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Abstract 

Word Sense Disambiguation (WSD) is an important but 
challenging technique in the area of natural language 
processing (NLP). Hundreds of WSD algorithms and 
systems are available, but less work has been done in 
regard to choosing the optimal WSD algorithms. This 
paper summarizes the various knowledge sources used 
for WSD and classifies existing WSD algorithms 
according to their techniques. The rationale, tasks, 
performance, knowledge sources used, computational 
complexity, assumptions, and suitable applications for 
each class of WSD algorithms are also discussed. This 
paper will provide users with general knowledge for 
choosing WSD algorithms for their specific applications 
or for further adaptation. 

 

1. Introduction 
Word Sense Disambiguation (WSD) refers to a task that 
automatically assigns a sense, selected from a set of pre-
defined word senses to an instance of a polysemous word in 
a particular context. WSD is an important but challenging 
technique in the area of natural language processing (NLP). 
It is necessary for many real world applications such as 
machine translation (MT), semantic mapping (SM), 
semantic annotation (SA), and ontology learning (OL). It is 
also believed to be helpful in improving the performance of 
many applications such as information retrieval (IR), 
information extraction (IE), and speech recognition (SR). 
 
The reasons that WSD is difficult lie in two aspects. First, 
dictionary-based word sense definitions are ambiguous. 
Even if trained linguists manually tag the word sense, the 
inter-agreement is not as high as would be expected (Ng 
1999; Fellbaum and Palmer 2001). That is, different 
annotators may assign different senses to the same instance. 
Second, WSD involves much world knowledge or common 
sense, which is difficult to verbalize in dictionaries (Veronis 
2000). 
 
Sense knowledge can be represented by a vector, called a 
sense knowledge vector (sense ID, features), where features 
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can be either symbolic or empirical. Dictionaries provide 
the definition and partial lexical knowledge for each sense. 
However, dictionaries include little well-defined world 
knowledge (or common sense). An alternative is for a 
program to automatically learn world knowledge from 
manually sense-tagged examples, called a training corpus.  
 
The word to be sense tagged always appears in a context. 
Context can be represented by a vector, called a context 
vector (word, features). Thus, we can disambiguate word 
sense by matching a sense knowledge vector and a context 
vector. The conceptual model for WSD is shown in figure 1. 
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Figure 1. Conceptual Model for Word Sense Disambiguation
 

  
Apart from knowledge sources, we need to consider other 
issues such as performance, computing complexity, and 
tasks when choosing WSD algorithms. Precision and recall 
are two important measures of performance for WSD. 
Precision is defined as the proportion of correctly classified 
instances of those classified, while recall is the proportion 
of correctly classified instances of total instances. Thus, the 
value of recall is always less than that of precision unless all 
instances are sense tagged.  
 
The remainder of the paper is organized as follows: in 
section 2, we summarize lexical knowledge and various 
contextual features used for WSD, while in section 3 we 
present the core component, which is the classification and 
evaluation of existing WSD algorithms. A short conclusion 
finishes the article. 
 

2. Knowledge Sources 
Knowledge sources used for WSD are either lexical 
knowledge released to the public, or world knowledge 
learned from a training corpus. 



2.1 Lexical Knowledge 
In this section, the components of lexical knowledge are 
discussed. Lexical knowledge is usually released with a 
dictionary. It is the foundation of unsupervised WSD 
approaches.  
 
Sense Frequency is the usage frequency of each sense of a 
word. Interestingly, the performance of the naïve WSD 
algorithm, which simply assigns the most frequently used 
sense to the target, is not very bad. Thus, it often serves as 
the benchmark for the evaluation of other WSD algorithms. 
 
Sense glosses provides a brief explanation of a word sense, 
usually including definitions and examples. By counting 
common words between the gloss and the context of the 
target word, we can naively tag the word sense. 
 
Concept Trees represent the related concepts of the target 
in the form of semantic networks as is done by WordNet 
(Fellbaum 1998). The commonly used relationships include 
hypernym, hyponym, holonym, meronym, and synonym. 
Many WSD algorithms can be derived on the basis of 
concept similarity measured from the hierarchal concept 
tree.  
 
Selectional Restrictions are the semantic restrictions 
placed on the word sense. LDOCE (Longman Dictionary of 
Contemporary English) senses provide this kind of 
information. For example, the first sense of run is usually 
constrained with human subject and an abstract thing as an 
object. Stevenson & Wilks (2001) illustrates how to use 
selectional restriction to deduct the suitable word sense. 
 
Subject Code refers to the category to which one sense of 
the target word belongs. In LDOCE, primary pragmatic 
codes indicate the general topic of a text in which a sense is 
likely to be used. For example, LN means “Linguistic and 
Grammar” and this code is assigned to some senses of 
words such as “ellipsis”, “ablative”, “bilingual”, and 
“intransitive” (Stevenson and Wilks 2001). It could do 
WSD in conjunction with topical words.  Further details 
could be found in (Yarowsky 1992; Stevenson and Wilks 
2001).  
 
Part of Speech (POS) is associated with a subset of the 
word senses in both WordNet and LDOCE. That is, given 
the POS of the target, we may fully or partially 
disambiguate its sense (Stevenson & Wilks, 2001).  
 

2.2 Learned World Knowledge 
World knowledge is too complex or trivial to be verbalized 
completely. So it is a smart strategy to automatically 
acquire world knowledge from the context of training 
corpora on demand by machine learning techniques.  The 

frequently used types of contextual features for learning are 
listed below. 
 
Indicative Words surround the target and can serve as the 
indicator of target senses. In general, the closer to the target 
word, the more indicative to the sense. There are several 
ways, like fixed-size window, to extract candidate words. 
 
Syntactic Features here refer to sentence structure and 
sentence constituents. There are roughly two classes of 
syntactic features. One is the Boolean feature; for example, 
whether there is a syntactic object. The other is whether a 
specific word appears in the position of subject, direct 
object, indirect object, prepositional complement, etc. 
(Hasting 1998; Fellbaum 2001).  
 
Domain-specific Knowledge, like selectional restrictions, 
is about the semantic restrictions on the use of each sense of 
the target word. However, domain-specific knowledge can 
only be acquired from training corpora, and can only be 
attached to WSD by empirical methods, rather than by 
symbolic reasoning. Hasting (1998) illustrates the 
application of this approach in the domain of terrorism. 
 
Parallel Corpora are also called bilingual corpora, one 
serving as primary language, and the other working as a 
secondary language. Using some third-party software 
packages, we can align the major words (verb and noun) 
between two languages. Because the translation process 
implies that aligned pair words share the same sense or 
concept, we can use this information to sense the major 
words in the primary language (Bhattacharya et al. 2004). 
 
Usually, unsupervised approaches use lexical knowledge 
only, while supervised approaches employ learned world 
knowledge for WSD. Examining the literature, however, we 
found the trend of combination of lexical knowledge and 
learned world knowledge in recently developed WSD 
models. 
 

3. Algorithms 
According to whether additional training corpora are used, 
WSD algorithms can be roughly classified into supervised 
and unsupervised categories. 
 

3.1 Unsupervised Approach 
The unsupervised approach does not require a training 
corpus and needs less computing time and power. It is 
suitable for online machine translation and information 
retrieval. However, it theoretically has worse performance 
than the supervised approach because it relies on less 
knowledge. 
 



Simple Approach (SA) refers to algorithms that reference 
only one type of lexical knowledge. The types of lexical 
knowledge used include sense frequency, sense glosses 
(Lesk 1986), concept trees (Agiree and Rigau 1996; Agiree 
1998; Galley and McKeown 2003), selectional restrictions, 
and subject code. It is easy to implement the simple 
approach, though both precision and recall are not good 
enough. Usually it is used for prototype systems or 
preliminary researches. 
 
Combination of Simple Approaches (CSA) is an 
ensemble of the heuristics created by simply summing up 
the normalized weights of separate simple approaches (SA). 
Because multiple knowledge sources offer more confidence 
on a sense being used than a single source does, the 
ensemble usually outperforms any single approach (Agirre 
2000). However, this method doesn’t address the relative 
importance of each lexical knowledge source in the 
question. One alternative is to learn the weights of various 
lexical knowledge sources from training corpora by 
machine learning techniques such as Memory Based 
Learning (See section 3.2). 
 
Iterative approach (IA) only tags some words, with high 
confidence in each step maintained by synthesizing the 
information of sense-tagged words in the previous steps and 
other lexical knowledge (Mihalcea and Moldovan, 2000). It 
is based on a fine assumption that words in a discourse are 
highly cohesive in terms of meaning expression, and 
consequently achieves high precision and acceptable recall. 
Mihalcea and Moldovan (2000) use this approach, 
disambiguating 55% of the nouns and verbs with 92.2% 
precision. This approach is a good choice for applications 
that need to sense tag all major words in text. 
 
Recursive Filtering (RF) shares the same assumption as 
the iterative approach. That is, the correct sense of a target 
word should have stronger semantic relations with other 
words in the discourse than does the remaining sense of the 
target word. Therefore, the idea of the recursive filtering 
algorithm is to gradually purge the irrelevant senses and 
leave only the relevant ones, within a finite number of 
processing cycles (Kwong 2000). The major difference 
from an iterative approach is that it does not disambiguate 
the senses of all words until the final step. 
 
This approach leaves open the measure of semantic relation 
between two concepts. Thus, it offers the flexibility of the 
semantic relation measure ranging from the very narrow to 
the very broad subject to the availability of lexical 
knowledge sources at the point of implementation. Kwong 
(2001) reports a system with maximum performance, 
68.79% precision and 68.80% recall. 
 
Bootstrapping (BS) looks like supervised approaches, but 
it needs only a few seeds instead of a large number of 

training examples. The charm of this approach lies in its 
continuous optimization of the trained model until it 
reaches convergence.  
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Figure 2. Flow of Recursive Optimization Algorithm
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As shown in Figure 2, it recursively uses the trained model 
to predict the sense of new cases and in return optimizes the 
model by new predicted cases. The key to the success of 
this method is the convergence of the supervised model. 
Yarowsky (1995) applies decision lists as the supervised 
model and achieves 96.5% precision for 12 words on 
average. Any supervised model can be adapted to this 
approach as long as it can reach convergence. RO truly 
achieves very high precision, rivaling supervised methods 
while costing much less, but it is limited to sense 
disambiguation of a few major words in text.  
 

3.2 Supervised Approach 
A supervised approach uses sense-tagged corpora to train 
the sense model, which makes it possible to link contextual 
features (world knowledge) to word sense. Theoretically, it 
should outperform unsupervised approaches because more 
information is fed into the system. Because more and more 
training corpora are available nowadays, most recently 
developed WSD algorithms are supervised. However, it 
does not mean unsupervised approach is already out of 
mode.   
 
Supervised models fall roughly into two classes, hidden 
models and explicit models based on whether or not the 
features are directly associated with the word sense in 
training corpora. The explicit models can be further 
categorized according to the assumption of interdependence 
of features. Log linear models (Yarowsky 1992; Chodorow 
et al. 2000) simply assume each feature is conditionally 
independent of others. Maximum Entropy (Fellbaum 2001; 
Berger 1996) and Memory-based Learning do not make any 
assumptions regarding the independence of features. 
Decomposable models (Bruce 1999; O’hara et al. 2000) 
select the interdependence settings against the training 
corpus. 



Log Linear Model (LLM) simply assumes that each 
feature is conditionally independent of others. For each 
sense si, the probability is computed with Bayes’ rule, 
where cj is j-th feature: 
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Because the denominator is the same for all senses of the 
target word, we simply ignore it. According to the 
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By counting the frequency of each feature, we can estimate 
the term log  from training data. But the seeming 
neatness of the algorithm can not hide its two defects: (1) 
the independence assumption is clearly not reasonable; (2) 
it needs some techniques such as Good-Turing (Good, 1953) 
to smooth the term of some features, , due to 
data parse problem (Chodorow et al. 2000).  
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Decomposable Probabilistic Models (DPM) fix the false 
assumption of log linear models by selecting the settings of 
interdependence of features based on the training data. In a 
typical decomposable model, some features are independent 
of each other while some are not, which can be represented 
by a dependency graph (Bruce and Wiebe 1999). The 
Grling-Sdm system in (O’Hara et al. 2000), based on a 
decomposable model, performs at an average level in the 
SENSEVAL competition. It could achieve better 
performance if the size of training data is large enough to 
compute the interdependence settings of features.  
 
Memory-based Learning (MBL) classifies new cases by 
extrapolating a class from the most similar cases that are 
stored in the memory (Daelemans 1999). The basic 
similarity metric (Daelemans 1999) can be expressed as: 
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In the absence of information about feature relevance, the 
feature weight (wi) can be simply set to 1. Otherwise, we 
can add domain knowledge bias to weight or select different 

features. Information Gain and Information Ratio (Quinlan, 
1993) are two frequently used metrics that address the 
relative importance of each feature. The overlap metric (δ), 
shown above, is the basic measure of distance between two 
values of a certain feature. It uses exact matching for 
symbolic features. To smooth this metric, Modified Value 
Difference Metric (MVDM) was defined by Stanfill and 
Waltz (1986) and further refined by Cost and Salzberg 
(1993). It determines the similarity of values of a feature by 
observing the co-occurrence of values with target classes. 
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Because Memory-based Learning (MBL) supports both 
numeric features and symbolic features, it can integrate 
various features into one model. Stevenson and Wilks (2001) 
built a WSD system using an MBL model and the recall 
(the precision is the same) for all major words in text 
surprisingly reaches 90.37% to the fine sense level. 
 
Maximum Entropy (ME) is a typical constrained 
optimized problem. In the setting of WSD, it maximizes the 
entropy of Pλ(y|x), the conditional probability of sense y 
under facts x, given a collection of facts computed from 
training data. Each fact is linked with a binary feature 
expressed as an indicator function: 
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Where Zλ (x) is the normalizing constant determined by the 
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Thus the word sense of the test case should be: 
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From the training data, the parameter λ can be computed by 
a numeric algorithm called Improve Iterative Scaling 
(Berger, 1996). Berger also presents two numeric 
algorithms to address the problem of feature selection as 
there are a large number of candidate features (facts) in the 
setting of WSD. 
 
Dang and Palmer (2002) apply ME to WSD. Although their 
model includes only contextual features without the use of 
lexical knowledge, the result is still highly competitive. But 
ME model always contains a large number of features 
because ME supports only binary features. Thus it is highly 
computing intensive.  



Expectation Maximum (EM) generally solves the 
maximization problem containing hidden (incomplete) 
information by an iterative approach (Dempster et al. 1977). 
In the setting of WSD, incomplete data means the 
contextual features that are not directly associated with 
word senses. For example, given the English text and its 
Spanish translation, we use a sense model or a concept 
model to link aligned word pairs to English word sense, as 
shown in figure 3 (Bhattacharya et al. 2004). 

 
Figure 3. Translation Model (Bhattacharya et al, 2004) 

 
Suppose the same sense assumption is made as in the 
example. English word sense is the hidden variable and the 
complete data is (We, Ws, T), denoted by X. The WSD is 
equivalent to choosing a sense that maximizes the 
conditional probability P(X|Y,Θ). 
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EM then uses an iterative approach, which consists of two 
steps, estimation and maximization, to estimate the 
parameters Θ from training data. EM is a kind of climbing 
algorithm. Whether it can reach global maximum depends 
on the initial value of the parameters. Thus, we should be 
careful to initialize the parameters. It is often a good choice 
to use lexicon statistics for initialization. 
 
EM can learn the conditional probability between hidden 
sense and aligned word pairs from bilingual corpora so that 
it does not require the corpus to be sense-tagged. Its 

performance is still highly competitive. The precision and 
recall of the concept model in (Bhattacharya et al, 2004) 
reach 67.2% and 65.1% respectively. Moreover, it is 
allowed to develop a big model for all major words for 
WSD. 
 
So far, we have examined the characteristics of all classes 
of WSD algorithms. Table 1 briefly summarizes the tasks, 
needed knowledge sources, the level of computing 
complexity, resulting performance, and other features for 
each class of algorithms. According to the information 
above, we can choose the appropriate algorithms for 
specific applications. For example, online information 
retrieval requires quick response and provides a little 
contextual information, thus simple approach (SA) or 
combination of simple approach (CSA) might be a good 
choice.  
 
In general, knowledge sources available to the application 
dramatically reduce the range of choices; computing 
complexity is an important consideration for time-sensitive 
applications; and the task type of the application further 
limits the applicable algorithms. After that, we may take the 
performance and other special characteristics into account 
of WSD algorithm choice.  
 
Examining the literature of WSD, we also identify three 
trends with respect to the future improvement of algorithms. 
First, it is believed to be efficient and effective for 
improvement of performance to incorporate both lexical 
knowledge and world knowledge into one WSD model 
(Agirre et al. 2000; O’Hara et al. 2000; Stevenson & Wilks, 
2001; Veronis, 2000). Second, it is better to address the 
relative importance of various features in the sense model 
by using some elegant techniques such as Memory-based 
Learning and Maximum Entropy. Last, there should be 
enough training data to learn the world knowledge or 
underlying assumptions about data distribution (O’Hara et 
al. 2000). 

 
Group Tasks  Knowledge Sources Computing 

Complexity Performance Other Characteristics 

SA all-word single lexical source low low  
CSA all-word multiple lexical sources low better than SA  
IA all-word multiple lexical sources low high precision 

average recall 
 

RF all-word single lexical source average average flexible semantic relation 
BS some-word sense-tagged seeds average high precision sense model converges 
LLM some-word contextual sources average above average independence assumption 
DPM some-word contextual sources very high above average need sufficient training data  
MBL all-word lexical and contextual sources high high  
ME some-word lexical and contextual sources very high above average feature selection  
EM all-word bilingual texts very high above average Local maximization problem 

Table 1.  Brief summaries for each class of WSD algorithms. “all-word” means the approach is appropriate to disambiguate the sense of all 
major words (verb, noun, adjective and adverb) in text; “some-word” represents the suitable approach for sense disambiguation of some 
major words (usually verb or noun). The performance in the fifth column refers to precision and recall by default. 



4. Conclusions 
This paper summarized the various knowledge sources used 
for WSD and classified existing WSD algorithms according 
to their techniques. We further discussed the rationale, tasks, 
performance, knowledge sources used, computational 
complexity, assumptions, and suitable applications for each 
class of algorithms. We also identified three trends with 
respect to the future improvement of algorithms. They are 
the use of more knowledge sources, addressing the relative 
importance of features in the model by some elegant 
techniques, and the increase of the size of training data. 
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