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Abstract 

Belief-Desire-intention (BDI) agent based systems have been 
implemented in many business application systems and found to 
have some limitations in obverting environmental changes, 
adaptation and learning in making rational decisions. Our paper 
presents a new hybrid BDI agent architecture which compares all 
the available intentions in the intention reconsideration process 
and is able to observe all the events which are related to the 
committed intention, before a decision is being made. Limitation 
in capturing of one event in the intention reconsideration process 
is overcome with the introduction of our extended BDI execution 
cycle. Further, the use of “Knowledge Acquisition Module” 
(KAM) in our proposed model improves the learning ability of 
the generic BDI agent. Execution of plans for a committed 
intention is based on the reinforcement learning techniques and 
Adaptive Neuro Fuzzy Inference System (ANFIS) is used in 
deciding the intention reconsideration of the proposed agent 
model. This enables the agent to interact with the environment 
more closely and use intelligence in making rational decisions, 
whose behavior may be not known at the design stage.  

Introduction  
Vessel berthing system is one of the complex, dynamic and 
large applications which require autonomy and learning to 
assure higher productivity and efficiency (Lokuge and 
Alahakoon, 2004). Our research is motivated by a vessel 
berthing problem faced by Container Terminal Operators 
in large container Ports and focuses on improving the 
productivity with the use of hybrid BDI agents.  

Research on vessel berthing related application systems 
have been addressed in the literature, but to the best of our 
knowledge none of the papers describe the effective use of 
intelligent Hybrid BDI agents in assuring higher 
productivity and efficiency in the container terminals. Most 
of the papers focus on static vessel berthing system, where 
the main issue is to identify a good plan to assign vessels in 
the out harbor. (Brown et al. 1994) used integer-
programming model vessel berthing, (Lim 1998) addressed 
the vessel planning problem with fixed berthing time, (Li 
et al 1998) addressed the scheduling problem with a single 
processor multiple jobs and assumed that vessels are 
already arrived, (Chia, Lau and Lim 1999) used Ants 
Colony optimization approach to solve berthing system 

minimizing the wharf length, (Kim and Moon 2003) used 
simulated annealing in berth scheduling. But if one could 
include dynamic changes during the operations in the 
vessel operations, use of previous knowledge and 
experience for the vessel planning would improves the 
decision making power of the system.  

On the other hand, Agent systems based on practical 
reasoning system, which perhaps use philosophical model 
of human reasoning have been used in achieving optimal 
solutions for many business application in the recent past. 
BDI agent model is possibly the best known and best 
studied model of the practical reasoning (Georgeff, 1998) 
and have implementations e.g. IRMA (Bratman, 1998) and 
the PRS-like systems (Georgeff and Lansky, 1987) 
including PRS and dMARS. In some instances the 
criticism regarding BDI model has been that it is not well 
suited to certain types of behaviors. In particular, the basic 
BDI model appears to be inappropriate for building 
complex systems that must learn and adapt their behaviors 
and such systems are becoming increasingly important in 
today’s context in the business applications. Another key 
problem in the design of BDI agent is the selection of an 
intention reconsideration process (Wooldridge, 2000), 
(Kinny and Georgeff, 1991). There is currently no 
consensus on exactly how or when an agent should 
reconsider its intentions (Schut and Wooldridge, 2001). A 
meta-level decision theoretic approach has been adopted 
(Schut and Wooldridge, 2001) to improve the agent’s 
policy in intention reconsideration in the above paper, but 
still it assumes some of the information is static. Further, it 
is not addressed the agent behavior in uncertain or in vague 
environment is not addressed.   

We propose an extended hybrid BDI agent model with 
reinforcement learning capabilities for the execution of 
plans in the committed intention, which essentially extend 
the learning and adaptability features of the current BDI 
agents. In this paper, we describe how dynamic changes in 
the environment affect the adaptive planning process in the 
hybrid BDI agent architecture. Proposed Adaptive Neuro 
Fuzzy Inference system (ANFIS) in the Hybrid BDI 
framework has shown improvements in learning and 
decision-making processes in a complex, dynamic 
environment. Generic BDI execution cycle has been 
extended to capture multiple events and compare all the 
possible intentions in the intention reconsideration process 



before a decision is being made. A trained supervised 
neural network in the KAM module is deployed in choosing 
the most viable intentions for an external event in the agent 
model (Lokuge and Alahakoon, 2004), which is not 
described in detail in this paper due to space limitations.      
  The research is carried out at the School of Business 
Systems, Monash University, Australia, in collaboration 
with the Jaya Container Terminal at the port of Colombo, 
Sri Lanka and Patrick Terminals in Melbourne, Australia. 
The rest of the paper is organized as follows: Section 2 
describes the generic BDI agent model. Section 3 describes 
the proposed hybrid BDI architecture. Section 4 describes 
extended Hybrid BDI control loop.  A test case is described 
in section 5 and conclusion is in section 6.   

Generic BDI Agent Model  
One of the most popular approaches to autonomous agent 
design is the belief-desire-intention model agency, where 
the notions of Beliefs, Desires and Intentions are centrally 
focused and often referred to as BDI agents (Rao and 
Georgeff, 1992).  

Information about the world is described in beliefs, such 
as expected time of completion of the vessel (ETC), 
expected time of berth of a vessel (ETB) in a vessel 
berthing system. Desires indicate the set of goals that an 
agent could achieve at a given point in time. Agent would 
prefer all its desires achieved, but often desires are 
mutually exclusive. Therefore, agent should commit to 
certain desires called intentions. BDI model has pre-
defined library of plans. Sequence of plans is then executed 
in achieving the committed intention in the agent model. 
Changes to the environment are reflected in terms of 
events. Event-queue store the sequence of events occurred 
during the execution of plans in the agent model. The 
control loop of a generic BDI agent is shown in figure 1 
(Rao and Grorgeff, 1992) and (Wooldridge, 2000).   

 
1. B=B0; I=I0; π := null; 
2. While true do  
3.   get next percept p;  
4.   B:= update beliefs ; 
5.   D:= option ( B,I) ; /* get desires */ 
6.   I:= select intentions ( B,D,I)  
7.   π := plan ( B,I) /* plan to be executed */ 
8.   execute (π ) ;  
9. end while  
 

Figure 1: Generic BDI control loop  
 

In line 1, the beliefs, intentions and plans are initialized. In 
line 2-3 agent perceives and updates its beliefs; in line 5, 
agent starts deliberation of possible desires and line 6, it 
commits to an intention to achieve. In line 7, agent 
generates a plan to execute. Algorithm indicated many 
limitations, in particular, it has assumed that the 
environment has not change since it observed the 
environment at step 3 (Wooldridge, 2000). Another 

limitation of the above algorithm is that the agent has over 
committed to its intention. i.e. all the plans which belong to 
the commiitted intention will be executed by the agents 
regardless of the envionmental changes.  

Wooldridge(2000) has shown improvements to the above 
limitations, but does not describe how to implement the 
intention reconsideration process of the agent. (Schut and  
Wooldridge 2001) integrated the meta-reasoning in a 
decision theoretic model (Russell and Wefald, 1992) for 
deliberation process of the BDI agent architecture in the 
intention reconsideration process. But still there are certain 
limitations in the model as estimation of future 
environmental changes seems to be known in advance and 
therefore it is static.  

Hybrid BDI architecture with the extended BDI control 
loop proposed in the paper would address the above 
shortcoming in complex environment. Improved 
characteristics of the proposed hybrid model includes,  
firstly, the use of supervised neural network in our “KAM” 
module deliberates and chooses most viable options that an 
agent could achieve. Agent then commits in achieving the 
most appropriate intention while monitoring other 
possibilities. Impacts (negative or positive) of the 
execution of plans are computed with the reinforcement 
learning techniques. After every execution, agent would 
look forward to see all the events happen, not only the 
immediate event (which is the case in the current BDI 
control loop) and estimates the environment change to the 
original state. Finally, the ANFIS is used to analyze the 
impact of the plan executed towards achieving the current 
intention and all the events occurred in the intention 
reconsideration process. Use of ANFIS would essentially 
improve the agent ability to make decisions with vague or 
uncertain data. Proposed hybrid BDI architecture is 
described in the next section.  

Proposed Hybrid BDI Architecture  
Interactive learning, handling environmental uncertainty 
and use of intelligence in making rational decisions are the 
primary objectives in developing hybrid BDI agents in our 
research. This would essentially minimize some of the 
limitations that exist in the current BDI agents especially in 
complex dynamic application systems.   

Two modules proposed in the hybrid BDI architecture 
are shown in figure 2. “Generic BDI Module” (GBM) will 
execute the extended hybrid BDI interpreter which is 
described in the next section. “Knowledge Acquisition 
module” (KAM) provides the necessary intelligence for the 
selection of intentions in an environment, finally 
evaluating the appropriateness of the committed intention 
at the present environment.  This would essentially assure 
dynamism in the allocation and reconsideration of 
committed intentions in the proposed agent model. Figure 
2 shows the proposed hybrid BDI architecture.   

 
 
 



  
 
 
 

  
 
 
 
 
 
 
 

Figure 2 : hybrid BDI agent Architecture  
 
KAM module suggested in the hybrid architecture provides 
the intelligence required in making decision. Neural 
network in the KAM has been trained to identify the 
possible desires for an external event in the environment, 
which is not described in this paper. ANFIS in the KAM 
module is used to obtain the agent’s decision on intention 
reconsideration with the environmental changes. Agent 
ability to deal with partially available or vague scenarios is 
improved with the introduction of ANFIS. Extended hybrid 
BDI control loop to handle multiple intentions and multiple 
events is described in the next section.    

Extended Hybrid BDI Control Loop  
Traditional BDI agent, always observe only the next 
available event before it commences the intention 
reconsideration process. This is a limitation in the present 
architecture which leads to delays in making correct 
decisions quickly. Ability to capture all the available 
events related to a committed intention would essentially 
help agent to look forward in many steps ahead before it 
proceeds with the intention reconsideration process. 
Reinforcement learning with n-step Temporal Difference 
(TD) prediction is used to look forward and predict the 
effects of the future consequences towards achieving the 
committed intention.     

Further, in the deliberation process of the present control 
loop, an agent will commit to an intention and ignore 
others, but with the environment changes, agent may have 
to recall previously dropped options as current one may be 
no longer valid at the present environment. Present BDI 
control loop does not support this and may cause delays in 
choosing a new option. Our proposed extended architecture 
would address the above two limitations and provide a 
solution to   overcome the same. 
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in various states results the 
change of a state from one to another for a committed 
intention I as shown in the figure 3.  
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Figure 3: Plans in a committed intention I  
 
Events cause the change of beliefs in different states. In the 
reconsideration process, it is necessary to identify the 
effect of the belief changes for the execution of plans. The 
Belief-Impact-Matrix (BIM) given below indicates effects 
of the belief changes at different states.  
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( ) shows the impact factor or influence 

of the jth belief in state i in the execution of plan p for the 
intention I.  For example, change in expected time of 
completion of a berth (etc) does not have any effect on the 
execution of the plan berth-draft( ) in states S2, and 
therefore, should be zero for that instance in state S2. 
Some belief changes have higher impact on the committed 
intentions than others, which will be assigned values more 
closer to the upper bound of the .  pI
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,
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Lets assume, and  are the expected and 
actual motivation values for the execution of plans p in 
state s,  is the actual distance or reward computed 
based on the beliefs in the environment for the plans p in 
state s for the intention I and 

( )
m

psA ,

( ) ( )( )10 ,
, ≤≤ tI
psE,

,
tI
psE  is the 

expected distance according to the motivation value in 
state s for the plan p. Actual reward or distance due to 
execution of plan p in state s for a given intention I is given 
as:   
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The value of a state is the total amount of rewards or 
distances that an agent can expect to accumulate over the 
future by executing plans for an intention. Use of 



reinforcement learning for the execution of plans in our 
model is described next. 

10.           IRF : = KAM-Intention ( , Φ , , ); I
sΩ I

s
I
sη

I
sλ

11.     End-if; Primary objective of the use of reinforcement learning in 
the execution of agent plans is to learn by interaction. 
Results of the execution of plans are computed using the 
temporal difference learning which uses experience to 
solve the prediction problems in reinforcement learning. 
Execution of individual plans receives an immediate 
reinforcement or reward as given in the equation 2. Value 
function estimates the total return that can be expected to 
receive in the future depend on what actions the agent will 
take (Sutton and Barto, 1998), in this case we apply the 
same rule for the execution of plans for an intention.  

12.    If NOT (IRT) then  
13. π := remaining-plans ( );   
14.    End-if   
15. End-While  
 
Figure 4: Control loop for multiple event/single intention  

 
In line 5, agent updates the state value with the execution 
of a plan, in line 6-7, the agent observes all the events 
occurred and computes the expected state value change due 
to environmental change. In line 9, threshold value T is 
used to control unnecessary intention reconsiderations for a 
small change in the value of a state. Agent sensitivity to 
environment is control with the introduction of threshold, 
where low values in threshold make agent more sensitive 
to environmental changes and vise versa. In line 10, agent 
uses the above linguistic vague parameters in the ANFIS to 
decide the intention reconsideration factor (IRF). Where, 

 indicates the percentage of distance change due to the 
execution a plan, percentage of estimated value change due 
to environmental changes is given in .  

and indicate the criticality of the results obtained from 
executing a plan and environmental changes towards 
achieving the committed intentions.  

I
sΩ

I
sΦ I

sη
I
sλ

The temporal difference learning is used to compute the 
expected value or distance from one state to goal state due 
to the execution of a plan.   
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Where { 10 ≤≤ }αα is the learning rate and γ is the 
discount factor. Next, the agent should observe all the 
events occurred and compute the new state value due to 
change of the environment before next plan is executed. 
An n-step backup is defined to be a backup of values 
towards n-step return (Sutton and Barto, 1998). The n-step 
back method is used in capturing the value change to the 
state, which consider all the changes happened due to the 
events in the environment. Value change of state s due to 
the events is given as:  We propose an extended version of BDI control loop 

which enable agents to handle multiple events/multiple 
intentions in the environment called “global view” i.e. 
while executing plans in the committed intention, agents 
could apply the same plan execution and environmental 
changes to other intentions which would have dropped at 
the start. This improves agent ability to rethink the use of 
some of the previously dropped intentions in achieving its 
desires. Extended control loop to handle multiple 
intentions is described in the following figure 5.  
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Where, Rn

t is the n-step return due to events observed for 
an intention. For example, if an agent observes that there 
are n events occurred which may have some impact on the 
committed intention, then equation 4 is used to compute 
the expected value change in state s. ANFIS based 
intention reconsideration process is then use with the above 
results for taking the final decision of intention 
reconsideration. Extended hybrid BDI control loops for 
multiple events/single intention and multiple 
events/multiple intentions are described below.  

 
1. Initialization-process ( ); 
2. While true do  

3.   calculate state value for committed intention I,  ( )t
I sV ;  

4.   calculate value due to events,  ; ( )tt
I sV∆Extended BDI control loop for multiple events/Single 

Intention is shown in figure 4.   5.   For Io=1 to n do  /* for other options (intentions I o) */ 
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2. While true do 
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6.     Filter-events ( EI ); /* observ  all related events */  e
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n
ttt sVRsV −=∆ α /*state change due to events 10.   Construct-vigilant-factor ( ); 

11.   If ((vigilant-factor > T)) then 8.    Construct-vigilant-factor ( ); /* amount of value change */ 
9.          If ((vigilant-factor > T)) then  



12.      IRF : = KAM-Intention ( Ω , , , , ); I
s

I
sΦ I

sη
I
sλ

oI
sδ

13. End-if;  
14. end while  
 
Figure 5: Extended control loop for handling multiple intentions  

 
In lines, 3-4 indicate the computation of state values same 
as given in the figure 3. In line 5, agent considers the other 
intentions (Io) which would have ignored in the intention 
reconsideration process at the start. Line 6 and 7 enable 
agent to evaluate the opportunities to reconsider the 
previously dropped intentions with the current situation. 
Due to the environment changes observed, present 
intention may be no longer valid, ANFIS is used to 
compare the appropriateness of the committed intention 
with other options (Io

1 , Io
2…) which would have dropped 

previously. indicates the availability of other options 
in achieving the agent desire at present. This feature would 
enable agent to reconsider their previously dropped options 
if the currently committed intention is no longer valid in 
achieving its desires. Next section describes a test case 
scenario to describe the agent ability in handling multiple 
events and multiple intentions.    

oI
sδ

A Test Case Scenario  
Lets assume, that a vessel declaration event for the vessel 
Dali,”ETA-received ( )” is received at the JCT terminal, 
Port of Colombo, which minimally includes: vbd dali(vessel 
berth draft ) = 12m, vsddali`( vessel sailing draft)  = 12.2m, 
vcr dali (vessel crane requirement) = 13m, nob dali(number 
of boxes)  = 746, eta dali (expected time of arrival)  =0610, 
etc.. JCT terminal has four main berths namely, jct1, jct2, 
jct3 and jct4. Berth occupancy of the JCT berths are shown 
in the table 1.  
 

Beliefs Jaami Kindia Dafu Barrier 
Berth  Jct1 Jct2 Jct3 Jct4 
brd 11.3m 12.3m 14m   14m 
len 13m 13m 18m 18m 
nob 337 689 612 845 

Tot. hrs 12.08 31.08 29.50 54.25 
gbr 43.4 27.3 35.3 29.65 
etc 03:30 05:50 06:20 07:40 

 
Table 1 : Berth occupancy details (beliefs )  

 
When ETA-received ( ) event is received, agent desires 
may be to assign the vessel to berths jct1, jct2, jct3 or jct4. 
Neural network based “KAM” module has chosen berths 
jct2, jct3 and jct4 as the possible options in serving the 
calling vessel and jct3 as the most suitable option in 
assuring the highest productivity out of all the three options 
mentioned above. Therefore, the committed intention, I= 
[Assign--berth (jct3)], other two possible options are Io

1 = 

[Assign--berth (jct2)] and Io
2 = [Assign--berth (jct4)].   

Environmental changes are observed during the execution 
of plans in achieving the committed intention. In the mean 
time, most importantly, agent will analyze the effect of 
multiple events towards committed intention and compare 
with the other options in the intention reconsideration 
process. Estimated values of states for the selected desires 
are given in the table 2. Committed intention I has shown 
the highest value from initial state to goal state at present.    
 

 Rewards  
  Plans  Io

1 I Io
2 

P1 : Berth-drafts ( )  .03 .59 .59 
P2 : Carne-outreach-requirements ( )   .10 1.0 1.0 
P3 : Waiting-time-vessels ( ) 1.0 .50 .03 
P4 : Average-crane-productivity ( )  .34 .44 .50 
P5 :  Get-expected-operations-time ( )   .36 .47 .54 
Value -  state to goal  Ds 1.83 3.0 2.66 

 
Table 2 : Rewards and the estimated state value 

 
Three different cases are taken into consideration here to 
investigate the agent behavior with the proposed ANFIS in 
the intention reconsideration process.   
Case I: (local-view with one immediate event). Only the 
immediately available event is considered in the intention 
reconsideration process for the committed intention I. 
Case II: (Local-view with many events). Effects of all the 
events are considered here in the intention reconsideration 
process for the committed intention I.  
Case III (global-view): Effects of all the events to the 
currently committed intention, I and for all the other 
options (i.e. Io

1 and Io
2) are considered in the intention 

reconsideration process of the agent.  Events occurred at a 
given time is given as :  

        E1: crane-productivity (jct3, acp=15mph) and  
        E2: crane-length (vcrdali =18.5m).  
One of the membership functions and the decision 

surface produced from the ANFIS according to the input 
data sets are shown in figure 6.  

 
 
 
                                               Figure 6(a) : Membership  

                                                  Function for percentage of   
                                                Distance change due to   
                                                Execution of plans. 

 
 
 
 
                                               Figure 6(b): Decision  
                                                                   Surface  
 
 

 
 
Intention reconsideration decision made by the ANFIS 

based hybrid BDI agent in the above different cases are 



shown in the table 3. In case 1, environmental changes 
only due to E1 are considered in the intention 
reconsideration process. Case II, agent observed all the 
events occurred which may have some effects on the 
committed intention I. Finally, in case III, agent observes 
all the events occurred and analyze the effects not only to 
the committed intention I, but also it looks the effect of 
environmental changes to the other options (i.e. Io

1 and Io
2) 

which would have dropped earlier. “NA” in the table 3 
denotes “not applicable”.  

 
 Case I Case II Case III 
Events  E1 E1,E2 E1, E2 
Intentions  I I I , Io

1 , Io
2 

% of distance change  8.4% 32% 32% 
Available options   NA NA Very low  
ANFIS Output – 
Intention 
Reconsideration  Factor 

15.1%   56.2%  23.4%  

 
Table 3: ANFIS based output  

 
In case I, ANFIS output indicates that agent should not 
drop the currently committed intention. In this case agent 
will only observe the effect of the environmental changes 
due to the immediate event occurred (“Local-view”). Case 
II, agent recommends to reconsider the currently 
committed intention as it has considered all the events 
occurred (environmental changes expected) in a long run. 
Finally, in case III,(called Global-view), agent look 
forward to capture all the events occurred and also 
compare the effect of the above environmental changes to 
the other options in addition to the committed intention. In 
this case, agent will observe the possibilities of adopting 
previously dropped options in the intention reconsideration 
process. If there is a better option than the currently 
committed one, agent will then indicate reconsideration of 
the current intention. In the above case III, agent has not 
recommended to reconsider the current intention as there 
are no better options available to suit the present 
environment.    

Conclusion   
In this paper we presented a new hybrid model for BDI 
agents that enable the use of intelligence and a mechanism 
in handling multiple events and intentions in the intention 
reconsideration process. Decision making power of the 
generic BDI agents is improved with the introduction of 
the concepts: global-view with multiple events and 
intentions. Agent ability in selecting the most appropriate 
intention with the environment change is improved with 
the introduction of the above concept.  

Temporal difference learning method with n-step return 
in reinforcement learning is used to estimate the effects of 
the events occurred towards achieving the current 
intention. Events observed in the environment would have 
different effects at different states in the environment. Use 

of n-step backup method in reinforcement learning enable 
agent to look forward and observe all the environmental 
change due to events in the intention reconsideration 
process. Use of ANFIS in the proposed KAM module, then 
uses the knowledge in making the final decisions of 
whether to drop the current intention or to continue with 
the same. Agent ability in making decisions observing 
future consequences is improved with the introduction of 
concept of global-view and knowledge. Some of limitation 
in BDI agents, especially adaptive learning is also 
improved with the introduction of ANFIS.  
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