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Abstract

In the past decades, high-volume manufacturing pro-
cesses have grown increasingly complex. If a failure in
these systems is not detected in a timely manner, it of-
ten results in tremendous costs. Therefore, the demand
for methods that automatically detect these failures is
high. In this work, we address the problem of auto-
matic excursion detection based on parametric tests.
Overlooking the complexity of wafer fabrication pro-
cesses, we propose two structurally simple excursion
detection models: Naive Bayes classifier and boosted
decision stumps. We apply these models in the domain
of semiconductor manufacturing, compare them to off-
the-shelf classification techniques, and show significant
gains in the precision and recall of detected excursions.
These results encourage our future work that should
primarily focus on increasing the recall of our models.

Introduction

From supercomputers to appliances, semiconductors
have slowly pervaded every aspect of our life. In the
last half of the 20th century, they forever changed the
character of our society and enhanced its potential be-
yond our dreams. Although we have gone a long way
since the transistor was invented, semiconductors are
still manufactured on the same silicon basis — purified
sand. The past five decades of their manufacturing can
be viewed as a successful story of making the technology
smaller, faster, cheaper, and more reliable.
Semiconductor devices are usually manufactured on
a lot level, a collection of wafers' which are at the
end of the line cut into hundreds of dice representing
individual chips. The fabrication of wafers is a com-
plicated process that involves hundreds of operational
steps, most of which remove or deposit thin layers of
material on the wafers. Even if these steps are highly
automatized, there are many factors that can cause an
excursion. An excursion is, roughly speaking, an er-
ror in the manufacturing process that causes system-
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atic damage to the product as it passes through some
step in the process. Possible causes are equipment mal-
function, operator error, mishandling, or material issues
such as contamination. To prevent excursions, physical
and electrical properties of the wafers are measured by
in-fab parametric tests at every stage of the fabrication.

Walfer fabrication usually takes from several weeks
up to several months, depending on many factors. Af-
ter the fabrication is completed, wafers undergo exten-
sive die-level parametric and functional testing. Conse-
quently, the wafers are cut into individual dice, and the
ones that passed the tests are packaged. Packaging con-
sists of attaching the dice to support structures, bond-
ing, and encapsulation to protect the semiconductors
from the outer world. Once the chips are assembled,
they are tested under extreme conditions to assure that
no defective product is shipped to customers.

If an excursion occurs, we assume that it can be re-
liably detected by the functional tests because they di-
rectly measure the functional properties of the product.
Unfortunately, these tests reveal excursions with a long
delay and do not help to prevent them in early stages.
Comparing to this end-of-line procedure, excursion de-
tection based on the in-fab parametric tests offers sev-
eral benefits. First, the in-fab tests are closely related
to the stages of the fabrication, and therefore can be
used to localize the source of an excursion. Second,
in-fab excursion detection gives us an opportunity to
repeat failed manufacturing steps, or to discontinue the
fabrication of seriously damaged lots. Third, if we know
that a lot was affected by an excursion, we can adjust
its die-level testing procedure at the end of the line. Fi-
nally, all discussed benefits have a positive impact on
reducing the cost of the production.

However, the in-fab tests are performed on a wafer
level, and thus are less informative than the functional
tests. After all, the die-level testing would not be nec-
essary if the in-fab tests perfectly detected every defect.
In this work, we try to build a statistical model based on
the in-fab parametric tests for the automatic detection
of defective lots. We refer to the model as an excursion
detection model, assuming that the large scale defects
are caused by excursions.

The paper is organized as follows. First, we discuss



related work in the manufacturing domain. Second,
we point to the challenging character of our problem
and propose two excursion detection models. Third,
we present relevant theoretical background on used ma-
chine learning techniques. Fourth, we compare the two
excursion detection models to off-the-shelf classification
techniques and discuss their benefit. Finally, we outline
future directions of our work.

Related work

Wafer fabrication is a highly automatized process that
involves numerous monitoring devices and sensors. For
analytical purposes, measurements recorded by these
devices are often stored for a long period of time. Even
if the fabrication process can be quite complex, its flow
is clearly defined. As a result, machine learning tech-
niques can be applied to ease a variety of existing deci-
sion problems in this domain.

Currently, we are not aware of any academic work
that primarily deals with the automatic excursion de-
tection. The closest to our objective is the work of
Fountain et al. 2000; 2003 on the optimization of die-
level functional testing. The authors constructed a
probabilistic model that captures spatial dependencies
between failing dice on a wafer. This model was ex-
tended into an influence diagram for the purpose of se-
lective die-level testing. The policy corresponding to
the diagram was applied on manufacturing data and
outperformed other competing strategies. The policy
was also tested on defective wafers and shown to be
responsive.

Comparing to the work of Fountain et al. 2000; 2003,
we apply machine learning techniques in an earlier stage
of wafer fabrication on a higher, wafer level. Our study
primarily focuses on the learning of an excursion detec-
tor rather than formalizing a full decision-theoretical
framework.

Excursion detection model

In this work, we assume that the lots manifest their
state, good or defective, in the results of their in-fab
tests. Therefore, to predict that a lot is affected by
an excursion, it is sufficient to learn a statistical model
P(Y | X), where Y is a boolean excursion variable and
X = {Xi,..., X} represents the results of k in-fab
tests corresponding to the lot. When predicting the
state of a lot, we assume that the results of all its in-
fab tests are available. Therefore, our classifier can be
viewed as operating by the end of the fabrication line,
prior to the more informative die-level testing. Under
this assumption, performance of the classifier serves as
an upper bound on the real-world scenario when the
test results are available gradually as wafer fabrication
progresses.

Challenges of the domain

To demonstrate the challenges of learning an excur-
sion classifier, we discuss an example of the in-fab tests
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Figure 1: ROC curves corresponding to the number of
2-std and 3-std outliers in all in-fab tests for a specific
lot. A test result is considered to be a k-std outlier if
its value is more than k standard deviations from the
expected result of the test.

dataset?. The dataset contains results of 1186 in-fab
tests for 583 lots, which corresponds to approximately
four months of manufacturing data for a single product.
The dataset can be characterized as having: (1) high di-
mensionality of the input vector comparing to the num-
ber of training samples, (2) low number of excursions,
unlabeled with unknown sources, (3) large portion of
missing values, (4) mostly continuous test results, and
(5) no single test that is a strong predictor of defective
lots. In the following paragraphs, we return to each of
these issues in detail.

The high number of in-fab tests and the low number
of lots pose serious threat for many machine learning
techniques. In this setting, overfitting is likely to hap-
pen, and a close fit to the training set may not general-
ize well to the test set. Moreover, a sufficient amount of
training data may never be available, and thus it is cru-
cial to learn efficiently from a small number of training
samples. Therefore, good candidates for the excursion
detection model should be structurally simple and yet
powerful enough to distinguish between the concepts of
good and defective lots.

In general, information on whether a specific lot was
affected by an excursion is hard to obtain, which is pri-
marily caused by the diversity of the phenomenon and
the human factor involved in the investigation of excur-
sions. Therefore, we automatically label lots as defec-
tive if they falls into the lower 10 percent tail of the
distribution of the number of good dice yielded by the
lot3. Following this recipe, we get 526 and 57 good and
defective lots, respectively. Surprisingly, the defective
lots are weakly correlated with the lots that deviate in
a large number of their in-fab tests (Figure 1). In fact,
simultaneous deviations in several in-fab tests are likely
to happen due to the high number of tests performed.
Therefore, it is important that our excursion detection
model distinguishes between these random and real de-
viations.

2The dataset is a private property of Intel Corporation
and cannot be disclosed publicly. All numerical values pre-
sented in the paper are normalized.

3The 10 percent threshold was arbitrarily chosen prior
to the experiments.
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Figure 2: ROC curves corresponding to the two most
discriminative in-fab tests. To allow a fair comparison
of the tests, missing values are replaced by their expec-
tations.

Finally, half of the tests in the dataset are not mea-
sured for more than a half of the lots, which poses a
serious challenge for the proper handling of missing val-
ues. In such a setting, Bayesian networks (Pearl 1988)
allow us to model relations among partially observed
attributes. However, the representation of complex de-
pendencies between continuous and discrete variables
is in general hard, and so is inference (Lerner & Parr
2001). On the other hand, the discriminative power of
individual in-fab tests is very low. Measured by the area
under the ROC curve (Figure 2), the best discrimina-
tor achieves only 62 percent. Therefore, a model with
no capability to learn a multivariate signal is likely to
perform poorly.

Model selection

Following upon our discussion, we choose two struc-
turally simple yet powerful candidates for the excursion
detection model: Naive Bayes classifier and boosted
decision stumps. The Naive Bayes model is a popu-
lar choice for classification tasks due to its simplicity
and ability to discriminate well even if the attributes
are strongly dependent (Domingos & Pazzani 1997). A
decision stump is a one-level decision tree that allows
discrimination along a single attribute. On a variety of
classification tasks, Freund and Schapire 1996 showed
that the boosting of decision stumps results in a classi-
fier as good as C4.5.

Both Naive Bayes classifier and boosted decision
stumps can be viewed as defining a similar discrimina-
tive boundary along individual attributes. In the Naive
Bayes model, the log-likelihood ratio of class probabili-
ties can be expressed as a linear combination of the log-
likelihood ratios corresponding to individual attributes:
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On the other hand, boosting produces an ensemble
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Zle athy(x) which is linear in the votes of the experts
h¢. If the experts are represented by decision stumps,
each of them is restricted to a single attribute, and thus
the ensemble becomes linear in the discriminators over
individual features.
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Machine learning methods

Naive Bayes classifier

Assume that we have a classification problem, where Y
is a class variables and X = {Xy,..., X} denotes a
vector of k attributes. By Bayes theorem, the condi-
tional probability P(Y | X) can be rewritten as:

PX|Y)P(Y)
>, PX|y)Py)
By making a “naive” assumption that the attributes

X are independent given the class label Y, Equation 1
simplifies to:

P(Y | X) = (1)

T, PO V)] POY)
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where the denominator is only a normalizing constant.
The classifier corresponding to Equation 2 is well known
as the Naive Bayes classifier or model (Duda & Hart
1973). In real-world domains, this classifier performs
surprisingly well, even if the “naive” assumption is of-
ten unrealistic. Domingos 1997 explored this issue and
showed that the classifier has a much larger region of
optimality than previously believed, including conjunc-
tive and disjunctive concepts. In fact, the classifier can
perform optimally even if the estimates of P(Y | X) are
incorrect by a wide margin.

The Naive Bayes classifier and the logistic regres-
sion model form a generative-discriminative pair (Ru-
binstein & Hastie 1997). More concretely, the classi-
fier assigns a label 1 to the vector X if and only if
log Fy=gix) = Y1 108 fixy=o) + 108 Fy=g) > O
If the conditionals P(X; | Y') follow normal densities,
this discriminative boundary becomes identical to the
one of the logistic regression model.

The conditional probabilities of continuous variables
are often assumed to follow normal densities. Unfortu-
nately, if the training sample is small and contaminated
by outliers, estimates of the mean and variance become
very sensitive and are no longer representative. John
and Langley 1995 proposed an extension to the Naive
Bayes model that can deal with these issues. Instead of
fitting a parametric conditional P(X; | Y), the Flexible
Naive Bayes model uses the following nonparametric
density estimator:

PY [X) = ; (2)

P(X;|Y) = NZgXJ,:rJ ,0), (3)

where ¢ ranges over the training points of the attribute

X; and class Y, g(Xj,:Eg ), o) is a Gaussian kernel cen-

(@)

tered in the data point z;”, and o is a kernel width.

Decision stumps

A decision stump is a one-level decision tree that allows
discrimination along a single attribute. The optimal de-
cision boundary is found by minimizing a chosen impu-
rity measure. Two popular choices for the measure are
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Figure 3: A pseudo-code implementation of AdaBoost.

the entropy impurity, which is used in C4.5 (Quinlan
1993), and the Gini impurity, which is used in CART
(Breiman et al. 1984).

This learner can be very effective in discriminating
between two classes, whereas its simplicity makes it
hard to overfit. Its recent popularity is due to achieving
high accuracy when boosted. On a variety of classifi-
cation tasks, Freund and Schapire 1996 showed that
the boosting of decision stumps results in a classifier as
good as C4.5. At the same time, decision stumps are
easy to learn and interpret.

Boosting

Building of highly accurate classifiers in real-world do-
mains is a challenging task. Fortunately, we can often
come up with the rules of thumb that have low accu-
racy, but are significantly better than random guessing.
Boosting is a technique that allows us to combine these
weak learners into an ensemble that represents a highly
accurate classifier.

AdaBoost (Freund & Schapire 1997) is an adaptive
boosting algorithm that belongs among the most pop-
ular machine learning techniques (Figure 3). Initially,
the algorithm sets the distribution of training samples
D; to uniform*. In every boosting round ¢, a weak
learner h; is trained on the samples from the distribu-
tion Dy, evaluated by its misclassification error €;, and
assigned a weight a;. Consequently, the distribution
D, is reweighted such that the samples drawn from the
new distribution D;;; are half correctly classified and
misclassified. This procedure is repeated for T rounds
and outputs an ensemble of T" weak learners.

Recently, boosting has attracted a lot of attention.
The main reason is its superior performance in many

4Uniform distribution of the training samples corre-
sponds to the zero-one loss function. Preference for other
utility models can be incorporated by reweighting of the
distribution (Schapire, Singer, & Singhal 1998).

Training set Test set
Prec Rec Acc | Prec Rec Acc
DS 0.91 0.07 0.91 | 0.18 0.01 0.90
LR 0.53 0.88 0.91 | 0.10 0.48 0.51
NB 0.16 1.00 0.50 | 0.10 0.67 0.38
FNB | 1.00 049 0.95 | 1.00 0.03 0.90

Table 1: Comparison of four baseline classifiers: deci-
sion stump (DS), logistic regression (LR), Naive Bayes
model (NB), and Flexible Naive Bayes (FNB).

real-world domains that seems to avoid overfitting (Fre-
und & Schapire 1996). Schapire et al. 1997 tried to ex-
plain this phenomenon and bounded the generalization
error of the algorithm in terms of its margin on the
training data, complexity of the classifier, and size of
the training sample. Even if this result is more quali-
tative than quantitative, it suggests that the improve-
ment obtained by boosting can be low if: the learner
performs poorly on the training set, the learner is overly
complex, or there is not enough training data. Fried-
man et al. 1998 offered an alternative explanation of
boosting in terms of additive modeling and the maxi-
mum likelihood principle.

Experimental results

Experimental section is divided into three parts. First,
we establish baselines for the excursion detection prob-
lem. Second, we test the proposed excursion detection
models and discuss their benefits. Third, we apply one
of the models online and show how its performance
varies with the amount of observed test results. Com-
parison of the models is performed on the in-fab tests
dataset discussed earlier in the paper, and the mod-
els are evaluated by their precision, recall, and accu-
racy®. Reported statistics are obtained by 8-fold cross-
validation and averaged over 4 randomly chosen 8-fold
partitionings.

Baselines

The procedure that classifies every lot as non-defective
achieves a high accuracy of 0.9. However, it is com-
pletely useless for the purpose of excursion detection.
To establish more informative baselines, we test four
off-the-shelf classification techniques: a single decision
stump, logistic regression, Naive Bayes model (the con-
ditionals of continuous variables follow normal densi-
ties), and Flexible Naive Bayes. Splits in the decision
stumps are scored by the entropy impurity measure. To
allow a fair comparison of all decision stumps, missing
values are replaced by their expectations. Kernel width
in the Flexible Naive Bayes model is set to o = 1/v/ N

5Precision is defined as the number of correctly classified
defective lots over the total number of lots classified as de-
fects. Recall is defined as the number of correctly classified
defective lots over the total number of defects. Accuracy is
computed as the number of correctly classified lots over the
total number of lots.
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Figure 4: Comparison of boosted decision stumps and
discriminatively learned Naive Bayes models for varying
model complexity. Solid, dashed, and dotted lines de-
note the precision, recall, and accuracy of the classifiers
on the test set.

(John & Langley 1995). Performance of the classifiers
is reported in Table 1.

Surprisingly, none of the baseline methods performs
extraordinary well. The decision stump learner slightly
overfits, which is apparent in the decline of its precision
and recall on the test set. This behavior is caused by
a large number of similar weak discriminators on the
training set, the best of which generalizes poorly to the
unseen test data®. The logistic regression model needs
to estimate 1187 parameters, which is at least twice
as many as can be fit by 510 (= 7/8 x 583) training
samples, and thus overfits. In terms of accuracy, the
Flexible Naive Bayes model surpasses the Naive Bayes
classifier both on the training and test sets. The weak
performance of the Naive Bayes classifier is caused by
the lack of flexibility in modeling the conditionals of
continuous variables.

Excursion detection models

To improve the decision stump learner, we boost it by
AdaBoost (Figure 3) up to 250 rounds. The ensemble is

5 A better selection of the decision stump can be achieved
by using the wrapper method (Kohavi & John 1997). How-
ever, the effect of this method on later compared machine
learning techniques was minor.
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Figure 5: Performance of the discriminatively learned
Flexible Naive Bayes model (250 nodes) in online excur-
sion detection. Solid, dashed, and dotted lines denote
its precision, recall, and accuracy on the test set.

expected to perform better due to (1) the combination
of multiple features, and (2) the maximization of the
margin on the training set, which translates into a supe-
rior upper bound on the generalization error (Schapire
et al. 1997). Boosting experiments are performed with
two utility models: zero-one loss and 9 times higher
reward for the correct classification of a defective lot.
The latter of the utility models evens the disproportion
between the good and defective lots in the dataset. To
improve the performance of the Naive Bayes models, we
train them for the purpose of classification — to maxi-
mize their conditional likelihood. Both models are ini-
tialized empty and new nodes are greedily added if the
conditional likelihood increases (Grossman & Domingos
2004). Performance of the improved models is shown
in Figure 4.

Boosted decision stumps improve significantly over
their baseline in both utility scenarios. After 250 boost-
ing rounds, the classifiers recall between 0.1 and 0.15 of
defective lots with the precision exceeding 0.3. Different
utility models clearly affect the trade-off between the
precision and recall, but their effect diminishes with a
higher number of boosting rounds. The discriminative
learning of the Naive Bayes models outperforms their
generative counterparts. After adding 250 nodes, the
Flexible Naive Bayes model recalls more than 0.15 of de-
fective lots with a precision of 0.7. Moreover, the model
yields an accuracy of 0.91 and tops the other compared
techniques. Finally, the model outperforms the discrim-
inatively learned Naive Bayes model in all measured
quantities, which is attributed to its more flexible non-
parametric density estimate. Its superior performance
against boosted decision stumps stems from (1) the
proper handling of missing values and (2) the ability
to define a non-linear discriminative boundary along a
single feature. Interestingly, the model needs only few
features to recall about 0.2 of excursions. The rest of
the features serves for the purpose of eliminating false
positives — non-defective lots classified as defects. This
result is consistent with our earlier observation that si-
multaneous deviations in several in-fab tests are likely
to happen just by chance.



Online excursion detection

So far, we assumed that prior to the classification of a
lot, the results of all its in-fab tests are at our disposal.
However, excursion detection is an online task where
the complete information is rarely available. To show
that our excursion detection models can operate in this
online setting, we choose one model and test it on a
set of partially observed test results. We know the par-
tial ordering of the in-fab tests in the wafer fabrication
flow, so we can simulate how their results are gradually
available as the fabrication advances (Figure 5).

The trends in Figure 5 closely resemble Figure 4. As
the number of available test results grows, the accuracy
and precision of the model improve at a relatively small
drop in the number of detected excursions. Our results
suggest that even if the model was trained at the end
of the line, it can be used to detect excursions in ear-
lier stages of wafer fabrication. Unfortunately, earlier
excursion detection is paid by a lower precision in the
detection of defective lots.

Conclusions

High-volume manufacturing is a highly automatized
process that involves numerous monitoring devices and
sensors. In this work, we explored this data-rich envi-
ronment and used in-fab parametric tests to construct
an automatic excursion detection system. Preliminary
results show that we can recall about 0.15 of defective
lots with a precision of 0.7. It should be emphasized
that although we only discover 0.15 of excursions, we
operate on a training set that contains only excursions
that were able to get past current in-fab excursion de-
tection systems. Detecting even a small fraction of
these troublesome lots can translate into large mone-
tary savings. Nevertheless, increasing the recall is an
important direction of our future research.

To further improve the performance of our excursion
detection systems, we plan to incorporate engineering
knowledge on common excursion causes. Moreover, the
ability to merge data for similar manufacturing pro-
cesses can be the key in obtaining sufficiently large and
rich training sets. Finally, this work can viewed as a
step towards building a full statistical model for the
discovery of excursion sources.
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