
Lease-based Decentralized Resource Management in Open Multi-Agent Systems

D.G.A. Mobach, B.J. Overeinder, O. Marin∗, and F.M.T. Brazier
IIDS Group, Department of Computer Science

Vrije Universiteit Amsterdam, de Boelelaan 1081a,
1081 HV Amsterdam, The Netherlands

{mobach,bjo,omarin,frances }@cs.vu.nl

Abstract

A distributed management architecture is proposed for
Internet-scale, open, distributed agent middleware systems.
The management architecture presented supports the auton-
omy of both agents and middleware resources, incorporating
an agent-initiated contract negotiation model for resource al-
location and access. A leasing mechanism infrastructure de-
signed and implemented for this purpose is presented.

Introduction
Mobile agents in Internet-scale, open distributed systems
need to be able to access resources at different locations.
These resources are heterogeneous in many different ways:
different types of hardware, running different operating sys-
tems, connected by different types of networks, adminis-
tered by different owners. Different systems have different
access policies, and different interfaces. Agent platforms are
designed to mediate between agents and resources, provid-
ing a uniform interface for agents to access these resources.

Managing agent resource access within the middleware
is not a straightforward task. Resource requirements and
usage conditions need to be specified by both agents and
the systems on which they are hosted. A framework should
be uniform and standardized, allowing heterogeneous agent
applications to access distributed resources in a uniform and
coherent manner.

This paper presents a contract negotiation model, in which
agents acquire time-limited access to (possibly distributed)
resources, specified in contracts, called leases. A middle-
ware management architecture is responsible for distribut-
ing and enforcing these leases. A management architec-
ture based on leases has been implemented in AgentScape, a
framework for supporting large-scale multi-agent platforms.

Design Objectives and Requirements
The design of a management system for Internet-scale, open
distributed mobile agent systems begins with a number of
design objectives and requirements (Wijngaardset al. 2002;
Overeinder & Brazier 2004). A distributed agent platform

Copyright c© 2005, American Association for Artificial Intelli-
gence (www.aaai.org). All rights reserved.

∗Current affiliation LIP6, Paris, olivier.marin@lip6.fr

consists of numerous hosts at geographically distributed lo-
cations, each capable of supporting a large number of pos-
sibly mobile agents each with their ownrequirementswith
respect to the resources they need to access. These require-
ments can vary from functional (for example, the availability
of a specific service, database, library) to hardware related
(for example, required CPU type or performance, memory
size, or available bandwidth). From the agent perspective
these requirements are the basis for agent placement upon
its creation, and agent migration.

From the perspective of the resource providers other re-
strictions may hold. The owner of a resource specifies the
conditions under which an agent is allowed to make use of
one or more specific resources, as policies. For example, a
policy can define that only agents from affiliated research
institutes will be given access to a host’s resources, or that
all agents given permission to access a system’s resources
will only be allowed to use a certain fraction of the available
bandwidth (e.g., all agents are assigned at most 1 MB/s).
A management system compares each agent’s requirements
with its resource policies to decide whether an agent is to
be accepted on a system, and if so, the extent to which re-
sources will be made available.

A management mechanism infrastructure must be scal-
able in both number of agents and the number of hosts and
it must honour the autonomy of agents and resources. A
central solution will not work. As a result, a resource ne-
gotiation infrastructure needs to provide mechanisms to ne-
gotiate the terms of resource usage between the agents and
the resources locally, and to finalize the negotiation in a con-
tract specifying the agreed resources usage at this level (see
Fig. 1).

AgentScape Management Architecture
The AgentScape (Overeinder & Brazier 2004) management
architecture reflects the design objectives of a scalable in-
frastructure for contract negotiation between agent require-
ments and resource policies. The management infrastruc-
ture is decentralized and is organized around the concepts of
hosts and locations.

An AgentScapelocationis an aggregation of hosts within
an administrative domain. Each host is represented by ahost
manager. A host manager is responsible for implementing
the resource negotiation functionality on a host, enabling



� � � � � �
� � � � � �
� � � � � �
� � � � � �

� � � � � �
� � � � � �
� � � � � �
� � � � � �

contract

usage
policies

Middleware

Applications

Resources

Negotiation

resource
requirements

Figure 1: Abstract resource negotiation and contract model.

the leasing of resources made available by the other mid-
dleware services running on the host, e.g., agent servers and
a web service gateway. A location is represented by alo-
cation manager. A location manager implements the re-
source management functionality on a location-wide level.
Hosts can dynamically join and leave a location. Host man-
agers inform a location manager about their availability via
a heartbeat mechanism. Figure 2 shows an example of an
AgentScape location.

Agent
Server

Agent
Server

Server
Agent

Server
Agent

Web
Service

GWHM HM

LM

HM

Host B

Host A

Host C

Location

Figure 2: Management components within an AgentScape
location. (LM = location manager,HM = host manager,GW
= gateway)

Contract negotiation within AgentScape takes place at
two levels: between agents and location managers, and be-
tween location managers and host managers within a lo-
cation. The two tier contract negotiation model is in line
with the scalable middleware architecture design objectives:
agents are not concerned with finding and negotiating with
particular hosts within a location, and location managers
only engage in negotiation with hosts than can support
the requested resources. A standardized format for con-
tract specification provides different resource owners with a
means to express usage conditions in a common format, and
allows agent applications to access heterogeneous resources
in a coherent manner.

Contracts issued to agents are time-based, and are referred
to asleasesin the remainder of the text. Restricting the dura-
tion of a resource contract defers responsibility of resource
(re-)acquisition to the agents, and allows the management

architecture to re-evaluate contract content upon each new
request.

AgentScape’s Lease Model
The AgentScape leasing infrastructure (i) provides agents
with the ability to request resource access, and (ii) allows the
middleware to express resource usage conditions and lim-
itations in the form of leases. Agents are responsible for
requesting and renewing time-constrained leases to access
middleware resources. Within the model, a location man-
ager is responsible for:

• Maintaining information about the resources avail-
able on the hosts within the location.

• Enabling agent applications to acquire resource ac-
cess by negotiation.

• Negotiating with the individual hosts to acquire lease
proposals for agent applications.

• Maintaining information about the created leases
within the location.

• Enforcing location-wide resource usage and access
policies.

Host Managers are responsible for:

• Enabling location managers to acquire lease offers
for host resources by negotiation.

• Enforcing resource usage and access policies on the
host.

• Monitoring and controlling resource usage on the
host, according to the created leases.

The Web Services Agreement Specification(WS-
Agreement) (Andrieuxet al. 2004) defines the format used
to specify lease descriptions and lease interactions.1 The
specification defines an XML-based language for specifying
agreements between resource providers and consumers, and
a protocol for establishing these agreements. Agreement
terms are used to describe the (levels of) service negoti-
ated. Two types of terms are distinguished for agreement
specifications: (i) Service Description Terms, describing
the services to be delivered under the agreement, and (ii)
Guarantee Terms, expressing the assurances on service
quality (e.g., minimum bounds) for the services described
in the service description terms. The specification of
domain-specific term languages is explicitly left open. The
AgentScape management architecture defines these terms
for resources in the AgentScape middleware.

The WS-Agreement interaction model defines that con-
sumers can create agreementsoffers based on available
agreementstemplates, which, if accepted, result in new
agreements (these offers are called requests in the context of
this paper). Agreement status can be monitored at run-time,
to monitor agreement compliance. The following list shows
the lease related calls which are based on the web service
port types specified in the WS-Agreement specification:

1This specification is currently under development by the
Global Grid Forum’s Grid Resource Allocation and Agreement
Protocol Working Group.



• requestTemplates(): template-list
Request the available lease templates.

• requestLease(LeaseOffer): lease
Request a lease based on the supplied lease offer.

• acceptLease(LeaseID)
Accept a lease.

• requestLeaseStatus(LeaseID): lease
Request the current status of a lease. Returns a lease doc-
ument, including the current status of each term.

To enable an agent to contact locations and engage in
lease negotiation, the four calls are available to agents via
the AgentScape API. Each call has been extended with an
argument allowing agents to send requests to a specific lo-
cation.

• requestTemplates(LocationID)

• requestLease(LocationID, LeaseOffer)

• acceptLease(LocationID, LeaseID)

• requestLeaseStatus(LocationID, LeaseID)

Resource Leasing Scenario
This section discusses an agent migration scenario demon-
strating the use of resource leases within AgentScape, us-
ing the WS-Agreement specification language introduced
above. In this scenario, an agent has obtained a list of poten-
tial destination locations from a local directory service, and
engages into negotiation with a location to which it wishes
to migrate and to obtain leases for the resources it requires.

As a first step, the agent requests the target location’s lease
templates from the target location (see Figure 3).

Location
Manager

� � � �
� � � �
� � � �
� � � �

Location B

requestTemplates(B)

Location A

Agent

requestTemplates()

agent middleware API

Figure 3: An agent sends a template request to location B.

The location manager receives the template request, and
returns the available templates to the agent. These templates
are based on templates of the hosts in the location, and are
gathered in advance by contacting the host managers and
requesting their templates. The agent receives a template,
specifying which resources are available for leasing at the
target location, and possible constraints (see Example 1).

The resources available for leasing at the target location in
this scenario are:time-to-live , representing the number
of seconds an agent may reside at the location, andcommu-
nication , representing the communication bandwidth an
agent may use for agent-agent communication.

The agent creates a lease request based on the template,
specifying the required resources and associated quantities,

<wsag:Template>
<wsag:Name>Template1</wsag:Name>
<wsag:Context/>
<wsag:Terms/>
<wsag:CreationConstraints>

<wsag:Item>
<wsag:Location>//wsag:ServiceDescriptionTerm//

agentscape:timeToLive</wsag:Location>
<xs:maxInclusive xs:value="5000">
<!-- max value of 5000 (seconds) -->

</wsag:Item>
</wsag:Item>

<wsag:Location>//wsag:ServiceDescriptionTerm//
agentscape:communication</wsag:Location>

<!-- term allowed, no further constraints -->
</wsag:Item>

</wsag:CreationConstraints>
</wsag:Template>

Example 1: A lease template.

and sends it to the target location. In this scenario, the agent
requests a time-to-live on the location of 2000 seconds, and
a minimum communication bandwidth of 50 Kilobytes per
second (see Example 2).

<wsag:AgreementOffer>
<wsag:Name>Offer1</wsag:name>
<wsag:Context>

<wsag:AgreementInitiator>
agentX

</wsag:AgreementInitiator>
<wsag:TemplateName>Template1</wsag:TemplateName>

</wsag:Context>
<wsag:Terms>
<wsag:All>

<wsag:ServiceDescriptionTerm wsag:Name="TimeToLive"
wsag:ServiceName="LocationY">

<!-- requirement: 2000 seconds running time-->
<agentscape:timeToLive>2000</agentscape:timeToLive>

</wsag:ServiceDescriptionTerm>
<wsag:ServiceDescriptionTerm wsag:Name="Communication"

wsag:ServiceName="LocationY">
<!-- requirement: 50 Kb/s bandwidth -->
<agentscape:communication>

<agentscape:minBandWidth>
51200

</agentscape:minBandWidth>
</agentscape:communication>

</wsag:ServiceDescriptionTerm>
</wsag:All>
</wsag:Terms>

</wsag:AgreementOffer>

Example 2: Agent lease request.

The location manager of the target location receives the
request, and determines which hosts to contact for the re-
quired leases, i.e., which hosts support leasing of both re-
sources. The location manager sends these hosts a lease re-
quest based on the initial request of the agent (see Fig. 4).

Location
Manager

� � � �
� � � �
� � � �
� � � �

XMLrequest)
requestLease(B, requestLease(XmlRequest)

Location BLocation A

requestLease(XmlRequest)

Agent

Host
Manager

Host
Manageragent middleware API

Figure 4: A lease request is sent to location B. Multiple hosts
are sent a lease request by the location manager.



The two hosts each receive and evaluate the lease request.
Monitoring information is examined to determine current re-
source availability, and management policies are checked to
determine if the request may be processed. In this scenario,
the two hosts each respond with a lease proposal, but the
hosts cannot meet the required communication bandwidth.
Instead, Host 1 proposes a lower value of 15 KB/s for the
minimum communication bandwidth (see Example 3). Host
2 offers a value of 30 KB/s.

<-- Host 1 Terms -->
<wsag:Terms>

<wsag:All>
<wsag:ServiceDescriptionTerm wsag:Name="TimeToLive"

wsag:ServiceName="LocationY">
<agentscape:timeToLive>2000</agentscape:timeToLive>

</wsag:ServiceDescriptionTerm>
<wsag:ServiceDescriptionTerm wsag:Name="Communication"

wsag:ServiceName="LocationY">
<agentscape:communication>

<agentscape:minBandWidth>
15360

</agentscape:minBandWidth>
</agentscape:communication>

</wsag:ServiceDescriptionTerm>
</wsag:All>

</wsag:Terms>

<-- Host 2 Terms -->
<wsag:Terms>

<wsag:All>
<wsag:ServiceDescriptionTerm wsag:Name="TimeToLive"

wsag:ServiceName="LocationY">
<agentscape:timeToLive>2000</agentscape:timeToLive>

</wsag:ServiceDescriptionTerm>
<wsag:ServiceDescriptionTerm wsag:Name="Communication"

wsag:ServiceName="LocationY">
<agentscape:communication>

<agentscape:minBandWidth>
30720

</agentscape:minBandWidth>
</agentscape:communication>

</wsag:ServiceDescriptionTerm>
</wsag:All>

</wsag:Terms>
...

Example 3: Terms proposed by Hosts 1 and 2.

The location manager receives the lease proposals of the
hosts, and determines, based on the request by the agent as
well as policy information, which lease proposal it accepts.
In this example, Host 2 is selected as its offer is closest to
the request made by the agent. The hosts are informed of
the decision, and the accepted lease is used to create a lease
which is sent back to the agent (see Example 4). The offer
sent to the agent is time-limited, to ensure that if the agent
does not accept the offer, resources are freed when the time-
period expires. In this scenario, the agent accepts the lease,
and migrates to the location.

Communication Leasing Experiments
To test the application of the leasing model in the
AgentScape architecture, a small-scale experiment has been
performed. In this experiment, communication is managed
by requesting and granting leases for communication band-
width. The aim of the experiment is to show the effective-
ness of the leasing mechanism in realizing quality of service
policies for different types of communication.

The leasing policy defined in the experiment limits the
total bandwidth used by the agent server, and determines
the individual (per agent) bandwidth allocation. Having re-

<wsag:Terms>
<wsag:All>

<wsag:ServiceDescriptionTerm wsag:Name="TimeToLive"
wsag:ServiceName="LocationY">

<agentscape:timeToLive>2000</agentscape:timeToLive>
</wsag:ServiceDescriptionTerm>
<wsag:ServiceDescriptionTerm wsag:Name="Communication"

wsag:ServiceName="LocationY">
<agentscape:communication>

<agentscape:minBandWidth>
30720

</agentscape:minBandWidth>
</agentscape:communication>

</wsag:ServiceDescriptionTerm>
</wsag:All>

</wsag:Terms>

Example 4: Final lease accepted by agent.

ceived a lease request from an agent, the management sys-
tem tries to fulfill the request. If a resource is oversub-
scribed, lease requests are granted a ‘fair’ fraction of the re-
quested resource amount. A fair fraction implies that small
consumers are granted a larger fraction of their requested
amount than large resource consumers. The policy of fair ra-
tio adapts to the dynamical change in number of agents. As
more agents access the same resource, the granted fraction
to the resource decreases for all individual agents; and vice
versa, as fewer agents access the same resource, the assigned
fraction increases dynamically. The policy of fair ratio has
great similarities with the Shortest Remaining Processing
Time (SRPT) scheduling policy which has been known to
be optimal for minimizing the mean response time (Bansal
& Harchol-Balter 2001).

The experiment includes a small number of agents with
differentiated behaviour, to demonstrate the influence of
the lease-based interaction model in a comprehensible and
controlled manner. Four agents on an agent server at one
AgentScape location, communicate with four other agents
running at another AgentScape location on a 1-1 basis. The
agents have different communication profiles, materialized
in different message sizes (payload) that are sent to their
counterpart agents. After receiving a message, a counterpart
agent sends back an acknowledgment, allowing an agent to
determine average response time. This average response
time is used as a metric to quantify the effect of commu-
nication resource leasing.

The experiments have been conducted on two Linux PCs
(Pentium III, 1.2 GHz), connected by switched FastEthernet
(100 Mb/s). The experiments were run on a non-dedicated
infrastructure.

Limited bandwidth experiment
The first experiment series is without leasing. The results of
this experiment are reference results where no arbitration or
quality of service management is implemented.

The outgoing bandwidth of the agent server hosting the
sending agents was limited to approximately 100 000 bytes
per second, and the four sending agents were assigned mes-
sage payload sizes of respectively 10 000, 25 000, 40 000,
and 50 000 bytes. In the experiment, each agent sends 100
messages using the specified payload, and measures the av-
erage response time.

Figure 5 shows the average results of ten repeated exper-



 0

 5000

 10000

 15000

 20000

 25000

 30000

 35000

50000400002500010000

re
sp

on
se

 ti
m

e 
(m

s)

payload size (bytes)

Figure 5: Average response times (ms) with agent server
restricted to 100 000 bytes/second.

 0

 10000

 20000

 30000

 40000

 50000

 60000

 70000

50000400002500010000

re
sp

on
se

 ti
m

e 
(m

s)

payload size (bytes)

Figure 6: Average response times (ms) with leasing.

iments. The bars in the figure are the standard deviation of
the average values. All four agents measured approximately
the same response time. Agents sending relatively small
messages of 10 000 bytes experience the same response de-
lay as agents sending large messages of 50 000 bytes.

Bandwidth leasing experiment
In the leasing experiment, agents first obtain a lease be-
fore sending messages to the other agents. At the begin-
ning of the experiment, each of the four agents requests a
lease for the communication resource, including the desired
bandwidth. In the experiment, each agent uses its specified
payload size as the desired amount, thus 10 000, . . . , 50 000
bytes/second respectively.

The lease module in the agent server applies the policy,
and either assigns the amount desired by the agent to the
lease, or a fair fraction as dictated by the policy when the
communication resource is oversubscribed. In this exper-
iment, lease duration is fixed at 2 seconds per lease, and
the maximum total amount which can be leased was set to
100 000 bytes per second. When the expiration time of a
lease has been reached, new messages are denied. An agent
may always request a new lease.

Figure 6 depicts the average results of ten experiments.
As shown, the use of leases allows the agents with smaller
payload settings to obtain better response times, at the ex-
pense of a longer response time for the agents with larger
payloads. Effectively, agents with smaller resource demands
experience better quality of service than agents putting
heavy demands on available resources.

Related Work
This section discusses a number of current agent platforms
and their resource management facilities, and discusses the
use of the leasing concept in other distributed architectures.

In the D’Agents (Grayet al. 2002) multi-agent system,
agents acquire computational resource access rights through
a market. In the NOMADS (Suriet al. 2000) multi-agent
system fine-grained resource control of disk and network
access (rate and quantity) is achieved using mechanisms
provided by the Java-compatible Virtual Machine (Aroma).
The Java-based J-SEAL2 mobile agent kernel (Binder, Hu-
laas, & Villaz 2001) provides a hierarchical resource control
model, allowing for the control of CPU usage, memory, and
the number of threads and subprocesses. Both NOMADS
and J-SEAL2 offer resource control mechanisms, but do
not specify an architecture to enable agents to interact with
the management system. In the Ajanta mobile agent sys-
tem (Tripathiet al. 1999), a dynamic proxy-based approach
is used to control access to application-defined resources
by agents. The FIPA agent platform specification (Poslad,
Buckle, & Hadingham 2000) does not address management
of resources, neither does the FIPA compliant JADE frame-
work (Bellifemine, Poggi, & Rimassa 2001).

Traditionally, leases are used in distributed file/object sys-
tems for maintaining cached file consistency. More recently,
the concept of leasing has been used in the area of distributed
application frameworks, for example in Jini (Waldo 1999),
where leases are used for distributed garbage collection. In
the Jini framework, clients lease resource access, such as for
example service registration within a lookup service. The
acquired lease allows a client to make of use of that resource
for a limited time-period. When a lease expires, and no ex-
plicit renewal is requested by the client (for example be-
cause of network failure), the associated resource is made
available for other clients, preventing unnecessary resource
allocation. The Jini specification does not include a nego-
tiation model or protocol specification. In the SHARP (Fu
et al. 2003) architecture, tickets (soft resource claims) can
be redeemed by resource consumers for leases (hard re-
source claims), which guarantee access to a resource. Ticket
holders can delegate resources to other principals by issuing
new tickets. The goals of the SHARP architecture and the
AgentScape management architecture are similar in nature,
with the AgentScape management architecture being more
oriented towards the agent middleware domain.

In theoretical agent research, much work has been per-
formed in the area of contracting for agents. Well-defined
negotiation frameworks, such as (Sandholm & Lesser
1995), support agents with limited computational abilities
in dynamic and real-time environments. To limit the re-
sources required for negotiation, different types are distin-



guished, including variable levels of commitment, e.g. low-
commitment negotiation with several agents simultaneously.
The resource management framework presented in this pa-
per currently uses a straightforward negotiation protocol, but
could benefit from this and other theoretical frameworks of-
fering robust and flexible negotiation facilities.

Discussion and Future Work
This paper presents an agent-initiated contract negotiation
model that uses a lease-based mechanism infrastructure to
match agent resource requirements with resource usage poli-
cies. Agents are responsible for obtaining and keeping re-
quired resource access, while lease expiration times ensure
that ultimate control over resource access is kept in the hands
of the management system.

The leasing infrastructure is a subsystem of a larger man-
agement architecture within the AgentScape framework,
making resource access regulation, such as: accounting, se-
curity management, and performance management possible.

As the proposed management infrastructure is intended
for deployment in large-scale distributed environments,
fault-tolerance is an important aspect for the components of
the management system. In particular, the location man-
ager in the management architecture should be protected
against failure, as failure could lead to the unavailability
of resources within an entire AgentScape location. Fail-
ures of host manager processes are less problematic, as this
only leads to the unavailability of resources on a single host.
An approach to this problem currently being researched in-
volves replication (either active or passive) of location man-
agers, enabling a failing location manager to be replaced by
a replica residing on another host within the location.

The leasing infrastructure can also be used for non-agent
applications, e.g., for resource allocation in Grid platforms.
Static agents are responsible for contract negotiation for re-
source allocation and access. Upon completion of the nego-
tiation phase, a parallel job is sent to the remote resource(s)
in the Grid platform for execution. In this scenario, the static
agents can be considered to be part of the Grid management
system.

The current foci of this research are: Specification of
(more complex) resource usage policies, and contract nego-
tiation between agents and resources.

Acknowledgments
This research is supported by the NLnet Foundation,
http://www.nlnet.nl. The authors thank Etienne Posthumus,
Niek Wijngaards, and Patrick Verkaik for their valuable dis-
cussions and comments.

References
Andrieux, A.; Czajkowski, K.; Dan, A.; Keahey, K.; Lud-
wig, H.; Pruyne, J.; Rofrano, J.; Tuecke, S.; and Xu,
M. 2004. Web Services Agreement Specification WS-
Agreement (draft).
Bansal, N., and Harchol-Balter, M. 2001. Analysis of
SRPT Scheduling: Investigating Unfairness. InProceed-
ings of the 2001 ACM SIGMETRICS International Confer-

ence on Measurement and Modeling of Computer Systems,
279–290.
Bellifemine, F.; Poggi, A.; and Rimassa, G. 2001.
Developing Multi-agent Systems with a FIPA-compliant
Agent Framework. Software – Practice and Experience
31(2):103–128.
Binder, W.; Hulaas, J. G.; and Villaz, A. 2001. Portable
Resource Control in the J-SEAL2 Mobile Agent System.
In Proceedings of the fifth international conference on Au-
tonomous agents, 222–223.
Fu, Y.; Chase, J.; Chun, B.; Schwab, S.; and Vahdat, A.
2003. SHARP: An Architecture for Secure Resource Peer-
ing. In Proceedings of the 19th ACM Symposium on Oper-
ating Systems Principles, 133–148.
Gray, R. S.; Cybenko, G.; Kotz, D.; Peterson, R. A.; and
Rus, D. 2002. D’Agents: Applications and performance
of a mobile-agent system.Software— Practice and Expe-
rience32(6):543–573.
Overeinder, B. J., and Brazier, F. M. T. 2004. Scalable
Middleware Environment for Agent-Based Internet Appli-
cations. InProceedings of the Workshop on State-of-the-
Art in Scientific Computing (PARA’04).
Poslad, S.; Buckle, P.; and Hadingham, R. 2000. The FIPA-
OS Agent Platform: Open Source for Open Standards. In
Fifth International Conference and Exhibition on the Prac-
tical Application of Intelligent Agents and Multi-Agents,
355–368.
Sandholm, T., and Lesser, V. 1995. Issues in Auto-
mated Negotiation and Electronic Commerce: Extending
the Contract Net Framework. In Lesser, V., ed.,Proceed-
ings of the First International Conference on Multi-Agent
Systems (ICMAS’95), 328–335. San Francisco, CA, USA:
The MIT Press: Cambridge, MA, USA.
Suri, N.; Bradshaw, J. M.; Breedy, M. R.; Groth, P. T.; Hill,
G. A.; and Jeffers, R. 2000. Strong Mobility and Fine-
grained Resource Control in NOMADS. InProceedings of
the Second Int’l Symp. on Agent Systems and Applications
and Fourth Int’l Symp. on Mobile Agents (ASA/MA2000),
volume 1882 ofLecture Notes in Computer Science, 2–15.
Zurich, Switszerland: Springer-Verlag.
Tripathi, A. R.; Karnik, N. M.; Vora, M. K.; Ahmed, T.;
and Singh, R. D. 1999. Mobile Agent Programming in
Ajanta. InProceedings of the 19th International Confer-
ence on Distributed Computing Systems (ICDCS’99), 190–
197.
Waldo, J. 1999. The Jini Architecture for Network-centric
Computing.Communications of the ACM42(7):76–82.
Wijngaards, N. J. E.; Overeinder, B. J.; van Steen, M.; and
Brazier, F. M. T. 2002. Supporting Internet-Scale Multi-
Agent Systems.Data and Knowledge Engineering41(2-
3):229–245.


