classi-
fying general text, emails and web pages, we have proposed
a canonical graph representation that can be used for any
type of text. The representation is a star-graph and consists
of a central anchor or root vertex and the chosen words from
the document form the remaining vertices. These are con-
nected to the central vertex with edges that have descriptive
edge labels such as contains. The ability to label edges
makes this simple representation quite effective. Fig. 2
shows such a representation where the edge labels used are
title and contains to differentiate between various parts of
a document. The representation can be further refined to in-
clude keywords, section headings and so on.

c
o
n
t
a
i
n
s


c
o
n
t
a
i
n
s


c
o
n
t
a
i
n
s


c
o

n
t
a


i
n

s


c
o
n
t
a
i
n
s


c

o


n

t
a


i
n

s




t
i
t

l
e


Document


farm


cultivate


grain


corn


oat


wheat


barley


Figure 2: Canonical Graph Representation

The input file to the Subdue system consists of vertex and
edge entries. Each vertex entry associates a unique vertex id
with every vertex label. Each entry corresponding to an edge
represents an undirected edge between a pair of vertices and
the associated edge label.



Impact of Class Characteristics

In order to identify representative structures of a given class,
we have to choose a number of input parameters for the Sub-
due algorithm (such as beam, threshold, etc.). We believe
that the document class itself needs to be used as a source
for deriving these parameters as classes vary in their char-
acteristics. Certain classes may be more dense as compared
to others, certain others may have larger document content
providing a greater amount of information for training the
classifier. These and other class characteristics need to be
extracted during pre-processing and specified as input pa-
rameters to the discovery algorithm to ensure that the sub-
structure discovery process is based on the traits of the class.
This way, the representative structures generated will be cus-
tomized to a class and not based on a fixed set of parameter
values. We need to identify the parameters that are impor-
tant and then provide a way for deriving them with substan-
tiation. Below, we discuss the key characteristics of doc-
ument classes that we believe affect substructure discovery
and how they can be mapped as parameters for the same.
Average size and Threshold: As discussed earlier, the
threshold parameter determines the amount of inexactness
allowed during substructure discovery. During inexact graph
match, threshold determines the number of vertices and
edges that vary among instances of the same substructure.
The actual number is determined by

(num of vertices + num of edges)× threshold (1)

Since each document has a different size (even after pre-
processing), we use the average document size as one of
the characteristics of a class. We argue that a low value
of threshold allows for a significant amount of inexactness
while comparing substructure instances of documents that
contain a greater a number of words. This is because, for
larger documents, even with a low threshold, the actual
value as determined by equation 1 will allow a reasonable
amount of inexactness. This ensures that similar substruc-
tures with slight variations are identified. For smaller doc-
uments and hence fewer vertices in the input graph repre-
sentation, a larger value of threshold is required for inexact
match that allows the same number of variations as in the
former case. Using the size of the documents in a class, we
can always determine the amount of inexactness to allow for
graph match. If the amount of inexactness to be allowed in
terms of the number of edge/vertex label variations is ‘i’,
then the particular value of threshold is obtained by

threshold =
i

Avgs

(2)

where, Avgs is the average size of the documents in a class
Here, we have interpreted the average size as a parameter
that affects pattern discovery and used it to derive a value for
the threshold that allows for a reasonable amount of varia-
tion and at the same time preserves the similarity between
substructure instances. It is also important to make sure that
the value of i is not very large allowing very dissimilar sub-
structure instances to be grouped as identical.
Average size & Class size Vs Number of Substructures:
The number of substructures returned by Subdue as the set

of best substructures is limited by the parameter nsubs. To
ensure that the representative set consists of substructures
that characterize the class, the parameter has to be derived
from the class. If the average size of the documents in a class
is large, then the number of subgraphs is also large. Simi-
larly, if there are a large number of documents in a class,
there probably are a large number of substructure instances
as well as substructures themselves. We have derived the
number of substructures by using both the size of the class
and the average document size along with weights to em-
phasize each factor as given by the following equation

nsubs = w1 × Cs + w2 × Avgs, w1 > w2 (3)

where, Cs is the size of the class and
w1 is the weighting factor applied to the same
Avgs is the average size of the documents in the class and
w2 is the weight applied to the average document size.
The particular numeric value for w1 depends upon the size
of the class under consideration. For the Reuters-21578
corpus () used for experimentation, we have discriminated
classes into small (less than 60 documents), medium (61 to
200) and large (201 documents and above) depending upon
their sizes. Due to space constraints the discussion for small
classes is presented here. Since Subdue picks substructures
based on their ability to compress the original graph, for a
small class, large substructures despite their low frequencies
are picked as best substructures, since abstracting even their
few instances results in greater compression of the original
graph. To ensure that comparatively smaller sized repetitive
substructures are picked, a large value of nsubs is required.
Therefore taking into account the need for a large ‘nsubs’
with small class size and scaling it with increase in average
document size, we arrive at the following weights for w1 and
w2

nsubs = 1.25× Cs + 0.50× Avgs (4)

The weight w2 is fixed at 0.50 for all class sizes as the prod-
uct term scales with increase in average document size. The
values have been determined based on experimental obser-
vations. Similar weight measures specific to medium and
large sized classes have also been derived by experimenta-
tion.
Beam size: Beam determines the number of best substruc-
tures retained at the end of each iteration of the discovery
algorithm. The discussion regarding parameter ‘nsubs’ en-
tailed ensuring the value chosen for the number of substruc-
tures is optimal to cover the possible set of substructures.
While this is required, it is also important to ensure that
the interesting substructures discovered during each itera-
tion of the discovery algorithm are available for further con-
sideration. This can be effected by selecting the right value
of beam size. A low value of beam will result in loss of
some interesting substructures as they do not get a chance
to be evaluated in subsequent iterations of the discovery al-
gorithm. Experiments employing beam sizes of 2, 4, 6, 8,
10 and 12 were performed on the experimental classes. De-
pending upon class size, in almost all cases beam values of
12 worked well for large classes. For small and medium
sized classes, beam values that returned good results were 2
and 4 respectively. A larger value of beam for these classes



only leads to increased computation time and extra process-
ing in terms of pruning the unnecessary substructures.
Substructure size Vs. Minsize: It is important to re-
tain substructures that are capable of discriminating among
classes. Substructures that are common across classes do not
help in the classification process as they provide no discrim-
inating capability. The substructure size can be constrained
above a minimum size to pick substructures that contain
something more than a common ‘core’. It makes sense to
constrain substructures above a certain size, as a match with
a very small substructure is not indicative of similarity. In
our representation scheme, the central ‘document’ vertex is
present in all substructures and we have constrained the min-
imum size of substructures to be greater than 3 to accommo-
date documents that vary in size. The constraint is specified
using the minsize parameter that is input to the Subdue sys-
tem.
Substructure Pruning and Ranking: A large number of
substructures are returned as part of the discovery process;
however, they are all not interesting from the viewpoint of
classification. Inexact graph match returns substructures
similar to others in terms of occurrence frequency and sub-
structure size, while varying in one or more vertex or edge
descriptions. Retaining several structures which have the
same frequency and size and vary slightly will not contribute
to classification especially when inexact match is used. It is
necessary to prune this set of substructures to retain those
that are true representatives of a class, and to save space and
reduce the computation during classification. To prune the
possibly large set of substructures, only those substructures
that differ in frequency and size are retained. Since the dis-
covery algorithm uses compression as a heuristic it identifies
certain large substructures that do not occur very frequently.
These substructures do not significantly add to the represen-
tative set primarily because they do not cover a substantial
portion of the class contents and are pruned. The represen-
tative substructures are then ranked based on the frequency
of occurrence, average document size and substructure size.
Substructures with sizes comparable to the average docu-
ment size and which cover a reasonable number of docu-
ments are preferred, as this signifies correlation with class
contents. The formula for rank takes into account the above
and is computed by the following equation

Rs =
Ss

Avgs

·
fs

fL

(5)

where, Ss is the size of the substructure
Avgs is the average document size
fs is the occurrence frequency of the substructure and
fL is the frequency of the most repeated substructure.
The rank computed above reflects the need for discovering
substructures that not only cover a significant percentage of
the input set, but also compare well with the average size of
the documents in the same. Relatively large sized frequent
substructures signify greater similarity among documents of
a class. An incoming document that matches a substruc-
ture with a high value of rank in class C1 as compared to
an average ranked substructure in class C2, is appropriately
classified to C1.

Classification: Each incoming document is compared with
the set of ranked representative substructures (from high to
low) of all classes. As with the generation of representative
pattern subgraphs, inexact graph match is used for compar-
ison. The document is filed to the corresponding class if a
match occurs. In case of multiple matches, the document is
filed to the class with the highest ranked substructure, signi-
fying higher correlation with the class contents.

Experimental Evaluation

Implementation: The InfoSift system has been imple-
mented in Perl. The input to the system consists of one
or more classes and a number of parameters such as the
split for cross validation and random or sequential choice
for the split. The prototype pre-processes the classes, gen-
erates graphs, computes the various parameters and invokes
the discovery algorithm, then prunes and ranks the output for
classification. The outcome along with a number of other
values generated are logged for further analysis. The ex-
periments have been carried out on the benchmark Reuters-
21578 corpus. The category distribution of the corpus is
skewed with a majority of the categories containing few doc-
uments to a few containing thousands of documents. Also,
the corpus contains unlabeled documents that have not been
considered for the experimental analysis. The resulting set
of over 13000 documents corresponding to 60 topic cate-
gories has been used for training and testing purposes. We
have performed extensive experiments using a training and
test set split of 80:20. The metric used for evaluation is ac-
curacy, which is defined as the ratio of the number of correct
category assignments to the number of documents to be clas-
sified. All experiments have been carried out on a Pentium
Xeon 2.66 Ghz dual processor machine with 2GB memory.
InfoSift Vs. Naive Bayes: Extensive experiments were car-
ried out to compare the performance of InfoSift with that of
the probability based naive Bayesian classifier1. The naive
Bayes classifier predicts the correct class for an unknown
sample based on its feature vector. Despite the simplifying
assumption of term independence that is made, the classifier
does fairly well. The results of comparison with the naive

InfoSift Vs. Naive Bayes


0


10


20


30


40


50


60


70


80


90


100


0
 500
 1000
 1500
 2000
 2500
 3000


Training set size of classes


C
la

ss
ifi

ca
tio

n 
A

cc
ur

ac
y


Naïve Bayes

InfoSift


Figure 3: Performance of InfoSift Vs Naive Bayes

1As implemented in the Bow library by Andrew McCallum and
publicly available at http://cs.cmu.edu/mccallum/bow



Bayesian probabilistic classifier is presented in Fig. 3. The
classification accuracy of InfoSift is consistently better than
the Bayesian classifier, with the exception of the two large
sized classes in the training set. The classifier performs well
for small and medium sized classes. A possible explanation
for reduced accuracy on the large sets could be the relatively
smaller beam value (of 12) used for experimentation. With a
larger beam, a greater number of potential substructures can
be given a chance for discovery. These will probably pro-
vide enough coverage for the contents of the class and lead
to an increase in classification accuracy.
Exact Graph Match Vs Inexact Graph Match: Experi-
ments were performed to study classification using exact and
inexact graph match, as we believe the ability to match sim-
ilar instances is important, especially in the textual domain,
where exact matches are hard to find. Our conjecture has
been proved right by the experimental results. For smaller
sized classes, it is clear that in the absence of large training
data, inexact graph match does significantly better than ex-
act graph match as seen in the plot of Fig. 4. This is due
to the fact that inexact graph match is able to group similar
instances that vary slightly. This ability is more pronounced
since the possibility of finding instances that match exactly
is rare in smaller sized classes. For large classes, the clas-
sification due to exact and inexact match is almost the same
as seen in Fig. 5. Due to lack of space we are not able to

Inexact Vs. Exact Graph Match


0


10


20


30


40


50


60


70


80


90


100


15
 23
 25
 30
 34
 42
 53
 64

Training set size of classes


C
la

ss
if

ic
at

io
n

 A
cc

u
ra

cy



Exact Graph Match

Inexact Graph Match


Figure 4: Exact Vs Inexact Match for Small Classes

Inexact Vs. Exact Graph Match


0


10


20


30


40


50


60


70


80


90


100


50
 550
 1050
 1550
 2050
 2550
 3050


Training set size of classes


C
la

ss
ifi

ca
tio

n 
A

cc
ur

ac
y


Inexact Graph Match

Exact Graph Match


Figure 5: Exact Vs Inexact Match for Medium and Large
Classes

present all of out experimental results. But the effectiveness
of the classifier can nevertheless be gauged from the exper-
imental results that have been presented. For more details
refer to (Aery Dec 2004).

Conclusions
In summary, we have proposed an innovative approach for
document classification using graph mining and the feasibil-
ity of the same for classification has been established. We
are able to make claims that our approach compares well
with and even outperforms a conventional text classifier. A
detailed analysis of parameters that affect the classification
process has been presented and the experimental results val-
idate the effectiveness of our approach.

References
Aery, M., and Chakravarthy, S. 2004. emailsift: Mining based approaches to email
classification. In Proc. of the 27th ACM SIGIR Conf.

Aery, M. Dec 2004. InfoSift: Adapting Graph Mining Techniques for Document
Classification. Masters’ Thesis, Dept. of Computer Science & Engg., Univ. of Texas
at Arlington. http://itlab.uta.edu/ITLABWEB/Students/sharma/theses/Manu.pdf.

Apte, C.; Damerau, F.; and Weiss, S. M. 1998. Text mining with decision trees and
decision rules. Conf. on Automated Learning and Discovery.

Apte, C.; F.Damerau; and Weiss, S. 1994. Towards language independent automated
learning of text categorization models. In Proc. of the 17th ACM SIGIR Conf.

Baker, L. D., and McCallum, A. K. 1998. Distributional clustering of words for text
categorization. In Proc. of the 21st ACM SIGIR Conf.

Bunke, H., and Allerman, G. 1983. Inexact graph match for structural pattern
recognition. Pattern Recognition Letters 245–253.

Bunke, H., and Shearer, K. 2001. A graph distance metric based on maximal com-
mon subgraph. Pattern Recognition Letters 753–758.

Cohen, W. W. 1995. Text categorization and relational learning. In the 12th Intl.
Conf. on Machine Learning (ICML’95).

Cook, D. J., and Holder, L. B. 2000. Graph based data mining. IEEE Intelligent
Systems 15(2):32–41.

Frawley, W. J.; Piatetsky-Shapiro, G.; and Matheus, C. J. 1991. Knowledge dis-
covery in databases: An overview. Knowlegde Discovery in Databases MIT Press
1–27.
Gee, K. R., and Cook, D. J. 2005. Text classification using graph-encoded lingusitic
elements. Proc. of the 18th Intl. FLAIRS Conf.

Joachims, T. 1998. Text categorization with support vector machines: Learning with
many relevant features. ECML 137–142.

Koller, D., and Sahami, M. 1997. Heirarchically classifying text using very few
words. In the 14th Intl. Conf. on Machine Learning (ICML’97) 170–178.

Kuramochi, M., and Karypis, G. 2001. Frequent subgraph discovery. IEEE Intl.
Conf. on Data Mining 313–320.

Lam, W., and Ho, C. 1998. Using a generalized instance set for automatic text
categorization. In Proc. of the 22nd ACM SIGIR Conf. 81–89.

Masand, B.; Linoff, G.; and Waltz, D. 1992. Classifying news stories using memory
based reasoning. In Proc of the 15th ACM SIGIR Conf. 59–64.

McCallum, A. K., and Nigam, K. 1992. A comparison of event models for naive
bayes text classification. In Proc of the 15th ACM SIGIR Conf. 59–64.

Moulinier, I.; Raskinis, G.; and Ganascia, J. 1996. Text categorization: a symbolic
approach. In the Proc. of the 5th Annual Sym. on Document Analysis and Informa-
tion Retrieval.
Ng, H. T.; Goh, W. B.; and Low, K. L. 1997. Feature selection, perceptron learning
and a usability case study for text categorization. Proc. of 20th ACM SIGIR Conf.

Rissanen, J. 1989. Stochastic complexity in statistical enquiry. World Publishing
Company.

Schenker, A.; Last, M.; Bunke, H.; and Kandel, A. 2003. Classification of web doc-
uments using a graph model. 7th Intl. Conf. on Document Analysis and Recognition.

Tzeras, K., and Hartman, S. 1993. Automatic indexing based on bayesian inference
networks. In Proc of the 16th ACM SIGIR Conf. 22–34.

Weiner, E.; Pederson, J. O.; and Weigend, A. S. 1995. A neural network approach
to topic spotting. In the Proc. of the 4th Annual Sym. on Document Analysis and
Information Retrieval.

Yan, X., and Han, J. 2002. gspan:graph-based substructure pattern mining. Proc. of
the IEEE Intl. Conf. on Data Mining.

Yang, Y., and Chute, C. G. 1994. An example-based mapping method for text
categorization and retrieval. ACM TOIS 12(3):252–277.

Yang, Y. 1994. Expert network: Effective and efficient learning from human de-
cisions in text categorization and retrieval. In Proc of the 17th ACM SIGIR Conf.
13–22.


