
Learning Macros with an Enhanced LZ78 Algorithm

Forrest Elliott and Manfred Huber
Department of Computer Science and Engineering

The University of Texas at Arlington, Arlington, Texas 76019-0015
{elliott, huber}@cse.uta.edu

Abstract
 One application of the Lempel-Ziv LZ78 algorithm,
other than compression, is learning repeating sequences in a
data stream One shortcoming of the algorithm though is its
slow learning rate. In this paper we enhance the algorithm
for improved performance from a learning perspective and
apply it to the learning of user macros in a computer
desktop environment. Once a macro is learned it can be
predicted and offered back at opportune times. With the
enhanced algorithm, it is possible for a macro to be learned
in as few as two exposures to a sequence.

Introduction
 The term commonly associated with automating user
actions is creating a “macro” for those actions. Just as one
would operate a tape recorder, a macro is recorded and
then played back. Consider a scenario where the recorder
is never shut off and an algorithm is put in place to learn
the user’s macro and the macro’s start and end points
autonomously. The type of algorithm needed to
accomplish this goal is one capable of learning sequences
of actions. The Lempel-Ziv LZ78 algorithm (Ziv and
Lempel 1978), with its dictionary tree, is such an
algorithm.
 Once the sequence and its demarcation points are
learned, the macro can be offered back to the user when
the start point is encountered. The actions in the macro can
be displayed to the user as a series of small pictures in a
manner similar to a video editing application. For example,
the list of actions to print a document might look like: “file
→ print → number of copies → 5 → ok”. The user may
then play the offered macro.
 This paper presents an approach to learning macros
without resorting to a brute force search of the user’s
action history. A brute force search is capable of finding
any two matching sequence exposures but the overhead of
such a search is high. In particular, the overhead
complexity is at least proportional to the length of the
user’s history. With the LZ78 algorithm, the brute force
search through the entire history that has to be performed
after every user action is replaced with a dictionary sub
tree search of only the last few user actions.

Copyright © 2005, American Association for Artificial Intelligence
 (www.aaai.org). All rights reserved.

 A significant problem when using the LZ78 algorithm
though is that the algorithm learns slowly. Many exposures
of a sequence are required for a sequence to be represented
in the algorithm’s dictionary. Typically, the minimum
number of sequence exposures required to learn a macro is
proportional to the length of the macro. This paper
proposes a learning rate enhancement to the LZ78
algorithm. With the enhancement, a repeating sequence
can be learned in as few as two exposures to the sequence.
 The approach in this paper draws upon preexisting
methods and extends them by introducing a learning rate
enhancement to the LZ78 algorithm and applying the
modified version to learning macros. Furthermore, it
develops a novel technique to autonomously learn start and
end points for the macros.

Related Work
 A landmark contribution to sequential prediction models
was provided by M. Feder (Feder et al. 1992). Feder
showed that predictability can be described in terms of
compressibility. In particular he shows that the Lempel-Ziv
LZ78 incremental parsing algorithm in effect becomes a
sequence predictor in the long term.
 The LZ78 algorithm has been extended many times and
in various ways by others. One contribution is the “LeZi-
update” method by A. Bhattacharya (Bhattacharya and Das
2002). The LeZi-update method attempts to solve the
limitations of location-based mobility tracking by
designing a path-based mobility tracking system which
learns user location paths. In this variation the algorithm
was modified so that a trie graph is formed whereby all
low Markov “orders” are represented in the graph. An
important precept in this variant is that the Lempel-Ziv
algorithm can be applied to a variety of technology areas.
Especially important are those areas that are able to benefit
from learning.
 Another LZ78 variation is the “Active LeZi” algorithm
by K. Gopalratnam (Gopalratnam and Cook 2003). This
contribution is an enhancement to Bhattacharya’s LeZi-
update method. The enhancement is to limit the depth of
the trie graph to the length of the longest phrase seen with
classical LZ78 parsing. In this way trie graphs may be
constructed with fewer nodes without loss of predictive
accuracy.
 Another form of sequence prediction is learning by
example for the purpose of imitation. P. Sandanayake

(Sandanayake and Cook 2002) presents a system where an
imitating agent learns a controlling agent’s actions in the
Wumpus World game. In his work the interaction of a
player agent with the Wumpus World game is monitored.
The monitoring allows the agent’s play strategy to be
extracted. Once extracted, the agent’s policy can then be
compared to the policy learned by the monitoring
algorithm. This imitation and comparison is the same sort
of comparison used in the “Turing Test” (Russell and
Norvig 1995). The monitoring algorithm should be able to
mimic the game agent. Likewise, when learning macros,
macros offered to the user should mimic the user.

Lempel – Ziv Algorithm
 The Lempel-Ziv 1978 (LZ78) algorithm is a lossless,
adaptive dictionary, compression scheme. The technique
exactly reproduces the original data after encoding and
decoding. In an adaptive dictionary compression scheme,
text is translated into dictionary entries and vice versa on
the fly.

Figure 1. LZ78 Dictionary Compression Scheme.

Example
 Consider the input text sequence: “AAB”. Initially there
are no dictionary entries in the encoder. When the first
character “A” is input to the encoder the empty dictionary
causes the first dictionary entry: A → 00 hex. The
character “A” is forwarded to the decoder as a code word.
When the next character “A” is input to the encoder the
existing dictionary entry is found and 00 hex is marked as
the current context. When the next character “B” is input,
the dictionary entry AB → 01 hex is created. Then 00 hex
and the character B, the first non matching symbol, are
forwarded as code words to the decoder. Repeating this
basic process for other sequences, a series of code words
will take on the following repeating doublet format:

(dictionary index) (non matching char), (…)(…), …

 Consider an input text string of “AABABC”. The
encoder’s output sequence becomes:

(null) (A), (00 hex) (B), (01 hex) (C)

Encoder parsing is often shown on example input strings
for notational convenience. For this example string the

encode parsing is: A, AB, ABC. The code words and
dictionary entries for the string “AABABC” are shown in
Figure 1. By inverting the process it can be seen that a
corresponding dictionary can be constructed at the
decoder. Each codeword received at the decoder causes a
new dictionary entry on its end.
 If the LZ78 dictionary is viewed as a tree the graph of
the example sequence would be as shown in Figure 2.

Figure 2. LZ78 Dictionary for Sequence “AABABC”.

 Another example of an LZ78 dictionary tree is the one
shown in Figure 3. This tree is formed when encoding the
sequence “ABCABBCCD”.

Figure 3. LZ78 Dictionary for Sequence "ABCABBCCD".

Enhanced Lempel – Ziv
 One disadvantage of the LZ78 algorithm, and of any
finite-context method, is that it converges slowly when
used for prediction. The LZ78 algorithm is a good
sequence predictor only after having been exposed to a
long input sample.

Three Enhancement Rules
 The LZ78 enhancement presented here is a learning rate
enhancement. Although LZ78 is a greedy algorithm for
learning, the changes presented here increase the greed
characteristic even more. Basically, the goal is to minimize
the number of occurrences required to learn a repeated
sequence.
 Recall the construction of the dictionary tree as input
text is revealed. A tree branch is followed until a non-
matching character occurs. At this time a new leaf is
appended to the end of the current branch or context. As
stipulated by the LZ78 algorithm, the current context
pointer is reset to the root when the leaf is added. It is this
resetting the context pointer to the root which causes a loss
of sequence or context information. To address the issue,
the following augmenting rules are proposed.

1. Add a “next node” pointer that represents the next
character in the original sequence.

A

Root

B

B

C

C

D

Encoder Decoder

Input
Text

Code
Words

Output
Text

Dictionary:
Input Output
Text String Codeword

A 00 hex
AB 01 hex
ABC 02 hex

Dictionary:
Input Output
Codeword Text String

00 hex A
01 hex AB
02 hex ABC

A

Root

B

C

2. When about to add a new leaf to an existing branch –
check the next node pointer. If the character that the next
node pointer points to matches the input character, then
duplicate the next node where the new leaf would
normally be added.

3. When a duplicate leaf is appended (as outlined in 2), let
the current context node pointer continue on from the
duplicate leaf instead of resetting the pointer to the root.

 As a result of rule three, and given the right situation,
the enhanced LZ78 algorithm will add a leaf node without
resetting the current context pointer to the root. The
context information is not lost and, with the duplication of
nodes provided by rule two, the learning rate is improved.
Next Node Pointer
 Recall the LZ78 dictionary tree structure. Each pointer
from parent node to child node represents exactly one
piece of context information. In the sequence “ABC”, for
example, one piece of context information would be that
when A occurs, B follows. Another piece would be that
when B occurs, C follows. The LZ78 dictionary tree
representation is a pointer from node A to node B and a
pointer from node B to node C.
 From a context perspective, the worst case tree
construction scenario is when context information is
discarded. This situation always occurs when a particular
input symbol is occurring for the first time. An example is
the sequence “ABC” and is shown in Figure 4. Each added
node causes the current context pointer to reset to the root.
When the pointer is reset, symbol sequence information
(the context) is lost.

Figure 4. Loss of Context Information.

 On the other hand, no loss of context information occurs
when the character sequence AB is already in the
dictionary tree, the current context is B, and character C is
received next. In this case character C is merely appended
onto character B as shown in Figure 2 (page 2). This is the
best case scenario for dictionary tree construction as the
context of C is retained.
 The “next node pointer” concept is to create a situation
whereby the dictionary tree construction can progress from
Figure 4 to Figure 2 on the second exposure to an identical
sequence. That is, when given the sequence “ABCABC”
the dictionary tree branch of Figure 2 results.
 Consider Figure 4 again but with the addition of next
node pointers. Next node pointers represent the sequence
ordering in the original string. One next node pointer is
from A to B and another next node pointer is from B to C.
The sequence information within ABC is lost in Figure 4
and is completely intact in Figure 5.

Figure 5. Next Node Pointers for Sequence “ABC”.

Next Node Duplication
 Now consider what happens when a second ABC
sequence arrives. When the second A arrives (“ABCA”),
as in the standard LZ78 case, the current context pointer
will be set to point to node A. But when the second B
arrives (“ABCAB”), the second new rule is followed. By
examining the next node pointer from A to B we see that
the sequence “AB” is occurring for a second time and thus
node B can be duplicated as a leaf of A. The tree of
“ABCAB”, using next node duplication, is shown in
Figure 6.

Figure 6. Sequence "ABCAB".

 It is important to note that with the addition of B above
the root child node B was duplicated and appended to A
rather than creating an entirely new B node and appending
it onto A. This difference is important because the
duplicated B node maintains the next node information
about what sequence has occurred in the past. Namely, in
the past node C occurred after B.
 So far (excluding next node pointers) the tree
construction for this example text is no different then what
would be generated using the normal LZ78 algorithm. A
difference will be seen when the next and final symbol is
revealed.
Continue When Duplicating Nodes
 For the third rule consider the dictionary of Figure 6. In
the normal LZ78 algorithm the added new node of B
would cause the current context pointer to reset to the root.
But this is not necessary here. The next node pointer has
accurately identified that sequence “AB” has been seen
twice. Therefore the current context pointer is set to the
duplicated node B (instead of the root) as outlined in rule
three.
 When given the final C in the sequence “ABCABC”
node duplication occurs again as per rule two. The root
child node C is duplicated and appended to node B. The
resulting tree is shown in Figure 7.

A

Root

B C Next
Node

Next
Node

B Next
Node

A

Root

B C
Next
Node

Next
Node

A

Root

B C

Figure 7. Sequence "ABCABC".

 A tree branch similar to Figure 2 has been constructed
on the second occurrence of sequence ABC.

Side Effects
 One side effect of the three rules is the realization that
leaf nodes may be created (1) using the normal LZ78
method criteria or (2) through duplication as described in
the enhanced algorithm. In the first case the leaf node will
have a next node pointer that points to a root child node
since the LZ78 algorithm specifies to reset the context
pointer when a leaf is appended. In the second case the leaf
will again have the next node pointer that points to a root
child node. This is so because the node being duplicated is
always a child of the root and children of the root always
have a next node pointer which point to another child of
the root. Children of the root always have next node
pointer which point to another child of the root because
when a new root child is created the context pointer is
always reset.

Learning
 One sequence that constructs Figure 2 would be
“AABABC”. The sequence parsing is A, AB, ABC.
Another sequence that constructs the branch is
ABC1ABC2ABC3. The sequence parsing is A, B, C, 1,
AB, C2, ABC, 3. Note that at least three exposures are
required to construct branch ABC using the standard LZ78
algorithm. As shown in Figure 7, only two exposures of
the sequence ABC were required to construct the same
branch with the enhanced LZ78 algorithm.
 From this comparison it can be seen that the enhanced
LZ78 algorithm is capable of learning repeating sequences
faster then the standard LZ78 algorithm. This is
accomplished by speeding the creation of dictionary
structures when sequences repeat. The first exposure of a
sequence of unique symbols will always generate child
nodes of the root. These child nodes of the root may then
be duplicated and appended as entire branches when the
sequence repeats.
 A best case, or big-Omega, experiment is performed to
obtain a lower limit on the learning rate improvement. The
experiment consists of ideal repeating sequences.
Consider, for example, the construction of the dictionary
branch ABC using instances of the sequence ABC. For the
standard LZ78 dictionary tree, one sequence which will
construct the branch is:

A, B, C, 1, AB, C2, ABC, 3.

Three exposures of ABC were required to construct the
branch ABC. For the enhanced LZ78 dictionary tree, one
sequence which will construct the branch is:

A, B, C, 1, ABC, 2.

Two exposures of ABC were required to construct the
branch. Table 1 shows the results for sequence
construction lengths from three to six.

Table 1. Idealized Minimum Exposures vs. Sequence Length.

Minimum Exposures For Branch
Construction Sequence Length

LZ78 Enhanced LZ78
3 3 2
4 4 2
5 5 2
6 6 2

 In this idealized setting it is apparent that the best case
learning rate for the LZ78 algorithm is proportional to the
length of the repeating sequence. For the enhanced LZ78
algorithm, the rate is constant. It is possible to learn a
sequence in two exposures. In a non ideal situation, where
the next node pointer does not point to the next input
symbol, the enhanced LZ78 learning rate degenerates to
the standard LZ78 learning rate.

Macro Learning

 A macro can be discovered by first quantifying macro
like characteristics and then looking for those
characteristics in the LZ78 dictionary tree. The start of a
macro is easily identified. The start of the macro is the
first, or one of the first, symbols in the dictionary tree. The
end of the macro requires analysis. The endpoint can be
identified by examining the number of children a node has.
If the node has zero or one child then it is not the last
symbol of a repeating sequence. If the node has two or
more children then it is candidate macro endpoint as
shown in Figure 8.

Figure 8. Candidate Last Symbol Test.

 With this start point and end point understanding, the
last few user actions (the user’s context) can be searched
for in the dictionary tree. If this sequence of actions is
found attached to the root, and a sub tree exists, then all
branches in the sub tree become candidate macros based
on the last symbol test.

C

D

C

…

Candidate Last Symbol Test:
More Than One Child

Therefore Candidate Last Symbol

…

Candidate Last Symbol Test:
 Zero or One Child

Therefore Not Last Symbol

A

Root

B C Next
Node

Next
Node

B Next
Node

C

 Finally, the utility of the candidate macros can be
evaluated. A simple utility is to weight each macro based
on its visitation probability. Other weighing methods are
possible (for more details and evaluation of different utility
functions see (Elliott 2004)). Once the macros are
weighed, the sequence which has occurred most frequently
in the past can be offered back to the user.

Performance Study
 The LZ78 and the enhanced LZ78 encoding algorithms
were implemented and fed with identical input data. With
identical input the approximate amount of compression
and the number of dictionary nodes can be directly
compared. In other words, the benefit of predicting more
macros (provided by the next node pointers) can be
compared with the new cost of duplicating nodes. This is
the innate trade off of the enhancement. Translating the
duplicating node cost into memory and time overheads
would be implementation dependant.

Representative Scenario
 A “printing” macro test scenario was created in a
situational environment likely to occur. One goal of the
test was to compare learning rate performance.
 The test scenario calls for the user to launch a file from a
desktop shortcut and then print the file with a certain
consistent set of options. The user closes the file and then
works in other applications. The idea of the scenario is that
the printed document might, for example, be some sort of
report that must be printed for a weekly team meeting. The
user works in other applications during the week and only
at specific times does the document need to be printed. The
macro of interest has a length of ten symbols and is shown
in Table 2.
 The macro of interest is then embedded within other
symbols which represent other application actions. For the
macro learning system to succeed, the sequence of interest
must be discovered and learned while other user activity is
occurring. The entire desktop simulation sequence with the

embedded macro subsequence is shown in Table 3. Items
marked with “*” are random numbers with the range
specified. A new random number is generated each
iteration.

Table 2. Macro of Interest.

Symbol Description
app 1 active window change

app 1 1 file
app 1 2 print
Print active window change

print 1 properties
print 2 # copies field
print 3 keyboard 5
print 4 ok
app 1 active window change

app 1 3 close document

 In this simulation the macro of interest has two prefixing
symbols: “desktop” and “desktop 1”. One can see from the
symbol column of Table 3 that symbol “desktop” prefixes
other actions in other application sequences. Note the “z”
in rows three, four and five. z takes on a value of one
through nine in line three and the value is transferred to
lines four and five. In essence, the macro of interest is
intermixed with eight other applications.

Table 3. Simulation Sequence.

Symbol Iterations
desktop

desktop 2-30 *

app 1-9 (=z)

app z 4-99 * 10 to 20
times *

app z 3

1 to 4
times *

desktop
desktop 1
[macro of
interest]

Macro
sequence

“exposure”
times

Table 4. Predictions for Various Macro Exposures.

Macro Sequence Exposures
1 3 5 7 9 11 13 15 17 19 21 23 25 27

No Predictions % 100 100 100 100 100 100 100 96 71 36 16 5 1 0
Correct Predictions % 0 0 0 0 0 0 0 4 29 64 84 94 99 100
Number Nodes 34 107 172 233 291 345 397 448 498 547 594 639 685 729

St
an

da
rd

L

Z

Compression % 100 97 95 93 91 89 88 86 85 84 84 83 82 82
No Predictions % 100 100 60 12 0 0 0 0 0 0 0 0 0 0
Correct Predictions % 0 0 40 88 99 100 100 100 100 100 100 100 100 100
Number Nodes 34 111 175 233 289 342 394 444 493 541 588 632 678 722

E
nh

an
ce

d
L

Z

Compression % 100 91 85 82 80 79 78 78 77 77 76 76 76 76

 The sequence in Table 3 was repeated 400 different
times (400 trials). Predictions, nodes, and compression
statistics were collected and averaged over the trials. The
results are shown in Table 4.
 If the extraction algorithm made an average of zero
predictions in the 400 trials then a value of 0 is entered in
the “No Predictions” row. If the algorithm made a
prediction and the prediction was 100% correct then the
row labeled “Correct Predictions” is filled in. The average
number of LZ78 dictionary nodes is shown in the “Number
Nodes” row. Finally if the algorithm were to be used to
output compressed code words then the approximate
amount of compression that may be realized is filled in the
“Compression %” row.
 By comparing the “Correct Predictions” rows in Table 4
it can be seen that the learning rates are different between
the algorithms. The macro of interest in this experiment
has a length of ten symbols and a context prefix length of
two symbols. The macro was learned with 100%
effectiveness in 11 exposures using the enhanced LZ78
algorithm and in 27 exposures using the normal LZ78
algorithm. The learning rate in this example has improved
by a factor of about 2.5.
Compression
 By comparing the “Compression” rows in Table 4 it can
be seen that the compression is notable better with the
enhanced LZ algorithm with a small number of exposures.
The compression improvement appears to taper off as the
number of exposures accumulates.
Number of Tree Nodes
 Note the two “Number Nodes” rows in Table 4. The
number of nodes in the enhanced LZ78 tree is slightly less
than the number of nodes in the standard LZ78 tree after
seven exposures. This difference can be explained by
recalling rule three of the enhanced LZ78 algorithm. Rule
three calls for not resetting the current context pointer to
the root when duplicating nodes. Resetting the current
context pointer creates suffix branches of the sequence of
interest with the standard LZ78 algorithm. Not resetting
the context pointer reduces the number of suffix branch
nodes. For this example, fewer suffix nodes are created
and more of the sequence of interest branch has been
constructed after seven exposures.

Conclusions
 In this paper we explored applying and enhancing the
Lempel-Ziv LZ78 algorithm to learn user macros.
Incorporating the LZ78 algorithm prevents a brute force
search of the user’s history. Using the algorithm also
simplifies the macro sequence start and end point
identification search. By merely noting the LZ78
dictionary structure we saw that the macro demarcation
points can be easily identified and that a candidate list of
macros is formed.
 One problem with the Lempel-Ziv algorithm is its slow
learning rate. To improve the learning rate we added a set

of three new algorithmic rules. With these rules the
enhanced LZ78 algorithm can potentially learn a macro
sequence with far fewer sequence exposures. The lower
limit is reduced from proportional to the macro length to a
constant of two.
 Since the LZ algorithm is a one pass algorithm its
compression, and thus its predictive performance, is not
ideal. But with the simple addition of a next node pointer,
the short term predictive capability of the algorithm can be
improved.

References
Bhattacharya, A., and Das, S., LeZi-update: An
Information-theoretic framework for personal mobility
tracking in PCS networks, Wireless Networks, Volume 8,
Issue 2/3, Page 121 – 135, March 2002.

Elliott, F., Learning and Identifying Desktop Macros
Using an Enhanced LZ78 Algorithm, Technical Report
CSE-2004-12, University of Texas at Arlington, 2004.

Feder, M., Merhav, N., and Gutman, M. Universal
Prediction of Individual Sequences, IEEE Transactions on
Information Theory, Volume 38, Issue 4, Page 1258 –
1270, July 1992.

Gopalratnam, K., and Cook, D., Active Le-Zi: An
Incremental Parsing Algorithm for Sequential Prediction,
Proceedings of the Florida Artificial Intelligence Research
Symposium, 2003.

Russell, S., and Norvig, P., Artificial Intelligence a
Modern Approach, Prentice Hall, Page 5 – 6, 1995.

Sandanayake, P., and Cook, D., Imitating Agent Game
Strategies Using a Scalable Markov Model, Proceedings of
the Fifteenth International Florida Artificial Intelligence
Research Society Conference, Page 349 – 353, May 2002.

Ziv, J., and Lempel, A., Compression of Individual
Sequences via Variable-rate Coding, IEEE Transactions on
Information Theory, Volume 24, Issue 5, Page 530 – 536,
September 1978.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /Unknown

 /Description <<
 /JPN <FEFF3053306e8a2d5b9a306f30019ad889e350cf5ea6753b50cf3092542b308030d730ea30d730ec30b9537052377528306e00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /FRA <FEFF004f007000740069006f006e007300200070006f0075007200200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000500044004600200064006f007400e900730020006400270075006e00650020007200e90073006f006c007500740069006f006e002000e9006c0065007600e9006500200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020005500740069006c006900730065007a0020004100630072006f0062006100740020006f00750020005200650061006400650072002c002000760065007200730069006f006e00200035002e00300020006f007500200075006c007400e9007200690065007500720065002c00200070006f007500720020006c006500730020006f00750076007200690072002e0020004c00270069006e0063006f00720070006f0072006100740069006f006e002000640065007300200070006f006c0069006300650073002000650073007400200072006500710075006900730065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e0020006d00690074002000650069006e006500720020006800f60068006500720065006e002000420069006c0064006100750066006c00f600730075006e0067002c00200075006d002000650069006e00650020007100750061006c00690074006100740069007600200068006f006300680077006500720074006900670065002000410075007300670061006200650020006600fc0072002000640069006500200044007200750063006b0076006f0072007300740075006600650020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e00200042006500690020006400690065007300650072002000450069006e007300740065006c006c0075006e00670020006900730074002000650069006e00650020005300630068007200690066007400650069006e00620065007400740075006e00670020006500720066006f0072006400650072006c006900630068002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d00610020007200650073006f006c007500e700e3006f00200064006500200069006d006100670065006d0020007300750070006500720069006f0072002000700061007200610020006f006200740065007200200075006d00610020007100750061006c0069006400610064006500200064006500200069006d0070007200650073007300e3006f0020006d0065006c0068006f0072002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e00300020006500200070006f00730074006500720069006f0072002e00200045007300740061007300200063006f006e00660069006700750072006100e700f50065007300200072006500710075006500720065006d00200069006e0063006f00720070006f0072006100e700e3006f00200064006500200066006f006e00740065002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f8006a006500720065002000620069006c006c00650064006f0070006c00f80073006e0069006e0067002000740069006c0020007000720065002d00700072006500730073002d007500640073006b007200690076006e0069006e0067002000690020006800f8006a0020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e007400650072006e00650020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e00200044006900730073006500200069006e0064007300740069006c006c0069006e0067006500720020006b007200e600760065007200200069006e0074006500670072006500720069006e006700200061006600200073006b007200690066007400740079007000650072002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e0020006d00650074002000650065006e00200068006f00670065002000610066006200650065006c00640069006e00670073007200650073006f006c007500740069006500200076006f006f0072002000610066006400720075006b006b0065006e0020006d0065007400200068006f006700650020006b00770061006c0069007400650069007400200069006e002000650065006e002000700072006500700072006500730073002d006f006d0067006500760069006e0067002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e002000420069006a002000640065007a006500200069006e007300740065006c006c0069006e00670020006d006f006500740065006e00200066006f006e007400730020007a0069006a006e00200069006e006700650073006c006f00740065006e002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006e0020006d00610079006f00720020007200650073006f006c00750063006900f3006e00200064006500200069006d006100670065006e00200071007500650020007000650072006d006900740061006e0020006f006200740065006e0065007200200063006f007000690061007300200064006500200070007200650069006d0070007200650073006900f3006e0020006400650020006d00610079006f0072002000630061006c0069006400610064002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e0020004500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007200650071007500690065007200650020006c006100200069006e0063007200750073007400610063006900f3006e0020006400650020006600750065006e007400650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f0069006400610061006e0020006c0075006f006400610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e002000740075006c006f0073007400750073006c00610061007400750020006f006e0020006b006f0072006b006500610020006a00610020006b007500760061006e0020007400610072006b006b007500750073002000730075007500720069002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a0061002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e0020004e00e4006d00e4002000610073006500740075006b0073006500740020006500640065006c006c00790074007400e4007600e4007400200066006f006e0074007400690065006e002000750070006f00740075007300740061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000500044004600200063006f006e00200075006e00610020007200690073006f006c0075007a0069006f006e00650020006d0061006700670069006f00720065002000700065007200200075006e00610020007100750061006c0069007400e00020006400690020007000720065007300740061006d007000610020006d00690067006c0069006f00720065002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e002000510075006500730074006500200069006d0070006f007300740061007a0069006f006e006900200072006900630068006900650064006f006e006f0020006c002700750073006f00200064006900200066006f006e007400200069006e0063006f00720070006f0072006100740069002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f80079006500720065002000620069006c00640065006f00700070006c00f80073006e0069006e006700200066006f00720020006800f800790020007500740073006b00720069006600740073006b00760061006c00690074006500740020006600f800720020007400720079006b006b002e0020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e00200044006900730073006500200069006e006e007300740069006c006c0069006e00670065006e00650020006b0072006500760065007200200073006b00720069006600740069006e006e00620079006700670069006e0067002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e00740020006d006500640020006800f6006700720065002000620069006c0064007500700070006c00f60073006e0069006e00670020006600f60072002000700072006500700072006500730073007500740073006b0072006900660074006500720020006100760020006800f600670020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e00200044006500730073006100200069006e0073007400e4006c006c006e0069006e0067006100720020006b007200e400760065007200200069006e006b006c00750064006500720069006e00670020006100760020007400650063006b0065006e0073006e006900740074002e>
 /ENU <FEFF005500730065002000740068006500730065002000730065007400740069006e0067007300200074006f0020006300720065006100740065002000500044004600200064006f00630075006d0065006e0074007300200077006900740068002000680069006700680065007200200069006d0061006700650020007200650073006f006c007500740069006f006e00200066006f0072002000680069006700680020007100750061006c0069007400790020007000720065002d007000720065007300730020007000720069006e00740069006e0067002e0020005400680065002000500044004600200064006f00630075006d0065006e00740073002000630061006e0020006200650020006f00700065006e00650064002000770069007400680020004100630072006f00620061007400200061006e0064002000520065006100640065007200200035002e003000200061006e00640020006c0061007400650072002e002000540068006500730065002000730065007400740069006e006700730020007200650071007500690072006500200066006f006e007400200065006d00620065006400640069006e0067002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

