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Abstract 
 

Searching for relevant information on the World Wide Web 
is often a laborious and frustrating task for casual and 
experienced users. To help improve searching on the Web 
based on a better understanding of user characteristics, we 
address the following research questions: What kind of 
information would rough set theory shed on user’s web 
behavior? What kind of rules can we extract from a decision 
table that summarizes the behavior of users from a set of 
attributes with multiple values in such a case? What kind of 
decision rules can be extracted from a decision table using an 
information theoretic measure? (Yao 2003) compared the 
results of granularity of decision making systems based on 
rough sets and information theoretic granulation methods. 
We concur with Yao, that although the rules extracted from 
Rough Set(RS) and Information Theoretic(IT) might be 
equal, yet the interpretation of the decision is richer in the 
case of RS than in the case of IT. 
 

General Introduction to Rough Set Theory and 
Decision Analysis 

The rough set approach to data analysis and modeling 
(Pawlak 1997, 2002) has the following advantages: a- is 
based on the original data and does not need any external 
information (probability or grade of membership); b- It is a 
suitable tool for analyzing quantitative and qualitative 
attributes; c-It provides efficient algorithms for finding 
hidden patterns in data; d-It finds minimal sets of data (data 
reduction); e-It evaluates the significance of data. 
We show that the rough set theory is a useful tool for 
analysis of decision situations, in particular multi-criteria 
sorting problems. It deals with vagueness in representation 
of a decision situation, caused by granularity of the 
representation. The rough set approach produces a set of 
decision rules involving a minimum number of most 
important criteria. It does not correct vagueness manifested 
in the representation; instead, produced rules are 
categorized into deterministic and non-deterministic. The 
set of decision rules explains a decision policy and may be 
used for decision support. Mathematical decision analysis 

intends to bring to light those elements of a decision 
situation that are not evident for actors and may influence 
their attitude towards the situation. More precisely, the 
elements revealed by the mathematical decision analysis 
either explain the situation or prescribe, or simply suggest, 
some behavior in order to increase the coherence between 
evolution of the decision process on the one hand and the 
goals and value system of the actors on the other. A formal 
framework for discovering facts from representation of a 
decision situation has been given by (Pawlak 1982) and 
called rough set theory. Rough set theory assumes the 
representation in a decision table in which there is a special 
case of an information system. Rows of this table 
correspond to objects (actions, alternatives, candidates, 
patients etc.) and columns correspond to attributes. For each 
pair (object, attribute) there is a known value called a 
descriptor. Each row of the table contains descriptors 
representing information about the corresponding object of 
a given decision situation. In general, the set of attributes is 
partitioned into two subsets: condition attributes (criteria, 
tests, symptoms etc.) and decision attributes (decisions, 
classifications, taxonomies etc.). As in decision problems 
the concept of criterion is often used instead of condition 
attribute; it should be noticed that the latter is more general 
than the former because the domain (scale) of a criterion 
has to be ordered according to decreasing or increasing 
preference while the domain of a condition attribute need 
not be ordered. Similarly, the domain of a decision attribute 
may be ordered or not. In the case of a multi-criteria sorting 
problem, which consists in assignment of each object to an 
appropriate predefined category (for instance, acceptance, 
rejection or request for additional information), rough set 
analysis involves evaluation of the importance of particular 
criteria: a- construction of minimal subsets of independent 
criteria b- having the same discernment ability as the whole 
set; c-non-empty intersection of those minimal subsets to 
give a core of criteria which cannot be eliminated without 
it; d-disturbing the ability of approximating the decision; e-
elimination of redundant criteria from the decision table;6-

  



the generation of sorting rules (deterministic or not) from 
the reduced decision table, which explain a decision; f-
development of a strategy which may be used for sorting 
new objects. 
  

Rough Set Modeling of User Web Behavior 
The concept of rough set theory is based on the assumption 
that every object of the universe of discourse is associated 
with some information. Objects characterized by the same 
information are indiscernible in view of their available 
information. The indiscernibility relation generated in this 
way is the mathematical basis of rough set theory. The 
concepts of rough set and fuzzy set are different since they 
refer to various aspects of non-precision. Rough set analysis 
can be used in a wide variety of disciplines; wherever large 
amounts of data are being produced, rough sets can be 
useful. Some important application areas are medical 
diagnosis, pharmacology, stock market prediction and 
financial data analysis, banking, market research, 
information storage and retrieval systems, pattern 
recognition (including speech and handwriting recognition), 
control system design, image processing and many others. 
Next, we show some basic concepts of rough set theory. 20 
Users from Roane State were used to study their web 
characteristics. The results of the fact based query “Limbic 
functions of the brain” is summarized in Table 1 
(S=1,2;M=3,4;L=5,7;VL=8, 9,10). The notion of a User 
Modeling System presented here is borrowed from (Pawlak 
1991). The formal definition of a User Modeling System 
(UMS) is represented by S=(U, Ω, V, f) where: U is a non-
empty, finite set of users called the universe;Ω is a non-
empty, finite set of attributes: CUD, in which C is a finite 
set of condition attributes and D is a finite set of decision 
attributes; V= ∪ Vq is a non empty set of values of 
attributes, and Vq is the domain of q (for each qε Ω); f  is a 
User Modeling  Function :  
f:   U   ×   Ω →     V  
such that: ∃ f (q , p) ε Vp  ∀ p ε U and qε Ω  
f :   Ω →     V  

q

such that: ∃ fq (p) =f(q , p) ∀ p ε U and qε Ω is the 
user knowledge of U in S. 
 
Users W H SE E

1 L M M F
2 S S S SU
3 M L L SU
4 L L VL F
5 L L L F
6 M M L SU
7 S M S F
8 L L M F

9 M S L F
10 M S M SU
11 S M M SU
12 M S M SU
13 M M L SU
14 VL M VL SU
15 S S S SU
16 S M S SU
17 S S S SU
18 S S S SU
19 S S S F
20 S S M F

Table 1. Summary of all users 
This modeling system can be represented as a table in 
which columns represent attributes and rows are users and 
an entry in the qth row and pth column has the value f(q,p). 
Each row represents the user’s attributes in answering the 
question. Consider the following example: 
U={1,2,3,4,5,6,7,8,9,10,11,12,13, 14,15,16,17, 18,19,20}= 
set of 20 users who searched the query, Ω={Searches, 
Hyperlinks, Web Pages}={SE,H,W}= set of 3 attributes. 
Since some users did search more than others, browsed 
more than others, scrolled down web pages more than 
others, a simple transformation of table 1 yields a table up 
to 3 different attributes with a set of values ranging form: 
small(S), medium(M), large(L), and very large(VL). 
Ω={SE,H,W},VSE={M,S,L,VL,L,L,S,M,L,M,M,M,L,VL,S,
,S,S,S,M},VH={M,S,L,L,L,M,M,L,S,S,M,S,M,M,S,M,S,S,S
,S},VW={L,S,M,L,L,M,S,L,M,M,S,M,M,VL,S,S,S,S,S,S}. 
The modeling system will now be extended by adding a 
new column E representing the expert’s evaluation of the 
user’s knowledge whether the user’s succeeded in finding 
the answer or failed to find the answer. In a new UMS, S is 
represented by S=(U, Ω, V, f), fq (p) where q ε Ω and p ε 
PU={P-E}is the user’s knowledge about the query, and 
fq(p) where q ε Ω and p = E is the expert’s evaluation of the 
query for a given student. E is the decision attribute. 
Consider the above example but this time: 
Ω=Ωu∪Ωe={SE,H,W}∪E, where E= SU or F; VSE= 
{M,S,L,VL,L,L,S,M,L,M,M,M,L,VL,S,S,S,S,S,M},VH={M
,S,L,L,L,M,M,L,S,S,M,S,M,M,S,M,S,S,S,S},VW={L,S,M,L
,L,M,S,L,M,M,S,M,M,VL,S,S,S,S,S,S}VE={F,SU,SU,F,F,S
U,F,F,F,SU,SU,SU,SU,SU,SU, SU,SU, SU,F,F} 
 

Lower and upper approximations 
In rough set theory the approximations of a set are 
introduced to deal with indiscernibility. If S= (U,Ω, V, f) is 
a decision table, and X ⊆ U, then the I* lower and I* upper 
approximations of X are defined, respectively, as follows: 

I*(X) = {x ε U, I(x) ⊆ X} (1)

  



I*(X) = {x ε U, I(x) ∩ X # ∅}              (2)
where I(x) denotes the set of all objects indiscernible with x, 
i.e., equivalence class determined by x. The boundary 
region of X is the set BNI(X) = I*(X) – I*(X). If the 
boundary region of X is the empty set, i.e., BNI(X) = ∅, 
then the set X will be called crisp with respect to I; in the 
opposite case, i.e., if BNI(X)# ∅, the set X will be referred 
to as rough with respect to I. Vagueness can be 
characterized numerically by defining the following 
coefficient: 

αI(X) = | I*(X) | / | I*(X) |                      (3) 
where |X| denotes the cardinality of the set X.  
Obviously 0 < αI(X) <= 1. If αI(X) = 1 the set X is crisp 
with respect to I; otherwise if αI(X) < 1, the set X is rough 
with respect to I. Thus the coefficient αI(X) can be 
understood as the accuracy of the concept X. 
 

Rough Membership 
A vague concept has boundary-line cases, i.e., elements of 
the universe which cannot be – with certainty- classified as 
elements of the concept. Here uncertainty is related to the 
question of membership of elements to a set. Therefore in 
order to discuss the problem of uncertainty from the rough 
set perspective we have to define the membership function 
related to the rough set concept (the rough membership 
function).  The rough membership function can be defined 
employing the indiscernibility relation I as: 

µ I
X (x) = | X ∩ I(x)| / |I(x)|                    (4) 

 Obviously, 0 < αI(X) <=1. The rough membership function 
can be used to define the approximations and the boundary 
regions of a set, as shown below: 
   I*(X) = {x ε U: µ I

X (x) = 1}                  (5)
I*(X) = {x ε U:  µ I

X (x) > 0}                (6)
BNI(X)= {x ε U: 0< µ I

X (x) < 1}        (7)
Once can see from the above definitions that there exists a 
strict connection between vagueness and uncertainty in the 
rough set theory. As we mentioned above, vagueness is 
related to sets, while uncertainty is related to elements of 
sets.  Thus approximations are necessary when speaking 
about vague concepts, whereas rough membership is needed 
when uncertain data are considered. 
 

Decision Algorithm 
Usually we need many classification patterns of objects. For 
example users can be classified according to web pages, 
number of searches, etc… Hence we can assume that 
we have not one, but a family of indiscernibility relations I 
={I1,I2,I3, …In} over the universe U.  Set theoretical 
intersection of equivalence relations {I1,I2,I3, …In} is 
denoted by: 
                                                                      n 

∩ I = ∩ I i           (8) 

     i=1 
is also an equivalence relation. In this case, elementary sets 
are equivalence classes of the equivalence relation ∩ I.. 
Because elementary sets uniquely determine our knowledge 
about the universe, the question arises whether some 
classification patterns can be removed without changing the 
family of elementary sets- or in other words, preserving the 
indiscernibility. Minimal subset I’ of I such that will be 
called a reduct of I.  Of course I can have many reducts. 
Finding reducts is not a very simple task and there are 
methods to solve this problem. The algorithm we use has 
been proposed by (Slowinski and Stefanowski 1992), and it 
is summarized by the following procedure that we name 
SSP: a- Transform continuous values in ranges; b-Eliminate 
identical attributes; c-Eliminate identical examples; d-
Eliminate dispensable attributes; e-Calculate the core of the 
decision table; f-Determine the reduct set; g- Extract the 
final set of rules. 
 

Application of Rough set theory to the query: 
Limbic Functions of the Brain 
In table1, users {2,15,161,17,18,7,18} are indiscernible 
according to the attribute SE=S, users {1,4,5} are 
indiscernible for the attribute W=L. For example the 
attribute W generates 4 sets of users: {2,11,15,16,17,18}S, 
{3,6,10,12,13,9}M, {1,4,5,8}L, and {14}VL. Because users 
{2,15,17,18} were SU and user {19} failed, and are 
indiscernible to attributes W=S, H=S, and SE=S, then the 
decision variable for SU or F cannot be characterized by  
W=S, H=S, and SE=S. Hence users {2,15,17,18} and {19} 
are boundary-line cases. Because user {16} was SU and 
user {7} has failed, and they are indiscernible to attributes 
W=S, H=M, and SE=S, then the decision variable for SU or 
F cannot be characterized by W=S, H=M, and SE=S. Hence 
users {16} and {7} are boundary-line cases. The remaining 
users: {3,6,10, 11,12,13,14} have characteristics that enable 
us to classify them as being SU, while users {1,4,5,8,9,20} 
display characteristics that enable us to classify them as F, 
and users {2,7,15,16,17,18,19} cannot be excluded from 
being SU or F. Thus the lower approximation of the set of 
being SU is: {3,6,10,11, 12,13,14} and the upper 
approximation of being SU 
is:{2,7,15,16,17,18,19,3,6,10,11,12,13,14}. Similarly in the 
concept of F, its lower approximation is: {1,4,5,8,9,20} and 
its upper approximation is: {1,4, 
5,8,9,20,3,6,10,11,12,13,14}. The boundary region of the 
set SU or F is still:{2,7,15,16,17,18,19}.The accuracy 
coefficient of “SU” is (by applying (3)) : 
α(SU)=|{3,6,10,11,12,13,14}|/({2,7,15,16,17,18,19,3,6,10, 
11,12,13,14}|=7/14=0.5 
The accuracy coefficient of “F” is (by applying (3)):  
α(F)=|{1,4,5,8,9,20}}|/({2,7,15,16,17,18,19,1,4,5,8,9,20}=6
/13=0.45 

  



We also compute the membership value of each user to the 
concept of “SU” or “F”. By applying (4) we have: 
µSU(1)=|{3,6,10,11,12,13,14,15,16,17,18}∩{1}|=|{1}| =0 
µSU(2)=|{3,6,10,11,12,13,14,15,16,17,18}∩{2,7,15,16,17,1
8,19}|=|{2,7,15,16,17,18,19}|=4/7 
µSU(3)=|{3,6,10,11,12,13,14,15,16,17,18} ∩ {3}|=|{3} |=1 
µSU(4)=|{3,6,10,11,12,13,14,15,16,17,18} ∩ {4}|=|{4} |=0 
µSU(5)=|{3,6,10,11,12,13,14,15,16,17,18} ∩ {5}|=|{5} |=0 
µSU(6)=|{3,6,10,11,12,13,14,15,16,17,18} ∩ {6}|=|{6} |=1 
µSU(7)=|{3,6,10,11,12,13,14,15,16,17,18}∩{2,7,15,16,17, 
18,19}|=|{2,7,15,16,17,18,19} |=4/7 
µSU(8)=|{3,6,10,11,12,13,14,15,16,17,18}∩{1}|=|{8} |=0 
µSU(9)=|{3,6,10,11,12, 13,14,15,16,17,18}∩ {1}|=|{9} |=0 
µSU(10)=|{3,6,10,11,12,13,14,15,16,17,18}∩{10}|=|{10}|=
1 
µSU(11)=|{3,6,10,11,12,13,14,15,16,17,18}∩{11}|=|{11}|=
1 
µSU(12)=|{3,6,10,11,12,13,14,15,16,17,18}∩{12}|=|{12}|=
1 
µSU(13)=|{3,6,10,11,12,13,14,15,16,17,18}∩{13}|=|{13}|= 
1 
µSU(14)=|{3,6,10,11,12,13,14,15,16,17,18}∩{14}|=|{14}|=
1 
µSU(15)=|{3,6,10,11,12,13,14,15,16,17,18}∩{15}|=|{15}|=
1 
µSU(16)=|{3,6,10,11,12,13,14,15,16,17,18}∩{16}|=|{16}|=
1 
µSU(17)=|{3,6,10,11,12,13,14,15,16,17,18}∩{17}|=|{17}|=
1 
µSU(18)=|{3,6,10,11,12,13,14,15,16,17,18}∩{18}|=|{18}|=
1                                                       
µSU(19)=|{3,6,10,11,12,13,14,15,16,17,18}∩{2,7,15,16,17,
18,19 }| /|{2,7,15,16,17,18,19}=4/7 
µSU(20)=|{3,6,10,11,12,13,14,15,16,17,18}∩{20}|=|{20}|=
0 
Applying the SSP procedure from steps a-d result in: 
Users UsersW H SE E
19 19’ S S S F
7 7’ S M S F
20 20’ S S M F
1 1’ L M M F
8 8’ L L M F
9 9’ M S L F
5 5’ L L L F
4 4’ L L VL F
2,15,17,182’ S S S SU
16 16’ S M S SU
10,12 10’ M S M SU
11 11’ S M M SU
6,13 6’ M M L SU
3 3’ M L L SU
14 14’ VL M VL SU

Table2. Result of applying steps a-d of SSP. 
The number of users is reduced from 20 to 15 users because 
of steps a-d of SSP. The result of applying of steps e 
through f is displayed in tables 3 and 4. (X stands for any 
value) 
Users W H SE E
19’ S S S F
7’ S M S F
20’ S S M F
9’ X X L F
8’ L X X F
1’ L X X F
5’ L X X F
4’ L X X F
2’ S S S SU
16’ S M S SU
11’ S M M SU
10’ X X M SU
6’ M M X SU
3’ M L X SU
14’ VL X X SU

Table 3: Core of the set of final data (Step e- of SSP) 
 
Users W H SE E
19’ S S S F
7’ S M S F
20’ S S M F
9’ X X L F
8’ L X X F
1’ L X X F
5’ L X X F
4’ L X X F
2’ S S S SU
16’ S M S SU
11’ S M M SU
10’ M S M SU
6’ M M X SU
3’ M L X SU
14’ VL X X SU

Table 4: Set of reduct set (Step f- of SSP) 
Rules extracted: 
Contradictory rules: 
If (W=S), (H=S), and (SE=S) then User= SU or F. 
If (W=S), (H=M), and (SE=S) then User= SU or F. 
Rules on Success: 
If (W=S), (H=M), and (SE=M) then User= SU 
If (W=M), (H=S), and (SE=M) then User= SU 

  



If (W=M), ((H=M) or (H=L)) then User= SU 
If (W=VL) then User= SU 
Rules on Failure: 
If (W=S) and (H=S) and (SE=M) then User= F 
If (W=M) and (H=S) and (SE=L) then User= F 
If (W=L) then User= F 
Contradictory rules also called inconsistent or possible or 
non-deterministic rules have the same conditions but 
different decisions, so the proper decision cannot be made 
by applying this kind of rules. Possible decision rules 
determine a set of possible decision, which can be made on 
the basis of given conditions. With every possible decision 
rule, we will associate a credibility factor of each possible 
decision suggested by the rule. We propose to define a 
membership function. Let δ(x) denote the decision rule 
associated with object x. We will say that x supports rules 
δ(x). Then C(δ(x)) can be denoted by: 

C(δ(x))= 1 if µ I
X (x) =0 or 1. 

C(δ(x))= µ I
X (x), if  0 < µ I

X (x) <  1                   (9) 
A consistent rule is given a credibility factor of 1, and an 
inconsistent rule is given a credibility factor smaller than 1 
but not equal to 0. The closer it is to one the more credible 
the rule is. The credibility factor of both inconsistent rules is 
4/7 >.5 which makes more credible than incredible (being 
equal to 0).  
 

ID3 
ID3 uses a tree representation for concepts (Quinlan, 1983). 
To classify a set of instances, we start at the top of the tree. 
And answer the questions associated with the nodes in the 
tree until we reach a leaf node where the classification or 
decision is stored. ID3 starts by choosing a random subset 
of the training instances. This subset is called the window. 
The procedure builds a decision tree that correctly classifies 
all instances in the window. The tree is then tested on the 
training instances outside the window. If all the instances 
are classified correctly, then the procedure halts. Otherwise, 
it adds some of the instances incorrectly classified to the 
window and repeats the process. This iterative strategy is 
empirically more efficient than considering all instances at 
once. In building a decision tree, ID3 selects the feature 
which minimizes the entropy function and thus best 
discriminates among the training instances.  
The ID3 Algorithm: 
1. Select a random subset W from the training set. 
2. Build a decision tree for the current window: 

a. Select the best feature which minimizes the 
entropy function H: 
H = Σ -pi lop pi        (10) 
        i 
Where pi is the probability associated with the 
ith class. For a feature the entropy is 
calculated for each value. The sum of the 

entropy weighted by the probability of each 
value is the entropy for that feature. 

b. Categorize training instances into subsets by 
this feature. 

c. Repeat this process recursively until each 
subset contains instances of one kind or some 
statistical criterion is satisfied. 

3. Scan the entire training set for exceptions to the 
decision tree. 

4. If exceptions are found, insert some of them into W and 
repeat from step 2. The insertion may be done either by 
replacing some of the existing instances in the window 
or by augmenting it with new exceptions.  

Rules extracted (See figure 1): 
Contradictory rules: 
If (W=S), (H=S), and (SE=S) then User= SU or F. 
If (W=S), (H=M), and (SE=S) then User= SU or F. 
Rules on Success: 
If (W=VL) then User= SU 
If (W=M), (H=S), and (SE=M) then User= SU 
If (W=M) and ((H=L) or (H=L)) then User= SU 
If (W=S) and (SE=M) and (H=M) then User= SU 
Rules on Failure: 
If (W=L) then User= F 
If (W=M) and (H=S) and (SE=L) then User= F 
If (W=S) and (H=S) and (SE=M) then User= F 
 

 

Fig1.Rules extracted by ID3.               
It seems that the 9 rules extracted by ID3 are the same 
extracted by Rough set theory. The 3 parameters were not 
enough to separate these cases between success and failure.  
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Conclusion 
This application of the rough set methodology shows the 
suitability of the approach for the analysis of user’s web 
information system’s behavior. Rough set theory was never 
applied on user’s behavior and the latter was analyzed very 
little (Meghabghab, 2003) considering the amount of 
emphasis on understanding user’s web behavior (Lazonder 
et al., 200). Moreover, we show in this paper how using 
even a small part of rough set theory can produce 
interesting results for web behavior situations: a- The 
proposed rules provide a good classification of user’s 
behavior except in the case of contradictory rules where the 
3 attributes are not enough to distinguish between the users; 
b- The information system was reduced from 20 users at 
one time to 15 and then 9 rules were extracted that cover all 
cases of user’s behavior. Information theoretic classification 
measure has been around for a long time and applied in 
many areas (Quinlan 1983). But it does not mine the 
relations between attributes, the vagueness that is existent in 
the attribute set that rough set theory does. It just provides a 
simple set of accurate classification rules. The rough set 
theory approach is very rich in interpretation and can help 
understand complex relations in any decision environment. 
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