
Integrating Knowledge-Level Agents in the (Semantic) Web: 
An Agent-based Open Service Architecture

Nicola Dragoni and Mauro Gaspari and Davide Guidi
Dipartimento di Scienze dell’Informazione

University of Bologna
via Mura Anteo Zamboni 7

40127 Bologna, ITALY

Abstract

In this paper we present an Agent-based Open Service Ar-
chitecture (OSA) which integrates geographically distributed
agents in the Web. Agents can be realized with traditional
AI techniques, but they also provide a set of Web Services
to the outside world which constitute their capabilities. The
architecture extends the Web with a facilitator level provid-
ing agents’ specific support. Moreover it provides primitives
for Web Services invocation and inter-agent communication
based on Agent Communication Languages. We present the
design of the architecture and an implementation which ex-
tends a common Web Server based on Apache/Tomcat plat-
form.

Introduction
Artificial intelligence is playing an increasingly important
role in the Internet which, under the Semantic Web activ-
ity, will provide more and more reusable formalized de-
scriptions of data such as ontologies. Although there are
many small-scale examples of implemented systems which
use this formalized knowledge to achieve intelligent behav-
iors, for example personal assistants which collect and orga-
nize information, several issues concerning the full exploita-
tion of traditional Artificial Intelligence technologies such
as Logic and Expert Systems in the Semantic Web remain
open.

Agents have been recognized as one of the main building
blocks of the Semantic Web infrastructure, but their role is
still not completely depicted. For example, their relation-
ship with more standard components such as Web Servers
and clients, is still not clear. Most of the examples of agents
in the Web are User Agents which provide intelligent sup-
port and advanced services to users. These agents can be
realized with any programming language or traditional AI
technologies provided that they are able to access the RDF-
based triple-space.

However, whenever an agent provides a set of complex
problem solving capabilities, it becomes reasonable to reuse
its skill in realizing other intelligent applications. This sug-
gests another possible role for agents: to enhance the func-
tionalities of servers. Worker Agents, providing complex

Copyright c© 2005, American Association for Artificial Intelli-
gence (www.aaai.org). All rights reserved.

problem solving capabilities with respect to a given applica-
tion domain, can be published and shared on the Web, for
example by means of a set of well defined Web Services and
an associated ontology. Sophisticated knowledge intensive
behaviours can be made available on the Web by developing
and publishing libraries of intelligent agents able to interact
among them, rather than adding more and more ontologies
and semantic annotated data (McIlraith, Son, & Zeng 2001;
McIlraith & Martin 2003).

A significant challenge to realize this vision is the de-
sign of distributed reasoning infrastructures tightly inte-
grated with current Internet components and technologies
that would allow agents to be exploited in the large. While
new standards are emerging such as the Ontology Web
Language (OWL) (W3C Web-Ontology Working Group 10
February 2004), and the community is currently address-
ing many central issues as the design of a Web Service
Modelling Ontology (WSMO) (Davies, Fensel, & Richard-
son 2004) and of an Ontology Web Language for Services
(OWL-S) (Martin et al. 2004), there is still not a widely
accepted architecture for integrating agents in a distributed
reasoning infrastructure on the Web.

In this paper we present an Agent-based Open Service
Architecture (OSA) which integrates geographically dis-
tributed agents in the Web supporting both User and Worker
agents in a uniform framework. An Open Service Archi-
tecture is a software infrastructure that makes a dynamic set
of services available to users and agents over the Web. An
OSA defines standard mechanisms for creating, naming, dis-
covering and integrating such Web Services. Agents are the
main building block of our architecture. They run on Web
Agent Servers, i.e., Web Servers extended with a facilitator
level providing agents’ specific support and standard prim-
itives for inter-agent communication based on Agent Com-
munication Languages (ACL). Agents provide a set of Web
Services to the outside world which constitute their capabil-
ities. Each agent is able to retrieve, execute and compose
Web Services published by other agents in order to achieve
its goals or provide more sophisticated services. We present
the design of the architecture and an implementation which
extends the Apache/Tomcat platform, where agents can be
encoded in any programming language including standard
AI languages or knowledge representation languages.



An Agent-based Open Service Architecture
A general view of our architecture is depicted in Figure
1. The architecture supports both User Agents and Worker
Agents on Web Agent Servers.

Figure 1: Our Agent-based Open Service Architecture.

User Agents act as interfaces between users and the Web,
providing a support for discovering and invoking Web Ser-
vices. Users can configure their User Agents with their pref-
erences. They can be always connected to the OSA or they
can disconnect themselves when their users want. A Web
Agent Server extends a Web Server with agents’ functional-
ities and is the main building block of our OSA. Web Agent
Servers are geographically distributed (as Web Servers are)
and provide a set of Web Services to the outside world
which constitute their capabilities. This set can dynamically
change because of new publication of Web Services and/or
modification of the existing ones. A Web Agent Server sup-
ports both User and Worker Agents providing standard prim-
itives for inter-agent communication based on Agent Com-
munication Languages (ACL). These primitives are realized
on top of standard XML based technologies subsuming Web
Service invocation-response patterns.

Worker Agents are able to retrieve, execute and compose
Web Services to provide more sophisticated services. Con-
trary to User Agents (which can disconnect themselves from
the OSA), Worker Agents are always connected to the OSA
and act like a daemon process.

Agents can be realized in any programming language
including AI languages or knowledge representation lan-
guages.

Fundamental issues in designing Open Service
Architectures
Several issues arise in designing an OSA which enables
agents to be fully integrated in the Web.

A first issue is related to the geographically distributed
nature of the nodes of the OSA (User Agents and Web Agent
Servers ) which are subject to possible failures or network
partitions. Most of the available knowledge based systems
on the Web (such as the IRS-III (Domingue et al. 2004))
concentrate their efforts on knowledge modeling issues and
there is still a relatively little attention to issues that derive

from the distributed nature of these architectures. For exam-
ple, the IRS-III is a centralized system where all the avail-
able services should be published. If the IRS-III server is
not reachable there is no way to use the semantic Web Ser-
vices it provides, even if their standard instances (without
the semantic annotations) are reachable. We claim that an
OSA should be based on distributed reasoning services, and
as a consequence of this should be designed to support dis-
tributed reasoning protocols which function in the presence
of failures or network partitions. Moreover each provider of
Web Services (such as our Web Agent Servers) should sup-
port the publication of Web Services which are developed
locally in a given site and should provide a protocol to make
available these capabilities to other nodes.

Another important issue related to the distribution of the
reasoning service is to establish a standard interface for
these agents. This interface should allow user to invoke Web
Services using high level mechanisms, but should also sup-
port agent-to-agent interaction. We argue that current stan-
dards for invoking Web Services which are based on SOAP
over HTTP implementing simple invocation-response pat-
terns are not adequate for this purpose. On the other hand
we claim that Agent Communication Languages (ACLs) can
be successfully used for this task, especially if they provide
support for fault tolerant communication primitives as sug-
gested in (Dragoni & Gaspari 2003; 2004). In our OSA we
provide ACL primitives on the top of standard XML and
SOAP based technologies. This interface is managed by
Web Agent Servers and constitutes a facilitator level.

Main features of our Agent-based OSA
In the following we outline the main features which have
guided us in the design of our Agent-based OSA. Then in
the next Section we will show in details how the OSA is
realized.

Knowledge-level Agents and Communication. We as-
sume knowledge level agents (Gaspari 1998), that is, they
should concern with the use, request and supply of knowl-
edge without dealing with symbol level issues. Agents
access services and communicate each other using a fault
tolerant knowledge-level Agent Communication Language
(ACL) which provides one-to-one and one-to-many primi-
tives (Dragoni & Gaspari 2003; 2004). The primitives of
this ACL can be divided into four categories as shown in
Table 1. We assume an asynchronous communication and a
reliable message passing, i.e., whenever a message is sent it
must be eventually received by the target agent (thus we do
not handle communication failures, such as send or receive
omission).

Open Architecture. Each Web Agent Server can provide
one ore more Web Services to other agents. This set of Web
Services can dynamically change because of the creation of
new services on the Web Agent Server or the modification of
existing ones. Moreover, our OSA allows new Web Agent
Servers to dynamically connect themselves to the OSA, pro-
viding new Web Services to other agents.



Standard conversation primitives

insert(â, b̂, p), ask-one(â, b̂, p), tell(â, b̂, p)

Support for anonymous interaction
(one-to-many primitives)

ask-everybody(b̂, p)

Support for anonymous interaction
(auxilliary predicates)

all-answers(p), register(b̂, p), unregister(b̂, p)

Support for creation and termination of agents

create(b̂, w), clone(b̂), bye

Table 1: Primitives of our ACL. We use â and b̂ as agent
names (recipient and sender respectively), L as a set of
agents names, p as the content of a message (expressed as a
proposition) and w as a generic knowledge base of an agent.

Fault Tolerant Communication. We assume agents are
subject to possible crash failures. A crashed agent stops pre-
maturely and does nothing from that point on. Before stop-
ping, however, it behaves correctly1. An OSA should deal
with such failures preventing agents to wait answers from
crashed agents forever. As we show in the next Section, our
OSA is integrated with a distributed failure detector service
(Chandra & Toueg 1996) which allows to add fault tolerance
to the primitives of the ACL.

Architecture of the Agent-based OSA
To describe in details the architecture of our Agent-based
OSA we first refine the general architecture discussed in the
previous Section (Figure 1) and then we focus on a single
node of the architecture (the Web Agent Server) describing
its main components.

The architecture we propose is presented in Figure 2. It
extends a Web Server with two main components: a facilita-
tor service and a set of Agents. Agents can be both Worker
Agents, which always runs on the server, or User Agents
which, if necessary, can be downloaded and activated in mo-
bile devices.

Worker Agents implement the Web Services which the
Web Agent Servers provide to User Agents and other
Worker Agents. They are always active and are able to
perform complex problem solving operations interacting
with other Agents. Therefore each Worker Agent is reactive
(it reacts to requests of services) but it can also have a
proactive function to solve complex tasks. An example
of Worker Agent can be a simple News Service which
forwards to connected User Agents some news according
to User Agents preferences. Or it can implement a more

1Note that more severe types of failures can occur in these ar-
chitectures. A well known classification of process failures in dis-
tributed systems can be found in (Mullender 1993).

Figure 2: Architecture of the Agent-based OSA.

complex service which requires the interaction with other
Worker Agents, such as a Book-Travel-Agent which is
able to organize a travel according to user’s preferences.
Agents operate at the knowledge-level (Gaspari 1998) and
can be coded in any language provided that it supports the
communication primitives of our fault tolerant ACL2. Each
agent can register its competences (that is, the services it
provides) in the associated facilitator service using the ACL
primitive register. To undo this operation the agent can use
the ACL primitive unregister. For the sake of simplicity
here we assume that agents’ capabilities are expressed as
a set of propositions (for example, propositions based on
a shared ontology), one for each service. However in the
last Section of the paper we will show how it is easy to
overcome this assumption extending our architecture with
more complex description of agents’ capabilities.

The facilitator service allows agents (User and Worker
Agents) to communicate each others at the knowledge-level
by means of the ACL primitives (Table 1). Moreover it pro-
vides fault tolerant support to inter-agent communication.

Figure 3: Architectural view of a single Web Agent Server.

2From a practical point of view this means that the implemen-
tation language should be able to communicate over TCP sockets
with other devices. Communication primitives are then realized
forwarding adequate SOAP messages to the facilitator component.



The facilitator service is realized by means of two com-
ponents (Figure 3):

• Facilitator: this component is associated to a Web Server
(and therefore to each agent of the Web Server) and it
manages the communication with other agents. The facil-
itator provides anonymous (contents based) facilities to
retrieve and request services. It registers the competences
of associated agents and forwards these competences to
other facilitators executing a distributed protocol. More-
over, it is able to perform a generic matching operation
that matches a request (expressed as a proposition) with
agents’capabilities.

• Failure detector: this component implements a dis-
tributed failure detector mechanism (Chandra & Toueg
1996). It monitors all the agents associated with the facili-
tator service and communicates to the facilitator those that
it currently suspects to have crashed. The failure detector
is unreliable, meaning that it can make mistakes suspect-
ing agents which are not crashed. This unreliability comes
from the impossibility results for asynchronous systems
to determining whether a process has actually crashed or
is only ”very slow”.

A complete specification of the facilitator and failure de-
tector components is out of the scope of this paper. Read-
ers interested in a complete and formal specification of
these components can found it in (Dragoni & Gaspari 2003;
2004).

Discussion

In principle several Worker Agents with the associated fa-
cilitator service can be accommodated in a single Web
Server. The facilitator and the failure detector are though
to be tightly integrated with the Web Server, while the aim
of Worker Agents is to provide independent components.
Leaving all technical communication details to facilitator
means that all the computational resources of the proces-
sor running the Worker Agent could be used for itself, en-
abling these agents to implement simple Web Services or
more complex reasoning services. This feature of our archi-
tecture is valid also for User Agents, enabling their imple-
mentation also on small (e.g. handheld) devices. In this case
only the display is sent to the mobile device while the agents
runs on the server.

Although all the emerging standards for the Semantic
Web use formalisms based on XML, we have chosen to
support the integration of any knowledge representation
language in our agents. Indeed, in our proposal all the
agents have no constraints on the implementation language
or knowledge representation formalisms they adopt, but they
react to a well defined protocol based on the standard prim-
itives of our ACL. On the contrary, most of AI systems are
still being developed using specific AI technologies and lan-
guages which usually are not compliant with Web standards,
they usually provide powerful engines and a rich set of li-
braries. From a practical point of view it is not feasible
to translate all these technologies in XML based formal-
ism. Therefore we claim that an adequate mechanism should

be designed for integrating agents, as cgi and more recently
servlets have been developed to access standard application.

In our opinion, an advantage of our approach is that it suc-
cessfully integrates different issues, such as high-level inter-
agent communication and fault tolerance, in an OSA main-
taining a clean design of the architecture and a knowledge-
level characterization. Despite our ACL only provides a
small set of primitives, they can be successfully exploited
in several well known scenarios for Web Services usages, as
those described in (He, Haas, & Orchard 2004) by the W3C
Working Group, to come up to original solutions. For exam-
ple the tell primitive is an example of a fire-and-forget to a
single receiver scenario, while ask-one and tell can realize a
general asynchronous messaging scenario or more complex
conversational message exchanges (as the W3C usage sce-
narios request/response and request with acknowledgment).
Another important feature of our ACL is that it supports an
anonymous interaction protocol which has been developed
for OSAs and which is integrated with standard agent-to-
agent primitives (Table 1). This allows an agent to perform
an asynchronous request of services based on contents with-
out knowing the name of the recipient agents (ACL primitive
ask-everybody). If required they can also continue the coop-
eration using agent-to-agent communication primitives. In
terms of W3C Web Services usage scenarios, this is a case
of registry based discovery where the registry is distributed
in all the facilitators. Also the third party intermediary W3C
usage scenario can be easily realized by means of our ACL
primitives ask-everybody, ask-one and tell. Moreover, the
discovery facility is then integrated with fault tolerant prim-
itives to manage multiple (non serialized) asynchronous re-
sponses. In (Dragoni & Gaspari 2004) these primitives are
formally specified and a formal verification of their fault tol-
erant properties is also provided.

Another feature that our ACL provides to OSAs is a
support for agent creation and cloning. Thus new Worker
Agents which implement new services can be created dy-
namically and become part of the problem solving activity.

Implementation of the Agent-based OSA
In our vision the implementation process is composed by
two different steps. As first step we have built a prototype of
the Agent Web Server: the User and Worker Agent and the
facilitator. As second step we are working to integrate the
facilitator in the JXTA architecture (Gong 2001). Agents
remain independent objects, that communicate always at the
knowledge-level.

Our prototype is an extension of the Apache/Tomcat plat-
form, and represents an Agent Web Server, as depicted in
figure 3. The facilitator and the failure detector (written in
Java) are an extension of the Web Server, while the User
Agents can be coded in any language that supports SOAP
communication over standard TCP socket. We distinguish
between 2 types of communication:

• from an Agent to its facilitator and vice versa. Messages
are first translated into SOAP messages, and then sent to
the facilitator via TCP sockets. This choice allows com-
munication even for agents running on handheld devices



with little computational power and enable programmers
to write agents in virtually every programming language.

• from an Agent â to another Agent b̂ (or to a set of other
Agents): messages are always sent to the local facilitator,
that takes care about the communication. The facilitator
of User Agent â receives the message, analyzes it and then
forwards it to the facilitator of the Agent â (or to the fa-
cilitators of the agents in the set). Note that â and b̂ can
share the same facilitator.

The facilitator is designed to be integrated as a soap ser-
vice and to achieve this goal we have used the latest Apache
SOAP library. With this library, soap services can be eas-
ily published and used as rpc commands. The procedure
that implements the call of these methods already integrates
a failure mechanism, so the program that asks for a soap
service waits for an acknowledge message. We make some
modifications to this library in order to supply an extra func-
tion used to achieve a totally asynchronous call: the new
method is called invoke-async and it is a function that
allows the sender to not wait for a response, so that failures
are always handled by the failure detector system.

The methods published by the facilitator are a su-
perset of the agent primitives found in table 1. They
contains all the primitives functions used by agents like
insert, ask-one, tell, etc. and a new one, named
agents-list used only at the facilitator level to retrieve
names and related capabilities of known agents. Almost all
of these primitives contain two different code sections that
handle the two different situations: when the message is
received from the local agent or when it is received from
another agent in the network. At the facilitator level some
primitives, like ask-one and tell, have an extra parame-
ter used to identify the right answer of the message, as spec-
ified in (Dragoni & Gaspari 2003).

We are now working to integrate the facilitator in the
Project JXTA 2.0 Super-Peer Virtual Network (Traversat et
al. 2003). Project JXTA is an industry leading peer-to-
peer platform, originally conceived by Sun Microsystems
Inc. and released as open source software. In our vision the
JXTA network acts as a physical layer, while the facilita-
tor allows communication at Knowledge Level. Binding an
Agent’s facilitator to a JXTA peer means that all the physical
communication between agents are managed entirely by the
JXTA network. Furthermore, the integration with the Project
JXTA network supports our architecture with facilities such
as:

• the creation of self-organized protected virtual domains, a
set of peers interested in a specific topics;

• encrypted connections, where messages are automatically
encrypted using TSL.

Finally, because JXTA resources are described in plain
XML, we plan to extend some JXTA concepts with metadata
in order to attach a semantic description to resources.

Extending the Agent-based OSA with
Semantic Web Services

Semantic Web Services (McIlraith, Son, & Zeng 2001;
McIlraith & Martin 2003) is an ongoing research area which
aims to bring Web Services to their full potential by means
of Semantic Web technology. The overall approach is that by
augmenting Web Services with rich formal descriptions of
their competence many aspects of their management (such
as Web Service discovery, invocation and composition) will
become automatic. To realize this vision many open prob-
lems need still to be solved. In our opinion, the fundamental
ones are:

1. Provide a language to semantically express the capabil-
ities of Web Services (or service advertisements) and
the service requests. Main ongoing works in this direc-
tion are WSMO (WSMO Working Group 2004), IRS-III
(Domingue et al. 2004) and OWL-S (Martin et al. 2004).

2. Provide an infrastructure which supports the creation of
Semantic Web Services. The infrastructure must clarify
who realize Web Services and where the semantic descrip-
tions of Web Services are stored (in a centralized or dis-
tributed repository).

3. Enable automatic discovery and invocation of Web Ser-
vices, that is, enable agents to discover and invoke Web
Services on the basis of the capabilities that they pro-
vide. The discovery problem is also known as ”Semantic
Matching problem” (Paolucci et al. 2002).

We briefly discuss how our architecture can easily sup-
port Semantic Web Services with respects to the above fun-
damental issues.

1. For the sake of simplicity, in our proposal we have as-
sumed that Web Service capabilities are expressed as a set
of propositions, one for each service. However, to support
Semantic Web Services we allow OWL-S descriptions as
content of ACL messages. Therefore, Worker Agents
can advertise their competences by means of OWL-S de-
scriptions and in a similar way User Agents (or Worker
Agents) can ask for services by means of OWL-S re-
quests.

2. In our architecture, Worker Agents realize Web Services.
The architecture is open and dynamic, meaning that it al-
lows the creation of new services (creating new Worker
Agents) and the modification of existing ones. Moreover,
the Web Service descriptions are stored in facilitators, re-
alizing a distributed repository of capabilities. Worker
Agents can register their capabilities by means on the ded-
icated ACL primitive register.

3. Automatic discovery can be realized by the anonymous
interaction protocol of our ACL, which allows an agent
to perform a request of a service without knowing the
name of recipient agents. The matching operation be-
tween agent requests and Web Service capabilities is then
performed by facilitators which execute a matching algo-
rithm (for example, the one described in (Paolucci et al.
2002)). Then the selected Web Service can be invoked by
means of the ACL primitive ask-one.



Conclusions
We have presented the design of an Agent-based OSA which
integrates knowledge level agents on the Semantic Web. The
nodes of our OSA are agents which can use standard knowl-
edge modelling technologies and communicate using a fault-
tolerant ACL. The ACL based interface has been designed
to support coordination and cooperation among agents, thus
can be used in all the application domains which require
these functionalities. At the moment we have not addressed
the problem of realizing specific primitives for applications
with real time requirements.

We have implemented the first prototype of our OSA, but
for the lack of time some problems remain open. The pro-
totype provides a simple authentication protocol which en-
ables agents to join the OSA. The failure detection system
is not already developed at this time, although we don’t see
particular implementation problems. Giving agents the pos-
sibility to reply to a message without specify the referred
message offers an abstraction layer that must be carefully
handled. There are a variety of methods that could be used:
we have chosen to integrate a callback function in the prim-
itives that do interactive communication, but we need more
intensive testing. Theclone is another unimplemented fea-
ture in the prototype. We are studying if the implementation
should be limited on local machine or, otherwise, which en-
hancement could lead the possibility to do a clone primi-
tive on remote machines.

Our future work will concern:

• The semantic specification of a Web Service. We are in-
vestigating on the integration of a description model for
Semantic Web Services, either OWL-S or WSMO.

• The test of our OSA with a set of application scenarios,
among them an intelligent news server and a travel orga-
nizer.

• The completion of the agent authentication protocol. We
plan to fully integrate in our OSA the JXTA authentication
protocol, currently under development.

References
Chandra, T. D., and Toueg, S. 1996. Unreliable failure
detectors for reliable distributed systems. Journal of the
ACM 43(2):225–267.

Davies, N.; Fensel, D.; and Richardson, M. 2004. The
future of Web Services. BT Technology Journal 22(1).

Domingue, J.; Cabral, L.; Hakimpour, F.; Sell, D.; and
Motta, E. 2004. IRS-III: A Platform and Infrastructure for
Creating WSMO-based Semantic Web Services. In Pro-
ceedings of the WIW 2004 Workshop on WSMO Implemen-
tations.

Dragoni, N., and Gaspari, M. 2003. Integrating Agent
Communication Languages in Open Services Architec-
tures. Technical Report UBLCS-2003-12, Department of
Computer Science, University of Bologna, ITALY.

Dragoni, N., and Gaspari, M. 2004. An Object Based Alge-
bra for Specifying A Fault Tolerant Software Architecture.
Accepted for publication in JLAP (Journal of Logic and

Algebraic Programming) special issue on “Process algebra
and system architecture”.
Gaspari, M. 1998. Concurrency and Knowledge-Level
Communication in Agent Languages. Artificial Intelli-
gence 105(1-2):1–45.
Gong, L. 2001. JXTA: A Network Programming Environ-
ment. IEEE Internet Computing 5:88–95.
Gruber, T. 1993. A Translation Approach to Portable On-
tologies. Knowledge Acquisition 5(2):199–220.
He, H.; Haas, H.; and Orchard, D. 2004. Web
Services Architecture Usage Scenarios. Technical
Report NOTE-ws-arch-scenarios-20040211/, W3C.
http://www.w3.org/TR/2004/NOTE-ws-arch-scenarios-
20040211/.
Martin, D.; Paolucci, M.; McIlraith, S.; Burstein, M.; Mc-
Dermott, D.; McGuinness, D.; Parsia, B.; Payne, T.; Sabou,
M.; Solanki, M.; Srinivasan, N.; and Sycara, K. 2004.
Bringing Semantics to Web Services: The OWL-S Ap-
proach. In First International Workshop on Semantic Web
Services and Web Process Composition (SWSWPC 2004).
McIlraith, S., and Martin, D. 2003. Bringing Semantics to
Web Services. IEEE Intelligent Systems 18(1):90–93.
McIlraith, S.; Son, T.; and Zeng, H. 2001. Semantic web
services. IEEE Intelligent Systems, Special Issue on the
Semantic Web 16(2):46–53.
Mullender, S. 1993. Distributed Systems. ADDISON-
WESLEY.
Paolucci, M.; Kawmura, T.; Payne, T.; and Sycara, K.
2002. Semantic Matching of Web Services Capabilities. In
Proceedings of the first International Semantic Web Con-
ference (ISWC).
Traversat, B.; Arora, A.; Abdelaziz, M.; Duigou, M.;
Haywood, C.; Hugly, J.-C.; Pouyoul, E.; and Yea-
ger, B. 2003. Project jxta 2.0 super-peer virtual net-
work. Available online: http://www.jxta.org/
project/www/docs/JXTA2.0protocols1.pdf.
W3C Web-Ontology Working Group. 10 February 2004.
OWL Web Ontology Language Guide. W3C Recommen-
dation.
WSMO Working Group. 2004. Web Service Modeling On-
tology (WSMO). http://www.wsmo.org/2004/d2/. WSMO
Working Draft D2v1.1.


