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Abstract 
Cluster analysis has been widely used in various disciplines 
such as pattern recognition, computer vision, and data 
mining. In this work we investigate the applicability of two 
spatial clustering algorithms, namely DBSCAN and STING, 
to a new problem domain: Color segmentation of skin 
lesion (tumor) images. Automated segmentation is a key 
step in the computerized analysis of skin lesion images 
since the accuracy of the subsequent steps (feature 
extraction, classification, etc.) crucially depends on the 
accuracy of this very first step. In this paper, we develop 
two unsupervised methods for segmentation of skin lesion 
images: one based on DBSCAN clustering algorithm and 
the other based on STING clustering algorithm. 
Experiments on a database of over hundred skin lesion 
images show that DBSCAN-based segmentation algorithm 
performs significantly better than the STING-based one. 

Introduction   
In this work, we examine the applicability of two spatial 
clustering methods, namely DBSCAN and STING, to a 
novel domain: Biomedical image data mining. In 
particular, we explore whether these clustering algorithms 
can be adapted to solve one of the essential problems of 
image data mining, accurate identification of significant 
regions in an image.  
 Data preparation is typically the least formalized, the 
most domain-dependent, and the most time consuming part 
of the knowledge discovery process (Huan and Motoda 
1998; Dasu and Johnson 2003). The first step in the 
preparation of biomedical image data is typically the 
identification (segmentation) of significant objects such as 
tumors or tissue fragments.  Identification/segmentation is 
crucial for the subsequent mining tasks, because accurate 
extraction of significant features relies on this step.  
 In this paper, we present two unsupervised methods for 
segmentation of skin lesion images: one based on 
DBSCAN  clustering algorithm and the other based on 
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STING clustering algorithm. These methods allow 
separation of the healthy skin from the lesion and 
identification of the subregions inside the lesion with 
variegated coloring. The number of color regions 
identified can be fed into further classification and 
association mining tasks. 
 The rest of the paper is organized as follows: We first 
give an introduction to the DBSCAN algorithm. We then 
discuss our adaptation of this method to the particular 
domain of skin lesion images. We describe the 
preprocessing steps before the image is submitted to the 
clustering module. We then explain the post-processing 
step which produces a region partitioning that is congruent 
with human perception. Next we describe our experimental 
evaluation methodology and the experimental results. Then 
we describe the application of the STING algorithm in the 
same domain and present the results. After a discussion of 
related work, we conclude the paper with a summary of 
lessons learned and future research.  

DBSCAN Algorithm   
In this section, we briefly introduce the DBSCAN 
algorithm. DBSCAN (Density Based Spatial Clustering of 
Applications with Noise) is a density-based clustering 
algorithm that is designed to discover clusters and noise in 
a spatial data set (Ester et al. 1996). It has two major 
parameters: Eps and MinPts. The neighborhood of an 
object within a radius Eps is called the Eps-neighborhood 
of the object. If the Eps-neighborhood of an object  
contains at least MinPts objects, then this object is called a 
core object. To find a cluster, DBSCAN starts with an 
arbitrary object o in the data set. If the object o is a core 
object w.r.t. Eps and MinPts, a new cluster with o as the 
core object is created. The algorithm continues growing 
the clusters by adding to the clusters all objects that are 
density-reachable from the core object.  
 GDBSCAN (Generalized DBSCAN) algorithm, 
generalizes the two parameters of the DBSCAN algorithm 
so that it can cluster point objects as well as spatially 
 
 
 



extended objects according to both their spatial and non-
spatial attributes (Sander et al 1998). The neighborhood of 
an object is defined by a binary predicate NPred. The 
NPred-neighborhood of an object is defined as the set of 
objects for which the predicate NPred is true. A second 
predicate MinWeight of a set of objects S, is defined such 
that it is true iff the weighted cardinality of the set S, 
wCard(S), is greater than or equal to the minimum 
cardinality, MinCard.  

Skin Lesion Segmentation using DBSCAN   
Here, we follow a region-based segmentation approach. 
The goal is to partition an image into disjoint regions that 
correspond to healthy skin and subregions inside lesion. 
Figure 1 shows the flowchart of the segmentation 
procedure. There are two major steps involved. First, the 
image is split into smaller regions until all the regions meet 
the homogeneity criteria determined by the threshold for 
splitting. Then, these regions are merged to form the final 
regions by the DBSCAN algorithm.  
 The segmentation algorithm employs an iterative, 
coarse-to-fine strategy. The aim of the first iteration is to 
identify the lesion border. During the following iterations, 
the algorithm moves towards the inside of the lesion and 
identifies subregions with variegated coloring. This 
approach allows the algorithm to dynamically adjust the 
parameters during various stages of the procedure.  
 The following subsections will describe the steps 
involved in the segmentation procedure. 

Preprocessing 
Skin lesion images often contain extraneous artifacts such 
as skin texture and hair that make the segmentation more 
difficult. In order to reduce the effects of these artifacts, 
we have smoothed the images with a 5 x 5 median filter 
(Gonzalez and Woods 2002). This is filter has the 
advantage of preserving the edges well enough for 
accurate border detection (Schmid 1999). 

Region Splitting  
Region splitting is a top-down process. A region is split 
into four subregions if it fails to satisfy the homogeneity 
criterion. Splitting process starts from the highest-level 
region which is the whole image to be segmented. Each 
region in the image is represented by its mean color 
calculated in the RGB color space. To determine the 
homogeneity of a region, the Euclidean distances between 
the region and each of its four potential subregions are 
computed. If any of the color distances computed above is 
greater than the threshold for splitting, the region will be 
split. Otherwise, the region remains unchanged. The 
 
 
 

splitting process goes on recursively until each region is 
either found to be homogeneous or too small to be split 
further. 
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Figure 1. Flowchart of the segmentation procedure 

 
The threshold for splitting is a very important parameter. 

If it is set too high the accuracy of the segmentation will 
decrease. The result will show rectangular borders around 
the segments. On the other hand, if it is set too low, the 
image might be over-segmented with most of the segments 
being as small as a few pixels. The program automatically 
determines the threshold for splitting as follows. 

First, we determine the color of the healthy skin. This is 
done by taking four windows of size 10 x 10 pixels from 
four corners of the image and calculating the median color 
of the pixels. We use this median color as the color of the 
healthy skin. Note that median color is used instead of 
mean to reduce the interference of hairs (Xu et al. 1999). 
Then, we divide the image into 100 subregions and use 
each of the subregions as a sample of the image. Finally, 
we calculate the color distances between the healthy skin 
color and each of these samples and sort these values. The 
threshold for splitting is determined from the significant 
gaps among these values. In the following discussion, the 



distance between the healthy skin color and a sample n will 
be simply referred to as the value of sample n .  

Let us demonstrate the threshold selection using Figure 
2. Here, there is a significant gap between the values of 
sample n and sample 1+n . If the amount of this gap is 
greater than a threshold TG and the value of sample n  is 
also greater than a threshold TC, we let the threshold for 
splitting to be the average of values of sample n and 
sample 1+n . The thresholds TG and TC are determined 
empirically from a set of representative images as 
described in the Experimental Results section. 
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Figure 2. Demonstration of threshold selection 

 Once the splitting process is completed, a graph is 
constructed to represent the regions and their connectivity. 
Two regions are considered connected if they share a 
common boundary. The graph is represented by an 
adjacency matrix.  

DBSCAN Clustering 
While GDBSCAN generalizes DBSCAN to a higher level 
in order to be able to deal with a wider range of problems, 
we will carry out a specialization of GDBSCAN so that it 
fits our purposes. In our case, the clustering algorithm is 
applied to a set of regions generated as a result of splitting 
process and our objective is to group these regions to form 
larger regions that have certain amount of color 
homogeneity.  

We define the two parameters of GDBSCAN algorithm, 
NPred and MinWeight, as follows. Since each region has a 
non-spatial attribute, color mean, and a spatial attribute, 
location in the image, the binary predicate NPred is 
defined as “color distance between two regions is smaller 
than Eps AND the two regions are connected” where Eps 
is a threshold of color distance determined from a set of 
representative images. For instance, given a region R1, a 
region R2 is in the NPred-neighborhood of R1 iff the color 
distance between R1 and R2 is smaller than Eps AND R1 
and R2 are connected. The function wCard(.) is defined to 
return the total number of pixels in the NPred-
neighborhood. MinCard is defined as a threshold of 
number of pixels, which is obtained experimentally. The 
predicate MinWeight is therefore defined as “total number 

of pixels in the NPred-neighborhood, given by wCard(.), 
is greater than MinCard pixels”. 
 The DBSCAN algorithm starts from an arbitrary region 
R. First, using the Npred predicate, all connected regions 
that have a color distance less than Eps to R are 
determined. These regions form the NPred-neighborhood 
of R. The total number of pixels in the NPred-
neighborhood is calculated using wCard(.). If the total 
number of pixels is greater than MinCard, a new cluster 
with region R as the core object is created. Then, all 
directly density-reachable regions that are reachable from 
the regions in the NPred-neighborhood are added to the 
current cluster. The algorithm continues iteratively until no 
new region satisfies the predicates. 
 A sample lesion and the result of the initial DBSCAN 
clustering on this lesion are shown in Figure 3. The black 
regions in Figure 3b) represent the noise. They cannot be 
integrated into any cluster because they fail the predicate 
test. Notice that most of the noise is along the border of the 
lesion. This can be explained as follows. There is a much 
higher color variation in the thin region along the border 
when compared to the other regions. Because of this, 
during the region splitting, this region is divided into much 
smaller subregions. Since they have a high color distance 
to the neighboring regions, these tiny subregions are 
unlikely to pass the predicate test to form a new cluster or 
to join an existing one.  

Figure 3. a) Sample image             b) Before postprocessing 
 
 DBSCAN is designed to discover noise as well as 
clusters in a spatial data set. Also, as can be seen in Figure 
3b), the number of clusters obtained from the first iteration 
is much more than the number of color regions that can be 
identified by humans. Therefore, some postprocessing is 
necessary. 
 First, the noise pixels are merged with neighboring 
clusters that are closest in color. Then, clusters that are 
closer (in color) to each other than a threshold are merged. 
The value of this threshold is determined by multiplying 
the threshold for splitting by a factor. This factor is 
proportional to the amount of color variation present in the 
initial regions. The amount of color variation in a region 
can be represented by the color mean absolute deviation 
(MAD). A region with less color variation has a smaller 
color MAD. In such a region, the threshold value is 
smaller and the merging criterion is more strict which 
allows the algorithm to detect subtle color variation.  



More Iterations of DBSCAN  
As a result of the first iteration of DBSCAN, we have 
identified the lesion border. Figure 4(a) shows the image in 
Figure 3(a) after the first iteration. Our next goal is to go 
inside the lesion and identify subregions with color 
variegation if they exist.  
 If a cluster satisfies any of the following three 
conditions, more iterations of DBSCAN is performed: (i) 
the size of the cluster is larger than th101 of the original 
image (ii) the color distance between the cluster and the 
healthy skin is larger than a threshold TH (iii) the amount 
of  color variation in the cluster is larger than a threshold 
TV. The thresholds TH and TV are determined empirically 
from a set of representative images as described in the 
results section. 
 In order to avoid over-segmentation, more than two 
extra iterations of DBSCAN is not allowed. 

Final Cleaning  
Despite the postprocessing performed after each iteration 
of DBSCAN, the resulting images may still have more 
regions than humans can perceive. Therefore, one final 
cleaning step is necessary. During this step, if a region is 
smaller than th1001 of the original image it is merged with 
the nearest cluster. Figure 4(b) shows the final 
segmentation result of the image in Figure 3(a). 

Figure 4. a) After the 1st iter.      b) Final segmentation result 

DBSCAN Segmentation Results   
In order to fine-tune the algorithm parameters and test the 
effectiveness of the proposed segmentation method, 
experiments are performed on a set of 135 clinical images 
with dimensions subsampled to 256 x 256.  
 First, to fine-tune the algorithm parameters, 18 
representative images are selected from the above set. 
After fine-tuning the parameters, the algorithm is applied 
to the remaining 117 images. An expert dermatologist (4th 
author) visually examined the segmentation results. In 80% 
of the images the lesion borders were detected 
successfully. Figure 5 shows a sample of the segmentation 
results. 
 

 

To further evaluate the effectiveness of the segmentation, 
an experiment is performed to compare the number of 
color regions identified by the algorithm and  by the 
human subjects. Five subjects participated in the 
experiment. They were graduate students, ranging in age 
from 22 to 25. No subject had seen the segmentation 
results before he/she performed the experiment. All 
subjects had normal or corrected-to-normal vision. 

 
   Figure 5. A sample of DBSCAN segmentation results 

 
 The number of colors/subregions inside the lesion is 
used as the evaluation criterion. The kappa statistic of 
Cohen (Cohen 1960) is chosen as the measure of 
agreement between the segmentation results and the 
aggregate human observation obtained by majority vote.  
 The kappa coefficient equals +1 when there is a 
complete agreement among the observers. When the 
observed agreement exceeds chance agreement, kappa is 
positive, with its magnitude reflecting the strength of 
agreement. Negative values indicate that the observed 
agreement is less than chance agreement.  
 We convert the evaluation criterion (the number of 
colors/subregions inside the lesion) to ranks as follows: 
Rank 1 (1 color), Rank 2 (2 colors), and Rank 3 (3 or more 
colors). In the experiment, no subject observed more than 
3 colors/subregions in a lesion. Furthermore, only 6 out of 
117 images in the segmentation results have more than 3  
identified colors/subregions. Therefore, we assigned rank 3 
to the cases where the lesion has 3 or more 
colors/subregions. 
 



Table 1. Evaluation results 

        
Table 1 shows the evaluation results. The kappa 

coefficient, calculated from this table using SAS® System 
v8.0, is 0.28 (95% confidence interval), showing a 
significant agreement between the segmentation results 
and human perception. 

Skin Lesion Segmentation Using STING   
STING is a typical grid-based clustering approach that is 
designed to solve clustering and region-oriented query 
problems (Wang, Yang and Muntz 1997). It divides the 
spatial area into rectangular cells and builds a hierarchical 
structure storing statistical information of cells. Statistical 
parameters of higher-level cells can be easily computed 
from the parameters of the lower-level cells. With the 
hierarchical structure of the grid in hand, a top-down 
approach can be followed to answer spatial data mining 
queries. For each cell in the top layer, we compute the 
likelihood that this cell is relevant to the query at some 
confidence level to determine the cell’s relevancy to the 
given query. The likelihood can be defined as the 
proportion of objects that satisfy the query. Processing of 
the next lower level examines only the remaining relevant 
cells. The process is repeated until the bottom layer is 
reached. The final result is formed as the union of qualified 
bottom level cells.  
 In order to use STING for skin lesion segmentation, we 
chose the intensity value of a pixel as the attribute. 
Histogram analysis is used to provide information for 
generating region retrieval queries. The rationale is that a 
significant peak in the histogram corresponds to either a 
single color region of interest or several regions of interest 
with the same color. We generate one query for each peak. 
Answering each of the queries corresponds to discovery of 
a homogeneous color region. Figure 6 shows a sample of 
the segmentation results. 

The distribution type of pixel intensity is not known 
before hand and carrying out hypothesis test for each cell 
in the hierarchy structure of STING is complicated and 
expensive. Thus, when we compute the confidence interval 
to determine a cell’s relevancy to the query we estimate the 
proportion range that the pixel intensity falls in a particular 
range by distribution-free technique Chebyshev inequality. 
 
 

Once all the cells are marked as either relevant or not 
relevant, the final result is formed as the union of qualified 
bottom level cells. 

 

 
Figure 6. A sample of STING segmentation results 

Related Work   
Several methods have been developed for segmentation of 
pigmented skin lesions, most of them being focused on 
border detection. In this section we review some of the 
recent approaches.  
 Xu et al. (Xu et al. 1999) proposed a two-stage approach 
for unsupervised border detection. First, the color image is 
reduced to an intensity image which is then thresholded to 
obtain an approximate border. Then, the border detection 
is refined using edge information in the neighborhood of 
the initial border. Zhang et al. (Zhang, Stoecker and Moss 
2000) presented an automatic scheme based on two-rounds 
of radial search technique originally introduced in (Golston 
et al. 1990). Chung and Sapiro (Chung and Sapiro 2000) 
proposed a partial-differential equations-based approach 
using the geodesic active contours model. Metz et al. 
(Metz et al. 2001) presented a semi-automatic method very 
similar to Xu et al.’s method that incorporates an 
interactive selection step to clip the  region of interest.  She 
and Fish (She and Fish 2002) proposed a technique based 
 
 

1 2 3 Total
Segmentation 1 2 3 1 6
Result 2 3 58 5 66

3 2 28 15 45
Total 7 89 21 117

Human Observation 



on edge focusing. A fast snake is used to determine the 
optimum border by minimizing the energy calculated by 
the Laplacian of Gaussian (LoG) edge detector. Recently, 
Rajab et al. (Rajab, Woolfson and Morgan 2004) proposed 
an approach based on optimal thresholding using an 
isodata algorithm.  

Conclusions and Future Work   
We have presented two unsupervised methods for 
segmentation of skin lesion images based on DBSCAN 
and STING clustering algorithms. We conclude that while 
STING algorithm runs faster, DBSCAN algorithm 
produces more accurate segmentation results.    
 These methods do not perform well when the image is 
too hairy. For such images, a preprocessor that can 
eliminate hairs such as DullRazor™ (Lee et al. 1997) may 
improve the segmentation results.  
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