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Abstract 
The majority of speech recognition systems today 
commonly use Hidden Markov Models (HMMs) as acoustic 
models in systems since they can powerfully train and map a 
speech utterance into a sequence of units. Such systems 
perform even better if the units are context-dependent. 
Analogously, when HMM techniques are applied to the 
problem of articulatory feature extraction, context-
dependent articulatory features should definitely yield a 
better result. This paper shows a possible strategy to extend 
a typical HMM-based articulatory feature extraction system 
into a context-dependent version which exhibits higher 
accuracy. 

Introduction 
HMMs are predominantly used as acoustic models in most 
current speech recognition systems. The reason for this is 
that HMMs can normalize the time-variation of the speech 
signal and characterize speech signal statistically in the 
optimal sense.  Due to a large number of vocabularies in 
the real world, it has been most practical to design acoustic 
models at the phonetic level. However, this has the 
drawback effect that phonetic units representing parts of 
speech are not easily designed as a result of co-articulation. 
This problem can be alleviated by ensuring that the units 
are context-dependent.  

The context-dependent HMM-based approach has 
proven to be fruitful in recent speech recognition systems. 
However, by completely ignoring linguistic knowledge and 
relying only on statistical models like HMMs, the systems 
can achieve only a certain level of success (Lee, 2004). 
One of the problems of stochastic systems is that they are 
too restrictive and thus not fully applicable in adverse 
environments (noisy, out-of-task, out-of-vocabulary, etc). 
Many researchers aware of this problem and are trying to 
integrate more explicitly knowledge-based and statistical 
approaches. 

Integrating articulatory features into the system is one of 
the ways in which such a hybrid system can be achieved 
(Carson-Berndsen, 1998), (Kirchhoff, Fink and Sagerer, 
2002) and (Richardson, Bilmes and Diorio, 2003). With 
this approach, systems are better modeled by means of 
linguistic knowledge and hence yield better recognition 
results. 

In order to use articulatory features in for speech 
recognition, many articulatory feature extraction systems 
has been developed (Abu-Amer and Carson-Berndsen, 
2003), (Chang, Greenberg and Wester, 2001) and (Ali et al. 
1999). Among these, the HMM-based system seems to 
outperform the others. We therefore set this HMM-based 
system as our baseline. 

HMM-based speech recognition systems are usually 
upgraded by using context-dependent phones (Odell, 
1995). Similarly, we choose to upgrade HMM-based 
articulatory feature extraction systems with context-
dependent features. In this paper, we start by investigating 
possible ways to broaden context-independent units into 
context-dependent counterparts. We then discuss a normal 
HMM-based articulatory feature extraction system and 
suggest an appropriate way to model context-dependent 
features. The context-dependent and context-independent 
systems are then compared via experiments. Finally, 
conclusions are drawn and future directions discussed. 

Context-Dependent Units for Speech 
Recognition 

One of the difficulties that is most discussed when context-
dependent units are introduced to speech recognition 
systems is striking a balance between the level of 
information in models and the limited amount of acoustic 
training data. This is because the number of context-
dependent units is naturally large. To illustrate this, let “a” 
be a context-independent unit. Then, its context-dependent 
version can be labeled as “b-a+c” where “b” and “c” are 
preceding and succeeding units, respectively. Therefore, if 



N is the number of context-independent units, the number 
of context-dependent counterparts will be NxNxN which is 
unacceptable for training. 

In this paper, three strategies for making context-
dependent units trainable are presented, namely, backing-
off, smoothing and sharing. These techniques require some 
algorithms to determine what parameters underlie backing-
off, smoothing and sharing, respectively. 

Backing-Off 
This is the first and simplest strategy for training context-
dependent units. When there is insufficient data for training 
a model, that model should back-off and some less 
informative but trainable model should be used instead. For 
example, if a triphone has only a few examples in the 
training data, a biphone should be used. If a biphone is still 
not trainable, monophone should be used. With this 
strategy, it is possible to insure that all models are well 
trained. The disadvantage of this strategy, however, is that 
the difference between more and less informative models is 
too large when a backing-off occurs. 

Smoothing 
In 1989, Lee and Hon proposed an alternative way to keep 
a balance between information in models and sufficiency of 
training data. This method uses interpolation between less 
informative but trainable and more informative but un-
trainable models. The advantage of this strategy is that it 
can smooth deeply into the state level, in contrast to the 
backing-off strategy which is applied only at the model 
level. 

Sharing 
The sharing strategy is perhaps the most frequently used for 
balancing trainability and information of models. Sharing 
schemes can be divided into two approaches, namely 
bottom-up and top-down approaches. The bottom-up 
approach starts by generating all context-dependent units 
occurring in the training data. Some algorithm then is used 
to find similar states and tie them together. In this way, tied 
states use the same training data and make the system 
trainable. However, some examples are required for 
searching similar states. This makes defining good unseen 
models impossible. The top-down approach, on the other 
hand, uses linguistic knowledge to form a decision tree. 
This tree then is used to cluster and tie states hierarchically. 
This tree can also synthesize unseen models linguistically 
and therefore it does not suffer from the same problem as 
the bottom-up approach (Odell, 1995). 

HMM-Based Articulatory Feature Extraction 
System 

The HMM, by design, is used to map some uncertainty 
signal into a sequence of units. These units can be words, 
syllables, demi-syllables, phones, etc. The articulatory 
feature extraction presented here also uses this type of 
HMMs to map a speech signal into a sequence of features. 
In the linguistic sense, this integrates articulatory 
information into a statistical system and thus results in a 
better system. Moreover, as each HMM-based system 
recognizes a sequence of features on each tier 
independently, it allows overlap among features on each 
tier. This means that sequences of features from the system 
also capture coarticulation phenomena. In the statistical 
sense, the number of classes for a system to recognize is 
reduced and hence more robust models can be built.  

System Overview 
Before performing articulatory feature extraction, a feature 
table listing different features on each tier has to be 
properly assigned. In this paper, we follow the same feature 
table as in (Abu-Amer and Carson-Berndsen, 2003). The 
feature table contains 6 different tiers: manner, place, 
voicing, vowel type, vowel height and lip rounding. 

The articulatory feature extraction system in this paper is 
constructed using HTK (http://htk.eng.cam.ac.uk/) which is 
now widely used for HMM based speech recognition 
experiments. The acoustic model training system starts by 
converting the speech signal into a sequence of vector 
parameters with a fixed 25 ms frame and a frame rate of 10 
ms. Each parameter is then pre-emphasized with the filter 
P(z) = 1-0.9*z^(-1). The discontinuities at the frame edges 
are attenuated by using Hamming window. A fast Fourier 
transform is used to convert time domain frames into 
frequency domain spectra. These spectra are averaged into 
24 triangular bins arranged at equal mel-frequency intervals 
(where fmel = 2595log10(1+f/700)). f denotes frequency in 
Hz. 12 dimensional mel-frequency cepstral coefficients 
(MFCCs) are then obtained from cosine transformation and 
lifter. The normalized log energy is also added as the 13th 
front-end parameter. The actual acoustic energy in each 
frame is calculated and the maximum found. All log 
energies are then normalized with respect to maximum and 
log energies below a silence floor (set to -50 dB) clamped 
to that floor.  

These 13 front-end parameters are expanded to 39 front-
end parameters by appending first and second order 
differences of the static coefficients. The chosen 
parameters chosen have been used extensively (Davis and 
Mermelstein, 1980) and have proven to be one of the best 
choices for HMM-based speech recognition systems. 



Flat start training is then used for model initialization 
according to features on each tier. Flat start training is a 
training strategy from HTK requiring no time-annotated 
training transcriptions for model initialization. Each model 
contains 5 states and the covariance matrices of all states 
are diagonal. Figure 1 shows a 5-state left-right HMM as 
used in the system.  

Maximum likelihood estimators are used to train HMM 
parameters (Juang, 1985). The number of training iterations 
after each change is determined automatically in line with 
(Tarsaku and Kanokphara, 2002). The models are finally 
expanded to 15 mixtures except for the manner tier where 
the models are expanded to only 5 mixtures. These mixture 
numbers are the same as those used by (Abu-Amer and 
Carson Berndsen, 2003).  

The language model is trained from the training set on 
each tier using back-off bigram. The language model 
provides feature constraints which correspond to the intra-
feature-model transition probabilities. For the recognition 
process, the Viterbi algorithm is used without any pruning 
factor. 

TIMIT Corpus 
The standard TIMIT corpus (Garofolo et al. 1993) consists of 
3600 sentences, 10 sentences spoken by each of 630 
speakers from 8 major dialect regions of the U.S., of which 
462 are in training set and 168 are in the testing set. There 
is no overlap between the training are testing sentences, 
except 2 dialect (SA) sentences which were read by all 
speakers. The training set contains 4620 utterances and the 
testing set 1680 (112 males and 56 females). The core test 
set, which is the abridged version of the complete testing 
set, consists of 192 utterances, 8 from each of 24 speakers 
(2 males and 1 female from each dialect region). Normally, 
SA sentences are eliminated from the training/testing set 
because they occur in both training and testing set. 

All utterances were recorded in a noise-isolated 
recording booth. The speech was directly digitized at a 
sample rate of 20 kHz with the anti-aliasing filter at 10 
kHz. The speech was then digitally filtered, debiased and 
downsampled to 16 kHz. 

The training/testing set in this paper is exactly the same 
set as in (Abu-Amer and Carson-Berndsen, 2003) which is 

full set training (4620 utterances) and testing set without 
SA (1344 utterances). All TIMIT phonemic training and 
testing transcriptions are transformed to feature 
transcriptions automatically. 

Context-Dependent Articulatory Feature 
Extraction System 

According to the discussion of the many possible 
techniques for making context-dependent units trainable 
above, the top-down approach would seem to be the best 
way of balancing the parameters of the model. 
Unfortunately, this technique requires some linguistic 
knowledge in terms of phonetic questions which are in fact 
a list of unit classes defined with respect to unit features. 
For context-dependent units in speech recognition, units are 
usually phones or larger units in which there are always 
some mutual feature characteristics which can be shared. 
However, in our system, we want to construct context-
dependent features which have no further mutual feature 
characteristics for sharing like phones or larger units. 

Since the top-down approach is not appropriate for our 
context-dependent features, we start to investigate other 
strategies. The bottom-up approach is discarded as it is 
weak for unseen context-dependent units. In this paper, 
backing-off approach is chosen even though the difference 
between more and less informative models is too large and 
if data is very sparse, there will be too many context-
independent units in the system. 

There are at least two reasons why backing-off technique 
is still selected for our context-dependent features. Firstly, 
the number of feature classes required by the system is 
definitely less than the number of phones or larger unit 
classes. Therefore, the problem of too many context-
independent units in the system should not arise. Secondly, 
this technique is more easily extensible than the smoothing 
technique to obtain more accurate models. For example, 
Lamel and Gauvain (1993) proposed gender-dependent 
models as an extension to backed-off context-dependent 
models for gender-independent speech recognition. This 
paper showed a better result than (Lee and Hon, 1989) 
using the smoothing technique. 

A context-dependent articulatory feature extraction 
system can be easily constructed from a single mixture 
context-independent system. The context network 
expansion is cross-word. The training algorithm is the same 
as for context-independent system except that the training 
transcription is changed to be context-dependent version. 
After the models are trained, the number of mixtures is then 
again increased to 15 except for manner tier which is 
increased to only 5. 

Figure 1 5-state left-right HMM 



Left, right, or left and right context dependency is 
determined automatically according to their frequencies in 
the training transcription. In this paper, when left and right 
context dependent feature frequency is less than 40, the 
highest frequency feature between left and right context 
dependent features is used. If both left and right context 
dependent feature frequency is less than 40, the context-
independent feature is used. Figure 2 illustrates backing-off 
hierarchy. 

System Performance 
Percentage correct and accuracy of recognized and 
reference feature sequences are the measures used to 
evaluate system performance. These can be found by 
matching each of the recognized and reference label 
sequences by performing an optimal string match using 
dynamic programming. Once the optimal alignment has 
been found, the number of features, substitution features, 
deletion features and insertion features are counted and 
calculated. The difference between percentage correct and 
accuracy is that percentage correct ignores insertion 
features while percentage accuracy does not. 

Context-Independent Articulatory Feature 
Extraction System 
In this subsection, we compare our context-independent 
system with (Abu-Amer and Carson-Berndsen, 2003). 
Table 1 shows the (Abu-Amer and Carson-Berndsen, 2003) 
result and table 2 shows our result. The comparison of the 
two tables indicates that our system performs better than 
(Abu-Amer and Carson-Berndsen, 2003). According to the 
tables, only %correct on manner tier and %accuracy on 
vowel type tier exhibit worse results. The better results in 
table 2 are highlighted by using bold italic font type. 

Context-Dependent Articulatory Feature 
Extraction System 
The result from our experiment is very promising. The 
context-dependent system gives the result as shown in table 
3. Both %correct and %accuracy of all tiers yield better 

results than the results in table 2. Our context-dependent 
system is also better than the system from (Abu-Amer and 
Carson-Berndsen, 2003) on every tier. 

The number of models for the place tier expands from 9 
to 561, for the manner tier from 6 to 121, for the vowel 
height tier from 5 to 91, for the vowel type tier from 4 to 
48, for the lip rounding tier from 4 to 45., and for the 
voicing tier from 3 to 18. According to these numbers, we 
can see that most of the models are context-dependent. For 
example, for the place tier, the total number of possible left 
and right context-dependent features are 9x9x9 which is 
729. This means that only 23% of models for the place tier 
are not left and right context-dependent features.  

Conclusion 
There are many aspects of this research worth emphasizing 
here. Firstly, to implement better speech recognition 
systems, hybrid approaches which use statistical and 
linguistic knowledge are very attractive. Applying 
articulatory features is one of the possible ways to integrate 
linguistic knowledge into stochastic speech recognition 
systems. In order to build good articulatory-feature-based 

 place manner vowel 
height 

vowel 
type round voice 

%  
correct 75.79 88.68 83.28 87.02 88.71 70.9 

% 
accuracy 59.51 66.6 66.94 69.5 70.08 61.74 

Table 1 Result from (Abu-Amer and Carson-Berndsen, 
2003) 

 place manner vowel 
height 

vowel 
type round voice 

%  
correct 77.13 87.67 84.64 91.41 90.75 96.97 

% 
accuracy 68.15 75.94 76.4 64.82 80.23 64.46 

Table 2 Result from our context-independent system 

 place manner vowel 
height 

vowel 
type round voice 

%  
correct 78.48 88.8 86.08 93.62 92.51 97.12 

% 
accuracy 73.36 77.37 80.03 68.08 86.08 72.94 

No. of 
models 561 121 91 48 45 18 

Table 3 Result from our context-dependent system 

 

Left and right context-dependent features 

Left context-
dependent features 

Right context-
dependent features 

Context-independent features 

Figure 2 Backing-off hierarchy 



systems, reliable articulatory feature extraction systems 
have to be investigated. In this paper, we proposed an 
alternative way to efficiently extract articulatory features 
from speech utterances. 

Secondly, as articulatory features are common to most 
languages, this makes our system language-independent, 
although clearly the set of features does have to be 
extended beyond the set used in this paper (see Geumann, 
2004). 

Thirdly, as our system is based on HMM, many useful 
techniques for HMM-based speech recognition systems can 
also be applied to our system. However, articulatory feature 
extraction and phone (or larger unit) recognition systems 
cannot be treated in exactly the same way. Some technique 
has to be customized for articulatory feature training. For 
example, in this paper, in order to use a context-dependent 
technique, the back-off approach is preferred above the 
top-down approach. 

Fourthly, our system can also be extended further by 
integrating more linguistic knowledge into our system. For 
example, on the voice tier, if some segment of the speech 
utterance is recognized as unvoiced, it cannot be 
recognized to be vocalic on the manner tier. 

Finally, from our experiment, the context-dependent 
articulatory feature extraction system proves very 
promising for vowel height and lip rounding tiers in 
particular. On those tiers, more than 80% for both 
correction and accuracy can be achieved. 
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