
Eliciting Trust Values from Recommendation Errors

John O’Donovan and Barry Smyth
Adaptive Information Cluster

Department of Computer Science
University College Dublin, Belfield, Dublin 4

Ireland
{john.odonovan, barry.smyth}@ucd.ie

ABSTRACT
Increasing availability of information has furthered the need
for recommender systems across a variety of domains.
These systems are designed to tailor each user’s informa-
tion space to suit their particular information needs. Col-
laborative filtering is a successful and popular technique for
producing recommendations based on similarities in users’
tastes and opinions. Our work focusses on these similarities
and the fact that current techniques for defining which users
contribute to recommendation are in need of improvement.

In this paper we propose the use of trustworthiness as an
improvement to this situation. In particular, we define and
empirically test a technique for eliciting trust values for each
producer of a recommendation based on that user’s history
of contributions to recommendations.

We present three computational models for leveraging un-
der/overestimate errors in users’ past contributions to rec-
ommendations to generate arangeeach side of a fixed point
on the recommendation scale to be presented to the target
user. We show how this trust-based technique can be easily
incorporated into a standard collaborative filtering algorithm
and define a fair comparison in which our technique outper-
forms a benchmark algorithm in predictive accuracy.

Keywords
Recommender systems, collaborative filtering, profile simi-
larity, trust

INTRODUCTION
A large amount of research effort has been directed at the
well-known problem of information overload, whereby the
task of locating relevant information quickly is becoming
ever more arduous with increasing volumes of online infor-
mation (Sinha & Swearingen 2002),(Resnicket al. 1994).
This is the domain of Recommender Systems, which are de-
ployed in a variety of applications to assist the user in locat-
ing the right information at the right time. These systems
can be found in diverse areas such as virtual shopping assis-
tants (Dellarocas 2001), restaurant or movie recommenders
(Burke, Hammond, & Young 1997) etc. Recommenders

Copyright c© 2005, American Association for Artificial Intelli-
gence (www.aaai.org). All rights reserved.

have proven themselves successful at harnessing informa-
tion normally reserved for social interaction, and leverag-
ing this to provide tailor made solutions for individual users
based on the tastes and opinions of similar users. To achieve
this solution, recommenders employ ideas from research ar-
eas such as user-profiling, information filtering and machine
learning.

The collaborative filtering (CF) approach attempts to
model the real-world scenario of looking to friends for rec-
ommendations (Resnicket al. 1994). modelling this means
we do not need specific item-knowledge , giving this ap-
proach a more broad and flexible application base in com-
parison with other filtering techniques such as a content-
based approach. CF systems rely on the availability of rich
user profiles containing lots of rating data, so that sufficient
profile overlap can be attained to build up user peergroups.
Peers, (recommendation partners) for a target user are gen-
erated by choosing profiles with similar or have highly cor-
related ratings histories with that user.

This work focusses on the CF approach to the recom-
mendation task, in ways to improve the accuracy of pre-
dictions made by CF approaches, and in ways to increase
user-satisfaction and trust in these predictions. We propose
to modify the selection process for recommendation part-
ners. Currently this selection is usually based on a profile-
profile similarity metric, calculated using some similarity
function such as Pearson’s correlation coefficient (Resnick
et al. 1994). We introduce a second metric oftrustworthi-
nessupon which to base this selection decision. For exam-
ple: People look to their friends for recommendations about
items, but some of these friends might not know a lot about
that particular item, or may have an esoteric or uncharac-
teristic opinion about that item, which leads him/her to give
consistently skewed or bad recommendations about that par-
ticular item. Our proposal is that a recommendation partner
should be both similar to the target user, and trustworthy in
that the contribution that they have made to previous rec-
ommendations has been a positive one. We can model this
trustworthiness both at the profile level and at the item level.
The former allows us to say how trustworthy a recommenda-
tion producer is on a general level, while the latter allows us
to provide a specific trust score for a producer with respect
to the particular item that user is involved in recommending.
For our evaluations in this paper, we use recommendation

error history to elicit these trust values. We describe three
methods of incorporating these values into a regular CF al-
gorithm, and show results of an empirical comparison of
these techniques. We also show that our trust-based recom-
mendation strategy outperforms a standard benchmark sys-
tem which uses Resnick’s prediction algorithm (Resnicket
al. 1994) over a standard CF dataset.

BACKGROUND
Trust, reputation and reliability are factors that influence
decision-making across the board. Recent research in social
networking, virtual communities and recommender systems
has focussed on the issue of trust. The majority of recom-
mender system research is carried out on carefully compiled
experimental data and does not factor in real world problems
such as malicious users. The increasing interest in issues of
trust has raised some conflicting opinions on not only its ap-
plication and relevance, but even its basic definition. Work
in (Marsh 1994) goes some way towards formalising trust in
a computational sense, and highlighting different definitions
and applications of trust.

There are a number of recent research publications which
deal with the issue of how to use trust and reputation mod-
els in the recommendation process, including (O’Mahony,
Hurley, & Silvestre 2002), (Avesani, Massa, & Tiella 2004),
(Massa & Avesani 2004), (Kushmerick 2002), (Dellarocas
2001) and (Lam & Riedl 2004). This paper focusses on
ways to automatically infer trust and reputation from rat-
ings data (using history of errors in contributions to recom-
mendations), and on ways to integrate these models into the
recommendation process to produce more reliable recom-
mendations. Other research has focussed on a related issue,
but using more invasive methods to acquire trust and repu-
tation models. For example, the work of (Massa & Bhat-
tacharjee 2004) builds a trust model directly from trust data
provided by users as part of the popularepinions.comser-
vice. Epinions.comis a web site that allows users to re-
view various items (cars, books, music, etc.). In addition
they can assign a trust rating to reviewers based on the de-
gree to which they have found them to be helpful and reli-
able in the past. (Massa & Bhattacharjee 2004) argue that
this trust data can be extracted and used as part of the rec-
ommendation process, especially as a means to relieve the
sparsity problem that has hampered traditional collaborative
filtering techniques. The sparsity problem refers to the fact
that on average two users are unlikely to have rated many
of the same items, which means that it will be difficult to
calculate their degree of similarity and so limits the range
of recommendation partners that can participate in a typi-
cal recommendation session. (Massa & Bhattacharjee 2004)
argue that it is possible to compare users according to their
degree of connectedness in the trust-graph encoded byEpin-
ions.com. The basic idea is to measure the distance between
two users in terms of the number of arcs connecting the users
in the trust-graph encoded by theEpinions.comtrust data.
They show that it is possible to compare far more users ac-
cording to this method than by conventional forms of ratings
similarity and argue that because of this trust-based com-
parisons facilitate the identification of more comprehensive

communities of recommendation partners. However, it must
be pointed out that while the research data presented does
demonstrate that the trust data makes it possible to compare
far more users to each other it has not been shown that this
method of comparison maintains recommendation accuracy.

(Montaner, Lopez, & de la Rosa 2002) contemplates
the availability of large numbers of virtual recommenda-
tion agents as part of a distributed agent-based recommender
paradigm. Their main innovation is to consider other agents
as personal entities which are more or less reliable or trust-
worthy and, crucially, that trust values can be computed by
pairs of agents on the basis of a conversational exchange in
which one agent solicits the opinions of an other with re-
spect to a set of items. Each agent can then infer a trust
value based on the similarity between its own opinions and
the opinions of the other. Thus this more emphasises a de-
gree of proactiveness in that agents actively seek out others
in order to build their trust model which is then used in the
opinion-basedrecommendation model. This approach is ad-
vantageous from a hybrid recommender perspective, in that
agents can represent individual techniques and they can be
combined using opinions based on trust.

MODELLING USER TRUST
Recommendation Producers and Consumers
Work in (O’Donovan & Smyth 2005) defines two separate
profile types in the recommendation process: Aconsumer
profile refers to one receiving the item rating, whereas a
producerrefers to the profile that has been selected as a rec-
ommendation partner (a contributor to the recommendation)
for the consumer and that is participating in the recommen-
dation session. So, to generate a predicted rating for itemi
for some consumerc, we will typically draw on the services
of a number of producer profiles, combining their individ-
ual recommendations according to some suitable function,
such as Resnick’s formula, for example (see Equation 1).
Our benchmark algorithm uses this standard prediction for-
mula (see also (Resnicket al. 1994)). In this formulac(i)
is the rating to be predicted for itemi in consumer profilec
andp(i) is the rating for itemi by a producer profilep who
has ratedi, P (i) is the set of all producers who have rated
i. In addition,c andp refer to the mean ratings forc and
p respectively. The weighting factorsim(c, p) is a measure
of the similarity between profilesc and p, which is tradi-
tionally calculated as Pearson’s correlation coefficient. One
advantage of using this common CF algorithm is that we can
compare our approach more easily with existing systems, as
seen in (O’Donovan & Smyth 2005).

c(i) = c +

∑
pεP (i)(p(i) − p)sim(c, p)∑

pεPi
|sim(c, p)|

(1)

Eliciting Trust From Recommendation Error
We don’t believe that the above method alone is sufficient to
produce optimal recommendations. We propose that there is
another important element which must be considered in the
recommendation process. We refer to this astrust. In every-
day terms, if a person has successfully recommended lots of

items in the past, their recommendations should be awarded
more trust than someone who has consistently made poor
recommendations in the past.

We define two distinct levels of trust.Item Leveltrust is a
representation for a producer’s trustworthiness with respect
to the recommendation of a specific item. For example, we
might wish to refer to John’s trustworthiness for rating a
Toyota Landcruiser in a car recommender. This is a context-
specific trust, as defined in (Abdul-Rahman & Hailes 1997).
Profile Leveltrust is a less fine-grained metric, representing
a recommendation producers trust as a whole, without re-
spect to one specific item. For example, we might wish to
refer to John’s overall trustworthiness based on a series of
different past recommendations. This score is simply an av-
erage over the Item Level trust scores for every item in the
users profile.

In (O’Donovan & Smyth 2005) trust values are calculated
at both the Item and Profile levels. Essentially these values
summarise the proportion of correct recommendations that
a producer has been involved in, according to a pre-defined
error bound.

Here, we compute profile and item level error in a similar
manner. Consider some producer profilep and some arbi-
trary itemi which has been rated byp. We calculate the av-
erage error onp’s contributions to recommendations of item
i over a training set of profiles. Each ratings prediction for
an item,i, by producerp for a consumerc, is within a finite
errorε of c’s actual ratingc(i); see Equation 2.

In Resnick’s approach to CF, producers involved in rec-
ommendation would be operating in tandem with a number
of other recommendation partners, so it may not be possi-
ble to assess whether or not producerp’s contribution had
a positive or negative effect on the final recommendation.
To overcome this problem we isolatep’s contribution to the
overall recommendation by makingp the sole recommenda-
tion partner for consumerc for a recommendation on itemi.
Error scores for itemi1 are generated for producerb by us-
ing the information in profileb only to generate predictions
for each consumer profile.

Tpi, c = |p(i) − c(i)| = ε (2)

Equation 2 shows how s a separate error score for pro-
ducer profilep and itemi is calculated based on each in-
dividual profile p being used as the sole recommendation
partner for each consumerc and itemi.

RecSet(p) = {(c1, i1), ..., (cn, in)} (3)

It is worth noting that in a deployed recommender system
operating in real time, error values can be generated on-the-
fly as new ratings are made in the system. For our exper-
iments, we give 6 different error metrics which we show
below can be readily incorporated into the mechanics of a
generic CF system to produce arecommendation rangeto
be presented to the user.

1. PError - The average prediction error over any timep has
been involved in producing a recommendation, over all
items.

2. IError - The average prediction error over any timep has
been involved in producing a recommendation for an in-
dividual itemi.

3. PUnderest- The average underestimate over all the times
p is involved any recommendation, where there has been
an underestimate in the prediction.

4. IUnderest- The average underestimate over all the times
p is involved in recommendation of each specific item,
and there has been an underestimate in the prediction.

5. POverest- The average overestimate over all the timesp
is involved in recommendation of any item, and there has
been an overestimate in the prediction.

6. IOverest- The average overestimate over all the timesp
is involved in recommendation of each specific item, and
there has been an overestimate in the prediction.

IError(p, i) =
∑

iεR |p(i) − c(i)|
n

(4)

PError(p) =
∑

iεP (IError)
n

(5)

Equation 4 shows our calculation of the basic error for
producer profilep at the item level (for itemi): n represents
the number of recommendations used in the calculation;p(i)
is the rating predicted on item i using producerp as the sole
recommendation partner for consumerc; c(i) is the actual
rating which consumerc gave to itemi. This is a fine grained
approach to trust value elicitation. The more coarse metric
PError is given by Equation 5, which denotes the average
IError over all the items in profilep.

IUnderest(p, i) =
∑

i∈R p(i) − c(i)
n

: ifp(i) − c(i) > 0
(6)

IOverest(p, i) =
∑

i∈R p(i) − c(i)
n

: ifp(i) − c(i) < 0
(7)

The case statement in Equation 6 defines the computation
of average underestimate at the item level. Here,n repre-
sents the number of times there was an underestimate in the
predictions generated using producerp for consumerc on
item i. A similar computation is denoted in Equation 7 to
get the average overestimate inp’s contributions to recom-
mendations of individual items.

To calculate these values at the profile level, we use Equa-
tion 8 which is simply an average of the item level underes-
timates over every item in profilep.

PUnderest(p) =
∑

i∈P (IUnderest)
n

(8)

We have shown the processes involved in building our
trust models based on recommendation error histories. The
next step is to demonstrate how these values are manifested
in the recommendation process to arrive at a more reliable
and transparent recommendation solution.

Using Error Metrics in Recommendation
As a result of these calculations, for every producer profile
and every item in these profiles we have the producers nor-
mal rating for this item plus the average degree to which
this user tends to underestimate ratings, the average degree
to which he overestimates ratings, and the overall average
error for this producer and item pair. Now how can we use
this in recommendation? One obvious direction to take is to
produce arecommendation range.

For each time we wish to predict a rating for some new
target usert and itemi we get 3 ratings values:r1, r2, r3

which basically gives us a rating range [r2, r3] and an ex-
pected rating,r1, rather than just a single rating. For exam-
ple, we can now say to the target user: ”My predicted rating
for item i is 3.2, but no less than 2.5 and no more than 4”
This is showing more information to the target user. Intu-
itively, this is a better recommendation strategy than simply
predicting a set individual value for the user.

We propose three such recommendation strategies:

Addition and Subtraction This is the approach loosely
described above. For each recommendationr we generate
for an itemi, we producer1, r2, r3 respectively in the form
of Equation 9

R = {(r − avg(IUnderest))...r...(r + avg(IOverest))}
(9)

Average Error Approach The second addi-
tion/subtraction approach is more basic and used as
our benchmark in comparison with the other techniques.
In this approach, instead of using the average under and
overestimates, we simply produce our recommendation
range by discounting the standard rating by the average
error to getr1 and increment the standard rating by the
average error to arrive at our upper boundr3. This is shown
in Equation 10

R = {(r − PError)...r...(r + PError)} (10)
In this equation, R is the recommendation range and r is

the standard Resnick rating.

Modified Resnick Approach A more interesting way to
produce a recommendation range from our error values is
to use theminsidethe standard Resnick prediction formula.
The basic equation is given in 1, and our modified version
in 11, below. Instead of discounting the underestimates af-
ter a recommendation has been produced (as with the ap-
proach above), we discount the underestimates from all of
the neighbours ratings as they are calculated in the standard
formula. This produces a lower-bound ratingru. A similar
approach is used to increment neighbours ratings by their
pre-calculated average overestimate to produce our upper-
bound valuero.

ru = c +

∑
p∈P (i)(p(i) − IUnderest(p, i) − p)sim(c, p)∑

pεP (i) |sim(c, p)|
(11)

The formula for computingro, is that in 11 but with a
+IOverest in place of the−IUnderest. These results

yield another recommendation range:

R = {(ru)...r...(ro)} (12)

EVALUATION
In this work we have forwarded a new technique for build-
ing a model of user trust based on their history of errors in
contribution to recommendations. We have proposed several
techniques for integrating these into a standard recommen-
dation algorithm as an additional metric to be considered
along with a standard correlation function. In our discussion
we will consider the general benefits of producing a recom-
mendation range using these error metrics. The following
section describes a specific set of experiments designed to
provide us with a better grasp on the improvements our tech-
nique can make to the standard CF prediction strategy.

Setup
In this experiment we use the standard MovieLens dataset
(Resnicket al. 1994) which contains 943 profiles of movie
ratings. Profile sizes vary from 18 to 706 with an average
size of 105. We divide these profiles into two groups: 80%
(753 profiles) are used as the producer profiles and the re-
maining 20% (190 profiles) are used as the consumer (test)
profiles.

Our implementation falls into two phases: Firstly, build-
ing the trust-error model, and then using the model in rec-
ommendation.

Building the Error-Trust Model In a deployed recom-
mender system, error values can be computed in real time,
as users enter ratings to the system. In this experiment how-
ever, we build the trust values separately. For each producer
profile in our training set, we temporarily assign that profile
to position ofconsumer, and using the standard Resnick pre-
diction formula, we generate predictions for that consumer,
using each of the other producer profiles in turn as the sole
recommendation partner. We assess the proximity of the
predicted ratings to the actual ratings by employing a stan-
dard leave-one-out test, where we hiden% of the consumers
profile and try to predict the hidden ratings. We compare
the predicted ratings to the known real rating and record the
error. These errors fall into either underestimate or overesti-
mate categories.

This procedure is carried out for every producer-item pair
in the system, and the result is an average error for each
producer-item pair over all of the times that producer was
involved in the production of a recommendation of that item.
This is our item-level model. In order to get our more coarse
grained profile-level model, we average these error values
again, but this time over each item in a producers profile.
This provides us with an average error per producer (profile
level error).

Table gives us an overview of the type of recommenda-
tion errors we found for each of our strategies. Noting that
IError and PError values are for overall average error at the
item and profile levels respectively, and do not necessarily
have to be the sum of the mean individual under and over-
estimates at that level. The largest average error is at the

Avg Max Min
IError 0.938 3.489 0
PError 0.943 1.804 0.679
IOverest 0.865 3.833 0
IUnderest 0.745 3.489 0
POverest 0.931 2.217 0.328
PUnderest 0.868 1.865 0.162

Table 1: Error Information

Figure 1: The distribution of producer error values

item level at 0.937 on the Movielens rating scale of 1 to 5.
This is as expected from our recommendation results in the
next section, in which the recommendation ranges produced
based on these errors outperforms the others in accuracy
tests, most likely due to the broader range produced from
these values. We note that the profile level errors are much
less extreme,POverest, for example having a minimum
error of 0.328 in comparison with minimumIOverest at 0
error. This result is expected since our profile level errors are
averaged over every item in a users profile. A similar trend
is the case for the other profile / item level comparisons.

Figure 1 depicts the distribution of the error values at item
and profile levels respectively. Both follow a normal distri-
bution. Profile level errors are centered more closely around
the mean of 0.94, having a standard deviation of 0.13, com-
pared with 0.3 around a mean of 0.94 for the item level er-
rors. This variance should have a notable effect when they
are used to generate our recommendation ranges in the next
section, yielding potentially more broadness for the item
level approach. Space restrictions prevent us from show-
ing histograms for each individual technique described, but
the others also follow normal distributions, with a similar
variance between profile and item levels.

Predictive Accuracy Experiment
The overarching goal of this research is to improve predic-
tive accuracy for standard CF based recommendation algo-
rithms. This experiment looks at the accuracy of our tech-
nique from a % correct perspective. For the 190 profiles in
our test set, we generated recommendation ranges for each
rated item using our three techniques, using both item level
and profile level error values separately for our modified
resnick approach, and and average error value for the ad-
dition / subtraction approach. For this set we defined accu-
racy as a consumers actual rating falling within the predicted
recommendation range. Note that training and test data are
completely independent sets. Results of this experiment are

Figure 2: % Ratings inside recommendation range

presented in Figure 2. It is clear that the modified resnick
approach using item level error values outperforms the other
techniques, beating its closest rivalavgErr by 4.5%. This
approach beats the standard resnick algorithm by about 12%,
which is a relative improvement of about 16%. This may
be due to the greater variance in the item level errors. The
worst performer in fact is the modified resnick approach us-
ing profile level errors, at 14% worse performance than its
item level counterpart. This suggests that the variance in
errors does have a notable effect on predictive accuracy for
collaborative filtering.

Comparison with a Benchmark Resnick Algorithm
Due to therecommendation range nature of our predic-
tions, we must define a new method to evaluate the perfor-
mance of our technique with respect to a benchmark resnick
algorithm. To this end, we define a scalar constant which
is the average of the absolute differences between our upper
boundro and our lower boundru, (which is 1.85). We pro-
pose that a fair comparison would be to assume a standard
resnick prediction to be ’correct’ if it falls within half of this
distance either side of the real rating. This is only a pseudo-
comparison, as it is impossible to compare these techniques
directly. From Figure 2, it is clear that the range technique
performs 15% better than the benchmark using this compar-
ison. This does show that the direction in which the error
models pull thero andru ratings is having a positive effect
on predictive accuracy.

Figure 3 is a trend graph of the of the recommendation
ranges for our best performer, the modified Resnick ap-
proach using item level errors. Here we can see the up-
per boundsro and lower boundsru of the recommendation
range generated by usingIUnderest andIOverest respec-
tively in the standard Resnick prediction formula, see Equa-
tions 1 and 11. The real ratings provided by our test pro-
files tend to remain within the range, even when the standard
Resnick prediction tends away from the real rating. This out-
come has a positive effect not only on predictive accuracy,
but also on users overall trust in the recommender system as
a whole, reducing the mal-effects of false positives in rec-
ommendations.

DISCUSSION
Trust & CF Robustness The work of (O’Mahonyet al.
2003) and Leiven (Levien 2003) outlines recommender sys-

Figure 3: Distribution of the recommendation ranges and
actual ratings for the modified Resnick technique

tems from the viewpoints ofaccuracy, efficiency, andstabil-
ity. The trust-error models defined in this paper can not only
be used to increase accuracy, but also to increase the overall
robustness of CF systems. (O’Mahonyet al. 2003) defines
several attack strategies that can adversely skew the recom-
mendations generated by a K-NN CF system. They show
in (O’Mahony et al. 2003) that a CF system needs to at-
tend to each of these factors in order to succeed well. There
are many motivations for users attempting to mislead rec-
ommender systems, including profit and malice, as outlined
in (Lam & Riedl 2004). The trust-error metrics presented
in this paper can help a system detect malicious users, as
they will most likely tend to have higher errors in their con-
tribution histories as producers. Using a weighting scheme
we describe in (O’Donovan & Smyth 2005) we can render
their contributions ineffective based on their reputation val-
ues. work by Sinah and Swearingen shows the importance
of transparency in recommender system interfaces, (Sinha
& Swearingen 2002). Our recommendation range predic-
tion method shows more information to the user about what
the system knows, thereby increasing user trust in the rec-
ommender. In a similar vein, we can also mention the trust-
worthiness of the contributing producers to the consumer.

Conclusions
To conclude, here we have proposed two approaches to
building up trust values based on error models, one that op-
erates with respect to a specific user-item combination, eg:
’John’s reputation for recommending Toyota Landcruisers’,
and another that operates at a user level; eg: ’John’s trust-
worthiness as a recommender’. We presented three tech-
niques for integrating these models into a standard CF al-
gorithm to produce recommendationranges to present to a
user, and defined a fair method for comparing our approach
to the benchmark. Our empirical results indicate that trust-
aided recommendation based on error models increases pre-
dictive accuracy over the benchmark by approximately 15%.

ACKNOWLEDGMENTS
This material is based on works supported by Science Foun-
dation Ireland under Grant No. 3600 92202 r9015

References
Abdul-Rahman, A., and Hailes, S. 1997. A distributed trust
model. InNew Security Paradigms 1997, 48–60.

Avesani, P.; Massa, P.; and Tiella, R. 2004. Moleskiing: a
trust-aware decentralized recommender system.1st Work-
shop on Friend of a Friend, Social Networking and the Se-
mantic Web. Galway, Ireland.
Burke, R. D.; Hammond, K. J.; and Young, B. C. 1997.
The findme approach to assisted browsing.IEEE Expert
12(4):32–40.
Dellarocas, C. 2001. Building trust on-line: The design of
reliable reputation reporting mechanisms for online trading
communities.eBusiness@MIT, July 2001.
Kushmerick, N. 2002. Robustness analyses of instance-
based collaborative recommendation. InProceedings of the
European Conference on Machine Learning, Helsinki, Fin-
land., volume 2430, 232–244. Lecture Notes in Computer
Science Springer-Verlag Heidelberg.
Lam, S. K., and Riedl, J. 2004. Shilling recommender sys-
tems for fun and profit. InProceedings of the 13th inter-
national conference on World Wide Web, 393–402. ACM
Press.
Levien, R. 2003. Attack resistant trust metrics.Ph.D The-
sis, UC Berkeley.
Marsh, S. 1994. Formalising trust as a computational con-
cept.Ph.D. Thesis. Department of Mathematics and Com-
puter Science, University of Stirling.
Massa, P., and Avesani, P. 2004. Trust-aware
collaborative filtering for recommender systems. In
CoopIS/DOA/ODBASE (1), 492–508.
Massa, P., and Bhattacharjee, B. 2004. Using trust in rec-
ommender systems: an experimental analysis.Proceedings
of 2nd International Conference on Trust Managment, Ox-
ford, England.
Montaner, M.; Lopez, B.; and de la Rosa, J. L. 2002.
Developing trust in recommender agents. InProceedings
of the first international joint conference on Autonomous
agents and multiagent systems, 304–305. ACM Press.
O’Donovan, J., and Smyth, B. 2005. Trust in recommender
systems. InIUI ’05: Proceedings of the 10th international
conference on Intelligent user interfaces, 167–174. ACM
Press.
O’Mahony, M.; Hurley, N.; Kushmerick, N.; and Silvestre,
G. 2003. Collaborative recommendation: A robustness
analysis, url: citeseer.ist.psu.edu/508439.html.
O’Mahony, M. P.; Hurley, N.; and Silvestre, G. C. M.
2002. An attack on collaborative filtering. InProceed-
ings of the 13th International Conference on Database and
Expert Systems Applications, 494–503. Springer-Verlag.
Resnick, P.; Iacovou, N.; Suchak, M.; Bergstrom, P.; and
Riedl, J. 1994. Grouplens: An open architecture for col-
laborative filtering of netnews. InProceedings of ACM
CSCW’94 Conference on Computer-Supported Coopera-
tive Work, Sharing Information and Creating Meaning,
175–186.
Sinha, R., and Swearingen, K. 2002. The role of trans-
parency in recommender systems. InCHI ’02 extended ab-
stracts on Human factors in computing systems, 830–831.
ACM Press.

