
Tree-Based Methods for Fuzzy Rule Extraction

Shuqing Zeng, Nan Zhang and Juyang Weng
Department of Computer Science and Engineering

Michigan State University
East Lansing, MI 48824-1226, USA

{zengshuq, nanzhang, weng}@cse.msu.edu

Abstract
This paper is concerned with the application of a tree-
based regression model to extract fuzzy rules from high-
dimensional data. We introduce a locally weighted scheme
to the identification of Takagi-Sugeno type rules. It is pro-
posed to apply the sequential least-squares method to esti-
mate the linear model. A hierarchical clustering takes place
in the product space of systems inputs and outputs and each
path from the root to a leaf corresponds to a fuzzy IF-THEN
rule. Only a subset of the rules is considered based on the lo-
cality of the input query data. At each hierarchy, a discrimi-
nating subspace is derived from the high-dimensional input
space for a good generalization capability. Both a synthetic
data set as well as a real-world robot navigation problem
are considered to illustrate the working and the applicabil-
ity of the algorithm.

Introduction
The fuzzy rule-based model represents a simple and power-
ful tool to model system dynamics by means of IF-THEN
rules. Human experts’ knowledge is usually used to design
those rules. This acquisition process is cumbersome, and in
some cases (e.g., unknown system), expert knowledge is not
available. Neuro-fuzzy approaches (Lin & Lee 1996) are
introduced with the purpose of extracting the fuzzy rules,
and the membership-functions automatically from measured
input-output pairs. However, in neural-fuzzy approaches,
the dimension of the input vector is usually small in order
to be manageable.

In this paper, we propose a hierarchical fuzzy model,
which extracts rules from high-dimensional data pairs. The
major distinctions of the model include: First, we derive au-
tomatically discriminant feature subspaces in a coarse-to-
fine manner from the high-dimensional input space. The
features are most discriminative in the sense that input vari-
ables irrelevant to the output are disregarded to achieve bet-
ter generalization. Second, we organize the rule base in a
hierarchical way. This tree architecture recursively excludes
many far-away, unrelated rules from consideration; thus, the
time for inference and learning isO(log(N)), whereN is
the size of the rule base.

Copyright c© 2005, American Association for Artificial Intelli-
gence (www.aaai.org). All rights reserved.

The remainder of this paper is organized as follows: Sec-
tion presents the fuzzy model. We then extend it to the hier-
archical form in Section . The results of the simulation and
real robot experiments are reported in Section . Discussions
and concluding remarks are given in Section .

Fuzzy Modeling
Fuzzy Rule-Based Systems
A fuzzy rule is a syntactic structure of the form

IF antecedentTHEN consequent (1)

where eachantecedentand consequentare well-formed
fuzzy predicates. Given a system with the input vector
x ∈ X ⊂ Rn and the output vectory ∈ Y ⊂ R. In
the Takagi-Sugeno (TS) model (Takagi & Sugeno 1985), the
base ofr fuzzy rules is represented by

IF x is A1 THEN y1 = βT
1 z + β0,1

...
IF x is AN THEN yr = βT

Nz + β0,N

(2)

where A1,...,AN denote multivariateantecedents(fuzzy
predicates) defined on the universeRd. Here theconse-
quentsare linear function of the dependent vectorz that is
the projected vector on a discriminating subspace (see Sec-
tion ). The membership function of thei-th antecedentAi is
defined as

Ai(x) : Rd 7→ [0, 1] (3)

For a query inputx the output of the rule-base is calcu-
lated by aggregating the individual rules contributions

y =
∑N

i=1 Ai(x)yi∑N
i=1 Ai(x)

(4)

whereyi andAi(x) denote the output and the activation level
of thei-th rule, respectively.

Incremental Parameter Estimation
Two phases are involved to estimate the parameters of thei-
th rule. First, in structure identification phase the fuzzy pred-
icateAi is determined, which will be discussed in Section .
Second, In the parameter identification phase, we assume the



antecedentpredicateAi is fixed and apply sequential least-
square algorithm to estimate the parameters:βi andβ0,i of
the rule.

For notation simplicity we neglect rule indexi. Consider a
collection oft input-output data pairs(xk, yk), k = 1, 2, ..., t
wherexk is then dimensional input vector andyk denotes
the scalar target output of the system. Letzk, k = 1, ..., t be
extracted feature vector which we will discuss in Section .

As in locally weighted learning (LWR) (Atkeson, Moore,
& Schaal 1997), we compute the following diagonal activa-
tion matrix:

W = diag[A(x1) A(x2) ... A(xt)]

with each one corresponding to the data pair. LetZ =[
zT
1 ... zT

t

]T
. For computational and analytical simplic-

ity, let Ze = [Z 1] andθ =
[
βT β0

]T
.

We formulate the estimation as finding the parameterθ
such that the rule output,y, is

y = θT z + n (5)

such that the following cost function is minimized

(y − Zeθ)TW(y − Zeθ).

wheren denotes a white Guassian process.
The solution of this weighted least square problem is

θ = (ZT
e WZe)−1ZT

e Wy (6)

Let the weight of thek-th data pair(xk,yk), (k = 1, ..., t)
is the square root of thei-rule’santecedentA(xk), i.e.,

ak =
√

A(xk)

Each rowk of Xe andy is multiplied by the corresponding
weightak creating new variablesz∗k = akzk andy∗k = aky.
This can be done using matrix notationZ∗ = ZeW

1
2 and

y∗ = yW
1
2 , whereZ∗ =

[
z∗T1 . . . z∗Tt

]T
andy∗ =

[y∗1 . . . y∗t ]T. Therefore, Eqs. (5) and (6) become respec-
tively

y = X∗θ + n (7)

and
θ = (Z∗T Z∗)−1Z∗T y∗ (8)

We note that Eq. (8) assumes the collection of input-
output pairs are available before the estimation. This is not
suitable for online identification where data pairs arriving
sequentially since the inverse operation is too expensive to
recompute whenever a new data comes in. However, it is
possible to updateθ incrementally as new data pairs are ac-
quired.

Let us write the linearconsequentpart of the rule, Eq. (7)
as follows




y∗1
...

y∗t−1

y∗t


 =




Z∗t−1

z∗Tt


 θ +




n1

...
nt−1

nt


 (9)

Let θ̂(t) denote the estimatedθ of Eq. (9) after presenting
the data setX∗

t . Let P−1
t = Z∗Tt Z∗t . The recursive equa-

tions for sequentially estimatingθ can be written as

θ̂(t) = θ̂(t−1) + γtPt−1z∗t(y
∗
t − z∗t θ̂

(t−1))
Pt = Pt−1 − γtPt−1z∗tz

∗T
t Pt−1

γ−1
t = 1 + z∗Tt Pt−1z∗t

(10)

where
y∗t = atyt

z∗t = atzt
(11)

The reason that we do not do regression onx directly is
that matrixPt in Eq. (10) is ad× d matrix, whered denotes
the dimension of the input vector. Computing such a matrix
for input x (e.g., a system with 1000 input variables) is too
expensive.

Hierarchical Fuzzy Model
In this section, we propose a hierarchical fuzzy model. The
fuzzy model presented in the previous section is a flat model.
All rules in the base take part simultaneously in the inference
process, each to an extent proportionate to the firing value
associated with itsantecedent(e.g., the fuzzy predicateAi

of thei-th rule). This poses a problem for learning since the
parameters of the all rules need to be updated when a new
pair is presented, which is computationally too expensive.

Clustering
This involves successively partition the product space of
input-output pairs so that at each level of the hierarchy, data
pairs within the same region (cluster) are more similar to
each other than those in difference regions (clusters). As
shown in Fig. 1, each node denotes a cluster or a rule’san-
tecedentin fuzzy terminology. For example, region 1 de-
notes the support set ofA1 and region 1.1 denotes the sup-
port set ofA11. A path from the root to a leaf represents a
rule, i.e.,

IF Ak1(x) ∧Ak1k2(x) ∧ . . . ∧Ak1k2...kn(x)
THEN yi = βT

i x + β0,i

We observe that

Ak1(x) ⊃ Ak1k2(x) ⊃ . . . ⊃ Ak1k2...kn(x)

Therefore theantecedentAk1(x) ∧ Ak1k2(x) ∧ . . . ∧
Ak1k2...kn(x) = Ak1k2...kn(x). In addition, a cluster
Ak1...kn

(x) not fired unless its parentAk1...kn−1(x) is ac-
tivated. The tree structure recursively excludes many inap-
plicable rules from consideration, thus, the time to retrieve
and update the tree for each newly arrived data pointx is
O(log(N)), whereN is the number of rules. This extremely
low time complexity is essential for online learning with a
very large rule base.

Let’s begin with the availableK input-output pairs. The
data set to be clustered is represented as a data matrix com-
posed fromH andy

UT = [X y] (12)

with each columnuk represents an input-output pair:uk =[
xT
k yk

]T
, k = 1, ..., K.



root

1 2 3 4

1.1 1.4 2.1 2.4 3.1 3.4 4.1 4.4

+

+ +

+
+ +

+

+

+ +
+

+

+

+

++
+

+
+

+

+ +

+

+

+

+ +

+

+

+

+

+ +

+

+

+

+
+

+

+
+

+

+

+

+

+

+
+

+

+

+

+

+ + +

+

+
+

+

+

+

+

+
+

+
+

+

+
+ +

+

+

+

+

+

+
+

+
+

+

+

+

+

+

+
+

+

+

+

+

+

+ + +

+

+
++

+
+

+

+

+

+

+

+
+

+

+
+

+

+

+

+

+ +
+

+

+
+

+ +
+

+

+

++

+

+

2.1
2.2

2.3

2.4

1.1

1.2
1.3

1.4

3.1

3.2

3.3 3.4

4.1

4.2

4.34.4

Figure 1:The hierarchical organization of the rule base. Each path
from the root from a leaf corresponds to a rule. The higher level
node covers a larger region, and may partition into several smaller
regions. Regions in the input space markedi.j wherei is the index
of the parent region whilej is the index of child region.

Definition 1 The dissimilarity measured between the two
pairsi andj, 1 ≤ i, k ≤ K is defined as

d(ui,uk) = wx
‖xi − xk‖2

σ2
x

+ wy
‖yi − yk‖2

σ2
y

(13)

wherewx andwy are two positive weights that sum to 1:
wx + wy = 1; σx andσy denote estimated scalar scatter of
x andy vectors1, respectively.

The hierarchical clustering algorithm begins with the en-
tire data set as a single clusterG, and recursively splits one
of the existing clusters intoq child clusters:G1,...,Gq in a
top-down fashion. For each iteration, we apply K-means
(see Algorithm 1) to perform the splits. we begin with
choosing theq most separated samples inG as the initial
means:{ū1, ..., ūq} andūl = (x̄l, ȳl), l = 1, ..., q.

The recursive splitting continues until all clusters either
becoming a singleton or the dissimilarity within the cluster
of each one from another is less than a threshold.

Local Feature Extraction
We note that in Eq. (2), the linear model applies on the in-
put vectorx directly, which might contain irrelevant dimen-
sions of the input data (“curse of dimensionality”). Given
the empirical observation that the true intrinsic dimension-
ality of high dimensional data is often very low(Roweis &
Saul 2000), we can view informative low-dimensional pro-
jections of the data.

Consider an internal nodeG of the tree withq child
clusters ind-dimensional input space whose means are

1For simplicity, we assume the covariance matrix (Σx) of a vari-
atex is equal toσ2

xI, whereI denotes an identical matrix. Thus,
its corresponding scatter isσx =

√
trΣx =

√
dσ, whered denotes

the dimension of the variatex.

Algorithm 1 Cluster splitting algorithms
1: Randomly select̄u1 from G.
2: for k = 2, ..., q do
3: Selectūk = uj ∈ G s.t. j = arg max1≤l≤K dk(ul),

wheredk(u) = min1≤m≤k−1(d(u, ūm))
4: end for
5: For current set of means{ū1, ..., ūq}, assign each sam-

ples ofG to the closest mean. That is,

C(l) = argmin1≤k≤q‖ul − ūk‖, l = 1, ...,K

6: Given the updated cluster assignmentC, recompute the
cluster means{ū1, ..., ūq}.

7: Steps 5 and 6 are iterated until either maximum iteration
has reached or the assignments do not change.

8: Reassignment each samples ofG to the closest fuzzy
antecedent, i.e.,

C(l) = argmin1≤k≤q‖A(xl)k‖, l = 1, ...,K

whereA(.) will be defined in Eq. (15) of Section .

{x̄1, ..., x̄q}. Those clusters lie in an linear manifold of di-
mension≤ q− 1, and ifd is much larger thanq, this will be
a considerable drop in dimension.

We consider that two special cases of the dissimilarity
measure defined in Eq. (13). First, letwx = 0 andwy = 1
and this is equivalent to supervised learning. Thus each
cluster corresponds to a class (i.e., a different output value
from that of other clusters). In locating the closest cluster,
we can ignore distances orthogonal to this subspace, since
they will contribute equally to each class. We might just as
well project theX onto this cluster-spanning subspaceHL.
There is a fundamental dimension reduction, namely that we
need only consider the data in a subspace of dimension at
mostq − 1. Second, letwx = 1 andwy = 0 corresponding
to unsupervised learning, where the clusters do not contain
label related information. The clusters spread out as much
as possible in term of variance and this amounts to finding
principle component (PCA) subspaces of the data. Other
configurations ofwx andwy find a subspace softly combin-
ing the LDA and PCA ones.

In summary, finding the sequences of optimal subspaces
for the most discriminating features (MDF) involves the fol-
lowing steps:

• compute theq × d matrix of clustersM and the common
covariance matrixW (for within-class covariance)

• computeM∗ = MW− 1
2 using the singular value decom-

position (SVD) ofW (sphering the within-class covari-
ance)

• apply theGram-Schmidtprocedure on the columns ofM∗
yieldingv∗l , l = 1, ..., L andL ≤ q − 1.

• compute the basis of the MDF subspacevl = W− 1
2 v∗l ,

l = 1, ..., L.

Practically, we assume that the within-class covarianceW =
σ2I whereI denotes an identity matrix2. Thus, applying

2This is reasonable since modelingW needsd2/2 parameters



the Gram-Schmidtprocedure toM yields the desired basis
vectorsvl, l = 1, ..., q.

Let V = [v1 . . . vL]. Thus the projected vector (fea-
ture)z for the nodeG is

z = Vx (14)

Estimating the Antecedent
Each node (cluster) in the tree represents a rule antecedent.
Without losing generality, we consider an internal nodeAk1

and the goal is to estimate the membership function of
Ak1k2 , k2 = 1, ..., q. The other lower nodes can be handled
similarly.

For notation convenience, we drop the subscriptk1 with-
out causing ambiguity. We assume theantecedentA whose
fuzzy membership function takes the form, fork2 = 1, ..., q

Ak2(z) = exp[−(z− z̄k2)
TD−1

k2
(z− z̄k2)] (15)

wherez is the projected vector on the MDF subspace;Dk2

is a positive determinate matrix and̄z is the center of the
cluster, both needing to be estimated from the data. It is
worthy noting thatAk2 is defined on the MDF subspaceH
rather than the original input space.

Let Zk2 =
[
zT
1 . . . zT

nk2

]T

be projected data matrix

belonging to the clusterAk2 . We then write the equations to
computez andD as follow

z̄k2 = Zk21/nk2 (16)

and
D̂k2 = αΣ̂k2 + βΣ̂ + γρ2I (17)

whereΣ̂k2 denotes each individual covariance matrix;Σ̂ is
the common or within-class covariance matrix;ρ2 is the
shrunken scalar variance. Here weightsα, β andγ sums
to 1 and allows a continuum of transition among qudractic
discriminant (QDA), linear discriminant (LDA) and scalar
covariance models. This method is very similar in flavor
to (Friedman 1989; Hwang & Weng 2000) whose key point
is regularization. By adjusting those weight it is possible
to control the model complexity. QDA is the most complex
model and scalar variance model is the less complex one. In
practice, we set those parameters as a function of the number
of samples belonging to the cluster.

Summary of the Algorithms
Algorithm 2 selects the subset of rules being fired by the
input queryx. Only rules with theq largestantecedentfuzzy
measurement in the base are selected. Instead of exhaustive
linear search the whole base, we use the following greedy
heuristic tree search algorithm.

Inference The goal of inference is that given a baseB and
an input vectorx, return the corresponding estimated output
ŷ. This involves the followings steps:

which is huge for a larged. Thus estimatingW tends to overfit the
data. Moreover, computing SVD ofM is computationally expen-
sive.

Algorithm 2 Select rules:Given a rule baseR and an input
vectorx, return theq rules whose antecedent clusters are the
closest to the query input.
1: c, p ← the root node ofR.
2: for c has been split into sub-clustersdo
3: p ← c
4: c ← the mth child of the nodec, where m =

arg min1≤ki≤q(Aki(x)) andAki(x), ki = 1, ..., q are
defined in Eq. (15).

5: end for
6: Returnp and its child nodes which correspond toq rules.

• use Algorithm 2 finding the parent nodep and its associ-
ated clusters{Ai | i = 1, ..., q}

• compute the projected feature vectorz = Vx, whereV
denotes the projection matrix of the MDF space derived
by the nodep

• compute theyi = θT
i z andȳ =

Pr
i=1 Ai(x)yiPr

i=1 Ai(x) (see Eqs. (5)
and (4) respectively)

Learning The learning of the proposed fuzzy model con-
tains two phases: structure identification and parameter
identification.

In structure identification, a set of initial hierarchical
fuzzy rules are discovered from given a collected labeled
sampleG = {(xl, yl) | l = 1, ..., K}. The result is the
hierarchical organized rule baseB. This involves

• recursively splitG by using Algorithm 1 until all clusters
either the number of members is less than a predefined
valueNT or the dissimilarity of all members of each one
from one another is less than a thresholddT .

• estimate parametersθ of Eq. (5) by performing the
weighted-least-square on each leaf node using its asso-
ciated data samples (see Eq. (6)).

In parameter identification, we assume the structure of the
rule base is fixed. Unlike the structure learning, this step
can be done incrementally, namely, the proposed model is
capable of adapting based on new coming data pair(xt, yt).
This involves

• as in inference, use Algorithm 2 finding the parent nodep
and its associated clusters{Ai | i = 1, ..., q} and compute
the projected vector onto the subspace derived byp, i.e.,
z = Vx

• for all i = 1, ..., q apply the sequence sequence least
square equations listed in Eq. (10) to update the param-
eters in theconsequentpart of the rules

Experiments
Simulation
We show experimentally the proposed method’s feature ex-
traction and real-time learning capabilities on an artificial
dataset. As a first test (2D-cross), we ran the method on
noisy training data drawn from a two dimensional function

y = max{exp(−10x2
1), exp(−50x2

2),
1.25 exp(−5(x2

1 + x2
2)}+ N(0, 0.12)



−1
−0.5

0
0.5

1

−1

−0.5

0

0.5

1
−0.5

0

0.5

1

1.5

The true function

−1
−0.5

0
0.5

1

−1

−0.5

0

0.5

1
−0.5

0

0.5

1

1.5

The fitted function: nMSE=0.025

(a) (c)

10
3

10
4

10
5

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

0.1

0.11

0.12

#Training data points

nM
S

E
 o

n 
te

st
 s

et

2d−cross
100d−cross
200d−cross

10
3

10
4

10
5

0

100

200

300

400

500

600

#Training data points

E
xe

cu
tio

n 
tim

e 
(s

ec
on

ds
)

2d−cross
100d−cross
200d−cross

(b) (d)

Figure 2:Experiment results on the 2D-cross data set.

as shown in Fig. 2 (a). This function is a combination of
nonlinear and linear areas and an interesting test of learning
and generalization capabilities of a learning algorithm(Vi-
jayakumar & Schaal 2000): learning system with simple
model find it hard to capture the nonlinearity well, while
more complex models easily overfit the linear areas. A sec-
ond test (100d-cross) added 98 irrelevant noise features to
the input, each having a densityN(0, 0.0252). We thus ob-
tain a 100-dimension input space. A third test (200d-cross)
added another 100 irrelevant noise features with the density
N(0, 0.05) to the input space of the second test. The learn-
ing curves with these data set are illustrated in Fig. 2 (c). In
all three cases, the normalized mean square error (nMSE) is
reported on an independent test set (1681 points on a41×41
grid in the unit-square in the input space). As the number of
training number increasing, all nMSEs converged to the nice
function approximation result whosenMSE < 0.03 after
100,000 training data points. Fig. 2 (b) shows the learned
surface of the third test after 100,000 training samples pre-
sented. Fig. 2 (d) illustrates the execution time of both train-
ing and test processes with respect the number of training
samples. It is interesting to note that the execution time in-
creases linearly w.r.t. the number of training samples. The
reason is that the learning and inference procedures have the
logarithmic complexity and, thus, the average time of adding
a training sample and retrieving a testing sample does not
change much even though the size of tree has grow tremen-
dously. As considering the third case (200d-cross), execu-
tion time on a 200-dimension data set takes only about 500
seconds for 100,000 sample, in other words, the average
time for a sample is about5 milliseconds. This is fast and
is extremely important for later real-time robot navigation

N

1

2

3 4

5

Figure 3:A map of the second floor of the Engineering Building
at Michigan State University. The loop (desired trajectory) is in-
dicated by the thick solid lines. The floor plane covers an area of
approximately136 × 116 square meters. 5 different corners are
denoted by bold-faced arabic numbers.

experiment.
In summary, the power of feature extraction is due to find-

ing the MDF subspace. The real-time learning performance
is achieved by the hierarchical organization of the rule base.

Range-based Wall Following Behavior
Our mobile humanoid robot, Dav (Zeng, Cherba, & Weng
2003), was used to test our proposed framework. In this
experiment, we trained the robot to navigate along the loop
shown in Fig. 3. The goal is to learn the mapping from a
laser ranger’s raw readingx (dim(x) = 361) to the robot’s
heading and speedy.

We identified five typical types of corridor in this test site:



−3 −1 1 3
0

1

2

3

4

−3 −1 1 3
0

1

2

3

4

(a) (b)

−3 −1 1 3
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

−3 −1 1 3
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

(c) (d)

Figure 4:A subset of training samples. The red arrows denote the
labeled heading for the robot.

’—’, ‘L’, ‘T’, ’+’, and ‘Z’. We acquired 2,215 samples. The
distribution of the 2215 samples is: 215 samples is from the
straight sections; the other 2000 samples are from corners,
with each 400 samples from a corners in Fig. 3. Some train-
ing range images around those corners and intersections are
shown in Fig. 4.

To illustrate the performance of the navigator, we parti-
tioned the 2215 samples into six bins, with first five bins
corresponding to the five corners in Fig.3 respectively and
the sixth bin corresponding to the samples from straight sec-
tions. We performed five tests. In each of these tests, a
bin from a corner was left out for testing. In Fig. 5 (a),
we show the average error histogram of the five tests. The
x-axis denotes the Euclidean distance between the true and
the predicted outputs, while the y-axis denotes the number
of samples. The range of output(v, ω) is v ∈ [0, 1] and
w ∈ [−π/2, π/2]. The average normalized mean square er-
ror is 11.7%.

In order to provide a sense about how stable the navigat-
ing behavior is at a different environment, we designed the
third experiment. We trained the robot at the second floor
while testing it at the third floor that has a different floor
plan. One pass of autonomous navigation in the tested site
took about 37 minutes. The robot was observed to contin-
uously run for 3.5 hours before the onboard batteries were
low. In several such tests conducted so far, the robot all per-
formed well without hitting the wall and objects on the floor.
During these navigation tests, passers-by were allowed to
pass naturally. The mobile robot was not confused by these
passers-by partially because we use automatically derived
discriminating features, which covers the entire scene. In
addition, we measured the minimal clearance from the ob-
stacles in those test sessions. In the worse case the clearance
is of about 50cm, which happens when the robot was in a
narrow corridor.

Conclusion
This paper describes a learning fuzzy framework to model
system dynamics. The power of the proposed method is
to enable the machine to learn a very complex function
y = f(x) between the input (e.g., sensory inputx) and the

0 0.5 1 1.5 2 2.5
0

50

100

150

200

250

300

350

Figure 5:The error histogram of the leave-one-out test.

desired behaviory. Such a function is typically so complex
that writing a program to simulate it accurately is not pos-
sible. The success of learning for such a high-dimensional
input is mainly due to the discriminating feature extraction,
and the real-time speed is due to the logarithmic time com-
plexity.

The key idea of this paper is locally model-fitting whose
learning algorithm first partitions the space into local re-
gions. In each of those regions, a simple models (e.g., TS
model) is used to model the input-output function. The num-
ber and the organization of local models account for the non-
linearity and the complexity of the problem. This method is
suitable for incremental learning, especially in the situation
where limited knowledge exists about the target system with
high-dimensional input.

References
Atkeson, C. G.; Moore, A. W.; and Schaal, S. 1997. Locally
weighted learning.Artificial Intelligence Review11(1-5):11–73.

Friedman, J. 1989. Regularized discriminant analysis.Journal of
the American Statistical Association84:165–175.

Hwang, W. S., and Weng, J. 2000. Hierarchical discriminant re-
gression.IEEE Trans. Pattern Analysis and Machine Intelligence
22(11):1277–1293.

Lin, C.-T., and Lee, C. G. 1996.Neural Fuzzy Systems: A Neuro-
Fuzzy Synergism to Intelligent Systems. Prentice-Hall PTR.

Mardia, K. V.; Kent, J. T.; and Bibby, J. M. 1979.Multivariate
Analysis. London, New York: Academic Press.

Roweis, S. T., and Saul, L. K. 2000. Nonlinear dimensionality
reduction by locally linear embedding.Science290:2323–2326.

Takagi, T., and Sugeno, M. 1985. Fuzzy identification of systems
and its applications to modeling and control.IEEE Transactions
on Systems, Man and Cybernetics15(1):116–132.

Vijayakumar, S., and Schaal, S. 2000. Locally weighted pro-
jection regression: An o(n) algorithm for incremental real time
learning in high dimensional space. InProc. of Seventeenth Inter-
national Conference on Machine Learning (ICML2000), 1079–
1086.

Zeng, S.; Cherba, D. M.; and Weng, J. 2003. Dav developmental
humanoid: The control architecture and body. InIEEE/ASME
International Conference on Advanced Intelligent Mechatronics,
974–980.


