
A Hill-climbing Landmarker Generation Algorithm Based on Efficiency
and Correlativity Criteria

Daren Ler, Irena Koprinska, and Sanjay Chawla

School of Information Technologies, University of Sydney
Madsen Building F09, University of Sydney, NSW 2006, Australia

{ler, irena, chawla}@it.usyd.edu.au

Abstract
For a given classification task, there are typically several
learning algorithms available. The question then arises:
which is the most appropriate algorithm to apply. Recently,
we proposed a new algorithm for making such a selection
based on landmarking - a meta-learning strategy that utilises
meta-features that are measurements based on efficient
learning algorithms. This algorithm, which creates a set of
landmarkers that each utilise subsets of the algorithms being
landmarked, was shown to be able to estimate accuracy
well, even when employing a small fraction of the given
algorithms. However, that version of the algorithm has
exponential computational complexity for training. In this
paper, we propose a hill-climbing version of the landmarker
generation algorithm, which requires only polynomial
training time complexity. Our experiments show that the
landmarkers formed have similar results to the more
complex version of the algorithm.

1. Introduction
The choice of machine learning algorithm can be a vital
factor in determining the success or failure of a learning
solution. Theoretical (Wolpert, 2001), as well as empirical
results (Michie et al., 1994) suggest that no one algorithm
is generically superior; this means that we cannot always
rely on one particular algorithm to solve all our learning
problems. Accordingly, selection is typically done via
some form of holdout testing. However, with the growing
plethora of machine learning algorithms, and because
several different representations are usually reasonable for
a given problem, such evaluation is often computationally
unviable. As an alternative, some meta-learning (Giraud-
Carrier et al., 2004; Vilalta and Drissi, 2002) techniques
utilise past experience or meta-knowledge in order to learn
when to use which learning algorithm.
 As with standard machine learning, the success of meta-
learning is greatly dependent upon the quality of the
features chosen. And while various strategies for defining
such meta-features have been proposed (e.g. Kalousis and
Hilario, 2001; Brazdil et al., 1994; Michie et al., 1994),

Copyright © 2005, American Association for Artificial Intelligence
 (www.aaai.org). All rights reserved.

there has been no consensus on what constitutes good
features.
 Landmarking (Fürnkranz and Petrak, 2001; Pfahringer
et al., 2000) is a new and promising approach that
characterises datasets by directly measuring the
performance of simple and fast learning algorithms called
landmarkers. However, the selection of landmarkers is
typically done in an ad hoc fashion, with the landmarkers
generated focused on characterising an arbitrary set of
algorithms. In previous work (Ler et al., 2004b, 2004c), we
reinterpreted the role of landmarkers, defining each as a set
of learning algorithms that characterises the pattern of
performance of one specific learning algorithm. As
criteria, we specified that these landmarkers should each
be both efficient and correlated (as compared with the
landmarked algorithm). However, the landmarker
generation algorithm proposed (based on the all-subsets
regression technique (Miller, 2002)) has an exponential
training time computational complexity, making it
unwieldy.
 In this paper, we propose an alternate hill-climbing
landmarker generation algorithm based on the forward
selection (Miller, 2002) method for variable selection in
regression. We show that this version of the landmarker
generation algorithm performs almost as well as the all-
subsets version, while requiring polynomial (as opposed to
exponential) training time complexity.

2. Landmarking and Landmarkers
In the literature (Fürnkranz and Petrak, 2001; Pfahringer et
al., 2000), a landmarker is typically associated with a
single algorithm with low computational complexity. The
general idea is that the performance of a learning algorithm
on a dataset reveals some characteristics of that dataset.
However, in previous Landmarking work (Pfahringer et
al., 2000), despite the presence of two landmarker criteria
(i.e. efficiency and bias diversity), no actual mechanism for
generating appropriate landmarkers were defined, and the
choice of landmarkers was made in an ad hoc fashion.
 In (Ler et al., 2004b, 2004c), landmarking and
landmarkers were redefined. Let: (i) a landmarking
element be an algorithm whose performance is utilised as a
dataset characteristic, and (ii) a landmarker be a function
over the performance of a set of landmarking algorithms,

which resembles the performance (e.g. accuracy) of one
specific learning algorithm; then landmarking is thus the
process of generating a set of algorithm estimators – i.e.
landmarkers.
 Consequently, we also suggest new landmarker criteria.
Previously (Pfahringer et al., 2000), it was suggested that
each landmarking element be (i) efficient, and (ii) bias
diverse with respect to the other chosen landmarkers.
However, as landmarker (and not landmarking element)
criteria, there is no guarantee that the landmarkers selected
via these criteria will be able to characterise the
performance of one, and even less so, a set of candidate
algorithms (Ler et al., 2004b). Instead, in (Ler et al.,
2004b, 2004c), we proposed that each landmarker be: (i)
correlated – i.e. each landmarker should as closely as
possible have its output resemble the performance of the
candidate algorithm being landmarked, and (ii) efficient.

2.1 Using Criteria to Select Landmarkers
Intuitively, two algorithms with similar performance will
be closer to each other in a space of algorithm
performance. Conceptually, the distance between two
algorithms a and l can be regarded as ||a – l||. Also, we may
express ||a – l||2 as ||a||2 + ||l||2 – 2 a.l. Thus, if a is close to l,
this implies that ||a – l||2 is small, and thus that a.l is
relatively large. This pertains to the correlativity criterion
we use to check if a landmarker (e.g. l) is representative of
the performance of some candidate algorithm (e.g. a).
Accordingly, correlation may be measured based on r
(Wickens, 1995):

la

la
la

lala
σσ

),cov(
||||||||

.),(cos ==∠=r

 Several other heuristics similarly apply, including r2 (i.e.
the squared Pearson’s correlation coefficient), Mallow’s Cp
criterion, Akaike and Bayesian Information Criteria (i.e.
AIC and BIC respectively) (Miller, 2002). In terms of
efficiency, simply utilising the (computational) time taken
to run a given landmarker would suffice. However,
aggregating the two into a single heuristic is more difficult;
several methods to do this have been proposed in (Ler et
al., 2004a).

2.2 Potential Landmarking Elements
Essentially, any learning algorithm could be utilised as a
landmarking element. Therefore, the initial search space
for landmarking elements is extremely large. One remedy
is to only consider algorithms that are less complex
versions of the candidate algorithms. Such modifications
may be categorised into two groups:
• Algorithm specific reductions, which relate to the

actual inner workings of one particular algorithm,
and could include: limiting the structure formed
(e.g. decision stumps for decision trees), and/or
limiting the internal search mechanisms within the
algorithm (e.g. using randomness (Dietterich, 1997)).

• Algorithm generic reductions, which relate to
generic modifications that may be applied to any
learning algorithm. As per [4], such modifications
could be similar to the sub-sampling techniques
used in ensemble literature (Dietterich, 1997).

 Another method of doing this, is to utilise a subset set of
the given candidate algorithms itself (Ler et al., 2004b,
2004c). This is described in further detail in Section 3.

3. The Proposed Hill-climbing Landmarker
Generation Algorithm

In previous work (Ler et al., 2004a, 2004b, 2004c), we
reinterpret the role of landmarkers and proposed to use a
subset of the available algorithms as landmarking
elements. More specifically, given a set of candidate
algorithms A = {a1, …, an}, we seek to select a set of
landmarkers L’ = {l1’, …, ln’} (where each li’ is the
landmarker for ai and utilises the landmarking elements
li’.elements) such that: (i) ∀li’ ∈ L’, li’.elements ⊂ A, and
(ii) the union of all li’.elements (i.e. L’.elements) is a
(proper) subset of A. Thus, given the potential
landmarking element sets (i.e. each subset of A), the all-
subsets landmarker generation algorithm would generate
L’ by selecting the landmarking element set (i.e. the subset
of A) that achieved the highest heuristic score. This
method required the computation of ()).(1

1 inn
i

n
i −∑ −
= linear

regression functions, where n = |A|. Given that the
computation of each regression function has complexity
O(m), where m is the number of performance estimates
(i.e. datasets), the complexity of the all-subsets landmarker
generation algorithm is O(nm.2n), which makes the
method unwieldy for high n. (However, note that this
complexity is associated with training time and not runtime
execution – i.e. application on a new dataset) As a more
efficient alternative, we propose a hill-climbing version of
the landmarker generation algorithm, which relates to the
previous version of the algorithm in the same manner that
the standard forward selection (Miller, 2002) relates to all-
subsets regression (Miller, 2002).
 The standard forward selection procedure begins by
assigning no independents – i.e. using only the mean value
of the dependent for estimation. It then iteratively attempts
to add landmarking elements (i.e. independents) one by
one. In each iteration, it first computes the regression
functions that each utilise a set of independents consisting
of the union of the current set of chosen independents and
one of the remaining unused independents. Subsequently,
the best model new_model is selected using some heuristic
or criterion measure (e.g. r2, Cp), and is compared with the
previous model (i.e. the model including all the previously
selected independents) old_model via a F-test. This F-test
checks if the computed F = (SSE(old_model) -
SSE(new_model)) / MSE(new_model) is greater than 4.0
(which is roughly the F value associated with confidence
= 0.95, dfn = 1, and dfd (i.e. n – m – 1) > 10). If this
inequality holds, then: (i) the new model is adopted, (ii) the

newly applied independent is removed from the potential
set of independents, and (iii) we proceed to the next
iteration. Else, the procedure stops and the final adopted
model is old_model. For more details on the forward
selection procedure see (Miller, 2002).
 Essentially, the standard forward selection procedure
restricts the amount of computation by excluding models
that do not include the already chosen independents. More
specifically, given a total number of independents n, in any
iteration i, only n - (i - 1) regression functions need be
constructed and evaluated, each pertaining to the union of
the previously chosen independents and one of the
remaining independents in n that had not been chosen in
any previous iteration.
 Thus, instead of evaluating all possible subsets of A and
computing ()).(1

1 inn
i

n
i −∑ −
= regression functions, the new

hill-climbing landmarker generation algorithm at most
requires the computation of ()).(1

1
1
1 ininn

i −∑ −−−
= regression

functions. This translates to a (training time) complexity of
O(mn3), reducing a previously exponential complexity to a
polynomial one. However, this is a hill-climbing approach,
and thus may not find the optimal model with respect to
the chosen criterion, e.g. r2).

3.1 Algorithm Description
The hill-climbing version of the landmarker generation
algorithm is essentially a slightly more complicated
version of the standard forward selection procedure
described in the previous section; it is described in Figure
1. As per the previous all-subsets version of the algorithm,
the general idea is to use a subset of the available
algorithms as potential landmarking elements. Loosely,
this idea assumes that: (i) several of the available
algorithms will have similar performance patterns, such
that one pattern is representative of several; and (ii) if a
given algorithm has a very dissimilar performance pattern
(as compared to the other algorithms), that performance
pattern can be correlated to the conjunction of several
others. To re-iterate, given a set of candidate algorithms A
= {a1, …, an}, we seek to select a set of landmarkers L’ =
{l1’, …, ln’} (where each li’ is the landmarker for ai and
utilises the landmarking elements li’.elements) such that:
(i) ∀li’ ∈ L’, li’.elements ⊂ A, and (ii) the union of all
li’.elements (i.e. union(L’.elements)) is a (proper) subset of
A. For example, given A = {a1, a2, a3, a4}, a possible set of
selected landmarkers may correspond to L’, such that
L’.elements = {a1, a2}, and l1’.elements = {a1}, l2’.elements
= {a2}, l3’.elements = {a1, a2}, l4’.elements = {a2}.
 As in the all-subsets version, we require that L’.elements
⊂ A because our objective is to incur less computational
cost then actually evaluating A; without this condition,
there is a chance that L’.elements = A, which would
invalidate the efficiency criterion. Referring back to the
example above, we see that to obtain the performance of
each ai ∈ A, on some new dataset snew, we only have to
evaluate a1 and a2 on snew (i.e. we evaluate a1 and a2, and
use those values to estimate the performance of a3 and a4).
 Thus, if L’.elements = A, we would not have made any

gains in efficiency, as all ai ∈ A would have to be
evaluated. This means that in any iteration of the hill-
climbing algorithm, we must ensure that the union of the
current landmarking algorithms selected must not equal A.
(Note that throughout the remainder of this paper, we use:
the term landmarking elements interchangeably with the
term independents, and the term dependents for the
remaining algorithms – i.e. A \ independents.)

Figure 1. Pseudo code for the proposed hill-climbing landmarker
generation algorithm

Inputs:
- A = {a1, …, an}, a set of n candidate algorithms; and
- for ∀ai ∈ A, },...,,{ ,1, maaa iii

ϕϕϕ = the performance estimates for
algorithm ai on a corresponding set of datasets S = {s1, …, sm}.

Output:
- L’ = {l1’, …, ln’}, a set of landmarkers, where each li’ is the chosen

landmarker for ai.
Let:
- get_regression_fn(dependent, independents) returns the

coefficients of the for the linear regression function corresponding
to the input dependent and independents.

- find_heuristic(coefficients) returns the heuristic (e.g. r2) for the
regression function corresponding to coefficients.

- SSE(coefficients) returns the sum of squared errors associated with
the regression function corresponding to coefficients.

- MSE(coefficients) returns the mean squared error associated with
the regression function corresponding to coefficients.

- ∀ai ∈ A, }...,,{ ,1, maaa iii
ϕϕϕ = be globally accessible

- max_independents = maximum number of algorithms to evaluate.
The hillclimbing landmarker generation algorithm:
generate_landmarkers(A) returns L’
1 L’ = nil
2 for ∀ai ∈ A
3 L[ai] = get_regression_fn(ai, φ)
4 chosen = φ
5 valid = true
6 while valid
7 fns = nil
8 sum_heuristic = nil
9 for ∀ai ∈ A \ chosen
10 for ∀aj ∈ A \ {chosen ∪ ai}
11 fns[ai][aj] = get_regression_fn(ai, chosen ∪ aj)
12 sum_heuristic[aj] += find_heuristic(fns[ai][aj])
13 best_independent = ak | sum_heuristic[ak] =

][_argmax
\

x
chosenAa

aheuristicsum
x∈∀

14 chosen = chosen ∪ best_independent
15 valid_update = false
16 for ∀ai ∈ A
17 if ai ∈ chosen
18 L’[ai] = ai
19 else if [SSE(L’[ai]) – SSE(fns[ai][best_independent])] /

MSE(fns[ai][best_independent]) > 4.0
20 L’[ai] = fns[ai][best_independent]
21 valid_update = true
22 if !valid_update or |chosen| == max_independents
23 valid = false

 It also becomes evident that any chosen landmarking
element ai, must be evaluated, and therefore need not be
estimated. In fact, from our example, we see that l1’ and l2’
are really not landmarkers; they are merely evaluations of
the algorithms a1 and a2. Thus, with each iteration, two
points become clear. The first is that two subsets of A may
be defined: (i) the algorithms to be estimated I = {ai | ai ⊂
A \ current_L’.elements} (i.e. dependents – the algorithms
that require landmarkers; and correspondingly, the
algorithms yet to be chosen – the potential independents or
landmarking elements), and (ii) the algorithms to be
evaluated J = {ai | ai ⊂ current_L’.elements} (i.e. the
chosen landmarking algorithms – represented by the
variable chosen in the pseudo code in Figure 1). Based on
L’.elements from our example, these are: I = {a3, a4}, and
J = {a1, a2}. Secondly, we seek to move one of the
algorithms from I to J. Note that essentially any number of
algorithms (less than |A|) may be moved via a single
iteration. However, doing this increases the complexity of
the algorithm. In fact, when attempting to move |A| – 1
algorithms in a single iteration, we are actually executing
the original all-subsets version of the algorithm.
 With either version of the landmarker generation
algorithm, we begin with I = A and J = φ. To shift k < |A|
algorithms from I to J, we essentially select the k
algorithms that yield the greatest overall utility (i.e.
measured based on the heuristic chosen – e.g. r2 or r2 +
efficiency gained). As an independent, each algorithm
attains a certain amount of correlation to each of its
applicable dependents. Thus, we gauge the utility of each
independent based on the mean correlation with its
applicable dependents (note that the number of applicable
dependents for any potential independent will always be
the same; i.e. in iteration i, there will be |A| – |J| – 1
dependents for each independent). For example, given A =
{a1, a2, a3, a4}, and assuming we wish choose a single
algorithm (k = 1) based solely on r2, then given the r2
values for A in Table 1, we see that as an independent (i.e.
landmarking algorithm), a4 has the highest overall utility.
The calculation for cases where k > 1 is slightly more
complicated, and since the proposed hill-climbing version
only requires the calculation for k = 1, we will not
elaborate further; for a description of the selection method
for k > 1, see (Ler et al., 2004c).
 Another issue that arises when adapting the standard
forward selection to our landmarker generation scenario is
that the original stopping criterion (i.e. F-test) must be
modified. Essentially, the new stopping criteria requires
that: (i) the F-test be adapted to the case where a single
independent is chosen for multiple dependents, and (ii) that
a limit be imposed on the total number of independents so
that L’.elements ⊂ A is ensured (so that a dynamic limit on
the training time computational cost may be imposed).
 The hill-climbing algorithm seeks to mimic standard
forward selection, which in each iteration selects the
independent with the highest criterion measure (e.g. r2).
However, since the proposed algorithm makes this
selection based on an overall utility, it is likely that at least
for some dependents, the independent with the highest

criterion measure is not chosen. To (partially) account for
this, we do not stop attempting to utilise more
independents for any remaining dependent even when an
F-test for that dependent fails. Instead, out stopping
criterion (over all remaining dependents) applies
whenever: (i) the selected independents J reaches a certain
limit – i.e. |J| > the maximum number of algorithm we
wish to evaluate; and (ii) if all the F-tests (i.e. over all
remaining dependents) fail for the currently selected
independent.

Dependent Indep. a1 a2 a3 a4
Mean r2

a1 NA 0.5 0.3 0.7 1.5/3 = 0.5
a2 0.5 NA 0.7 0.6 1.8/3 = 0.6
a3 0.3 0.7 NA 0.8 1.8/3 = 0.6
a4 0.7 0.6 0.8 NA 2.1/3 = 0.7

Table 1. Example r2 values and overall utility of A = {a1, a2, a3,
a4} for the one algorithm case.

3.2 Heuristics for Correlativity and Efficiency
To choose between the various potential landmarkers (i.e.
the regression functions corresponding to the various
independent set options in each iteration), we require a
criterion measure or heuristic that measures the utility of
each remaining dependent (i.e. ∀ai ∈ A \ J) to potential
independent set (i.e. (∀aj ∈ A \ (I ∪ ai)) I ∪ aj) pairing.
Given the specified correlativity and efficiency landmarker
criteria, two heuristics are evaluated. The first is the
squared Pearson product moment coefficient or coefficient
of determination r2. By adopting this basic measure of
correlation, we rely on the stopping criteria L’.elements ⊂
A to ensure the efficiency criterion is met. This means that
in each iteration, the choice of independent is purely
guided by its correlativity utility – i.e. the (computational)
cost over the potential independents is ignored. And the
second, a semi cost-sensitive variant of the plain r2
criterion: r2(ai, lk) + ((eff(A) - eff(lk)) / eff(A)), where ai is
the dependent, lk is the potential landmarker, and A is the
set of all candidate algorithms, and thus r2(ai, lk) is the r2
value observed over the ai – lk pairing, and eff(..) is the
estimated overall computational cost (i.e. the time taken
for training and testing) of its subject. Essentially, (eff(A) –
eff(lk)) / eff(A) corresponds to the amount of efficiency
gained (or time/computation saved) when lk.elements is
evaluated instead of A. Note that we have proposed several
approaches for estimating eff(..) (Ler et al., 2004a, 2004b).
In this paper, we adopt the simpler and less space intensive
method specified in (Ler et al., 2004b), which simply takes
the mean training and runtime computational cost over the
training datasets for each relevant ax in A.

4. Experiments, Results and Analysis
For our experiments we utilise 10 classification learning
algorithms from WEKA (Witten and Frank, 2000) (i.e.
naïve Bayes, k-nearest neighbour (with k = 1 and 7),
polynomial support vector machine, decision stump, J4.8
(a WEKA implementation of C4.5), random forest,
decision table, Ripper, and ZeroR) (i.e as A) and 34
classification datasets randomly chosen from the UCI
repository (Blake and Merz, 1998). Leave-one-out cross-
validation is used to test the proposed landmarker
generation algorithm.

No. Algorithms Evaluated, | L’.elements|
1 2 3 4 5 6 7 8 9

Mean
EG 92.4 85.3 83.6 83.1 82.7 44.1 52.1 23.8 8.4

Mean rs 0.55 0.59 0.68 0.73 0.79 0.81 0.86 0.92 0.97
Mean
AO 71.5 74.1 78.0 80.5 82.9 85.2 88.7 93.1 96.3

Assured
AO 0.0 2.2 6.7 13.3 22.2 33.3 46.7 62.2 80.0

Mean r2 0.64 0.81 0.89 0.92 0.94 0.95 0.96 0.97 0.98

Table 2. Results for the all-subsets version (plain r2)

No. Algorithms Evaluated, | L’.elements|
1 2 3 4 5 6 7 8 9

Mean
EG 97.5 97.1 97.0 88.9 82.7 82.1 67.5 54.2 9.2

Mean rs 0.52 0.59 0.69 0.71 0.76 0.83 0.87 0.91 0.93
Mean
AO 70.7 73.8 78.4 79.7 82.8 86.7 89.4 92.4 94.8

Assured
AO 0.0 2.2 6.7 13.3 22.2 33.3 46.7 62.2 80.0

Mean r2 0.63 0.81 0.87 0.88 0.89 0.91 0.92 0.92 0.93

Table 3. Results for the all-subsets version (r2 + EG)

 For each fold we use 33 of the datasets to generate
landmarkers as described in Section 3. The resultant set of
landmarkers indicates which algorithms must be evaluated
and which estimated (i.e. the algorithms in L’.elements,
and the remaining A \ L’.elements respectively). On the
dataset left out, we first run the algorithms that must me
evaluated and then use their accuracy results (attained via
stratified ten-fold cross-validation) to estimate the
performance of the other algorithms using the regression
functions computed during landmarker generation.
 The version of the algorithm described in Section 3.1
will attempt to find a set of landmarkers L’ such that
|L’.elements| ≤ max_independents (the user specified
parameter) and where the chosen landmarkers only
includes algorithms (i.e. independents) that have not failed

all F-tests. Thus it is possible that the hill-climbing
landmarker generation algorithm returns an L’ such that
|L’.elements| < max_independents. Correspondingly, some
modifications to the proposed algorithm were made in
order to make a direct comparison with the results from the
all-subsets version, which (in those experiments – see (Ler
et al., 2004b)) produces a set of landmarkers for each
possible size of L’.elements < |A|. In order to ensure that a
specific number of independents are utilised (i.e. a specific
number of landmarking algorithms are run), the hill-
climbing version will, when it encounters the situation
where |L’.elements| < max_independents and all F-tests
for the current independent fail, continue to move
algorithms from I to J without changing the chosen models
(i.e. independents) for the remaining algorithm to be
estimated in I. In each such iteration, the dependent
algorithm (i.e. landmarked algorithm) with the model with
lowest utility is moved. Thus, for each dataset/fold, 9 sets
of landmarkers and correspondingly, 9 sets of accuracy
estimates for A are attained (since |A| = 10). The following
three evaluations are reported for each of these sets:

• Efficiency gained (EG): the mean percentage of
computation saved (across the 34 datasets or
folds) by running the corresponding L’.elements
instead of A.

• Rank order correlation (rs): the mean
Spearman’s rank order correlation coefficient rs
(across the 34 datasets or folds), measuring the
rank correlation between: (i) the rank order of the
accuracies estimated via the landmarkers and
regression, and (ii) the rank order of the
accuracies evaluated via ten-fold cross-validation.

• Algorithm-pair ordering (AO): the mean
percentage of algorithm pairings in which the
order predicted via the landmarkers is the same as
that observed via ten-fold cross-validation. Note,
with |A| = 10, there are 10C2 = 45 pairings. Given
that x = |L’.elements| are evaluating (via ten-fold
cross-validation), xC2 algorithm pairs will
correspond to the ordering that is found via ten-
fold cross-validation. We denote this as assured
AO, the pairings that are guaranteed to be correct.

 The results of the all-subsets version of the landmarker
generation algorithm using the plain r2 and r2 + efficiency
gained heuristics are given in Table 2 and 3 respectively,
while the results from the hill-climbing (forward selection)
version are given in Tables 4 and 5.
 From Tables 2 through 5, we observe that the hill-
climbing landmarker generation algorithm quite closely
matches the predictive performance of the all-subsets
version. Correspondingly, we find that even when few
landmarking algorithms are utilised, the generated
landmarkers are still able to produce a reasonable estimate
while making a sizable gain in efficiency. And as with the
all-subsets result, when we allow the generation algorithm
to utilise larger sets of candidate algorithms as landmarkers
(i.e. as we allow larger |L’.elements|), the r2, rs, and AO all

increase, and the efficiency gained decreases, with all the
values approaching the ten-fold cross-validation result.

No. Algorithms Evaluated, | L’.elements|
1 2 3 4 5 6 7 8 9

Mean
EG 92.4 92.4 84.7 84.2 83.8 68.7 51.5 23.5 9.0

Mean rs 0.53 0.47 0.57 0.73 0.79 0.83 0.87 0.92 0.96
Mean
AO 70.8 68.6 72.6 80.0 82.8 86.1 89.4 92.8 96.0

Assured
AO 0.0 2.2 6.7 13.3 22.2 33.3 46.7 62.2 80.0

Mean r2 0.64 0.78 0.85 0.91 0.92 0.93 0.94 0.94 0.95

Table 4. Results for the hill-climbing version (plain r2)

No. Algorithms Evaluated, | L’.elements|
1 2 3 4 5 6 7 8 9

Mean
EG 97.5 97.1 96.7 96.6 88.3 82.0 67.1 49.9 10.6

Mean rs 0.50 0.56 0.74 0.74 0.77 0.84 0.87 0.89 0.94
Mean
AO 69.9 72.6 80.3 80.7 83.4 86.3 89.2 91.7 95.4

Assured
AO 0.0 2.2 6.7 13.3 22.2 33.3 46.7 62.2 80.0

Mean r2 0.63 0.80 0.85 0.87 0.89 0.91 0.91 0.92 0.93

Table 5. Results for the hill-climbing version (r2 + EG)

Acknowledgements
The authors would like to acknowledge the support of

the Smart Internet Technology CRC in this research.

References
Blake, C.; and Merz, C. 1998. UCI Repository of Machine
Learning Databases. University of California, Irvine,
Department of Information and Computer Sciences.
Brazdil, P.; Gama, J.; and Henery, R. 1994. Characterising
the applicability of classification algorithms using meta
level learning. In Proceedings of the European Conference
on Machine Learning, 84-102.
Dietterich, T. 1997. Machine learning research: 4 current
directions. Artificial Intelligence Magazine, 18(4): 97-136.

Fürnkranz, J.; and Petrak, J. 2001. An evaluation of
landmarking variants. In Proceedings of the European
Conference on Machine Learning, Workshop on
Integrating Aspects of Data Mining, Decision Support and
Meta-learning, 57-68.
Giraud-Carrier, C.; Vilalta, R.; and Brazdil, P. 2004.
Introduction to the special issue on meta-learning. Machine
Learning, 54(3): 187-193.
Kalousis, A.; and Hilario, M. 2001. Model selection via
meta-learning: A Comparative Study. International
Journal on Artificial Intelligence Tools, 10(4): 525-554.
Ler, D.; Koprinska, I.; and Chawla, S. 2004a. Comparisons
between heuristics based on correlativity and efficiency for
landmarker generation. In Proceedings of the 4th
International Conference on Hybrid Intelligent Systems, in
press.
Ler, D.; Koprinska, I.; and Chawla, S. 2004b. A
landmarker selection algorithm based on correlation and
efficiency criteria. In Proceedings of the 17th Australian
Joint Conference on Artificial Intelligence, 296-306.
Ler, D.; Koprinska, I.; and Chawla, S. 2004c. A new
landmarker generation algorithm based on correlativity. In
Proceedings of the International Conference on Machine
Learning and Applications, 178-185.
Michie, D.; Spiegelhalter, D.; and Taylor, C. 1994.
Machine Learning, Neural and Statistical Classification.
Ellis Horwood.
Miller, A. 2002. Subset Selection in Regression (2nd
Edition). Chapman and Hall/CRC.
Pfahringer, B.; Bensusan, H.; and Giraud-Carrier, C. 2000.
Meta-learning by landmarking various learning algorithms.
In Proceedings of the International Conference on
Machine Learning, 743-750.
Vilalta, R.; and Drissi, Y. A perspective view and survey
of meta-learning. Artificial Intelligence Review, 18(2): 77-
95.
Wickens, T. 1995. The Geometry of Multivariate Statistics.
LEA Publishers.
Witten, I.; and Frank, E. 2000. Data Mining: Practical
Machine Learning Tools with Java Implementations.
Morgan Kaufmann.
Wolpert, D. 2001. The supervised learning no-free-lunch
theorems. In Proceedings of the Soft Computing in
Industry - Recent Applications, 25-42.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /Unknown

 /Description <<
 /ENU (Use these settings to create PDF documents with higher image resolution for high quality pre-press printing. The PDF documents can be opened with Acrobat and Reader 5.0 and later. These settings require font embedding.)
 /JPN <FEFF3053306e8a2d5b9a306f30019ad889e350cf5ea6753b50cf3092542b308030d730ea30d730ec30b9537052377528306e00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /FRA <FEFF004f007000740069006f006e007300200070006f0075007200200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000500044004600200064006f007400e900730020006400270075006e00650020007200e90073006f006c007500740069006f006e002000e9006c0065007600e9006500200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020005500740069006c006900730065007a0020004100630072006f0062006100740020006f00750020005200650061006400650072002c002000760065007200730069006f006e00200035002e00300020006f007500200075006c007400e9007200690065007500720065002c00200070006f007500720020006c006500730020006f00750076007200690072002e0020004c00270069006e0063006f00720070006f0072006100740069006f006e002000640065007300200070006f006c0069006300650073002000650073007400200072006500710075006900730065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e0020006d00690074002000650069006e006500720020006800f60068006500720065006e002000420069006c0064006100750066006c00f600730075006e0067002c00200075006d002000650069006e00650020007100750061006c00690074006100740069007600200068006f006300680077006500720074006900670065002000410075007300670061006200650020006600fc0072002000640069006500200044007200750063006b0076006f0072007300740075006600650020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e00200042006500690020006400690065007300650072002000450069006e007300740065006c006c0075006e00670020006900730074002000650069006e00650020005300630068007200690066007400650069006e00620065007400740075006e00670020006500720066006f0072006400650072006c006900630068002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d00610020007200650073006f006c007500e700e3006f00200064006500200069006d006100670065006d0020007300750070006500720069006f0072002000700061007200610020006f006200740065007200200075006d00610020007100750061006c0069006400610064006500200064006500200069006d0070007200650073007300e3006f0020006d0065006c0068006f0072002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e00300020006500200070006f00730074006500720069006f0072002e00200045007300740061007300200063006f006e00660069006700750072006100e700f50065007300200072006500710075006500720065006d00200069006e0063006f00720070006f0072006100e700e3006f00200064006500200066006f006e00740065002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f8006a006500720065002000620069006c006c00650064006f0070006c00f80073006e0069006e0067002000740069006c0020007000720065002d00700072006500730073002d007500640073006b007200690076006e0069006e0067002000690020006800f8006a0020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e007400650072006e00650020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e00200044006900730073006500200069006e0064007300740069006c006c0069006e0067006500720020006b007200e600760065007200200069006e0074006500670072006500720069006e006700200061006600200073006b007200690066007400740079007000650072002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e0020006d00650074002000650065006e00200068006f00670065002000610066006200650065006c00640069006e00670073007200650073006f006c007500740069006500200076006f006f0072002000610066006400720075006b006b0065006e0020006d0065007400200068006f006700650020006b00770061006c0069007400650069007400200069006e002000650065006e002000700072006500700072006500730073002d006f006d0067006500760069006e0067002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e002000420069006a002000640065007a006500200069006e007300740065006c006c0069006e00670020006d006f006500740065006e00200066006f006e007400730020007a0069006a006e00200069006e006700650073006c006f00740065006e002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006e0020006d00610079006f00720020007200650073006f006c00750063006900f3006e00200064006500200069006d006100670065006e00200071007500650020007000650072006d006900740061006e0020006f006200740065006e0065007200200063006f007000690061007300200064006500200070007200650069006d0070007200650073006900f3006e0020006400650020006d00610079006f0072002000630061006c0069006400610064002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e0020004500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007200650071007500690065007200650020006c006100200069006e0063007200750073007400610063006900f3006e0020006400650020006600750065006e007400650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f0069006400610061006e0020006c0075006f006400610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e002000740075006c006f0073007400750073006c00610061007400750020006f006e0020006b006f0072006b006500610020006a00610020006b007500760061006e0020007400610072006b006b007500750073002000730075007500720069002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a0061002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e0020004e00e4006d00e4002000610073006500740075006b0073006500740020006500640065006c006c00790074007400e4007600e4007400200066006f006e0074007400690065006e002000750070006f00740075007300740061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000500044004600200063006f006e00200075006e00610020007200690073006f006c0075007a0069006f006e00650020006d0061006700670069006f00720065002000700065007200200075006e00610020007100750061006c0069007400e00020006400690020007000720065007300740061006d007000610020006d00690067006c0069006f00720065002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e002000510075006500730074006500200069006d0070006f007300740061007a0069006f006e006900200072006900630068006900650064006f006e006f0020006c002700750073006f00200064006900200066006f006e007400200069006e0063006f00720070006f0072006100740069002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f80079006500720065002000620069006c00640065006f00700070006c00f80073006e0069006e006700200066006f00720020006800f800790020007500740073006b00720069006600740073006b00760061006c00690074006500740020006600f800720020007400720079006b006b002e0020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e00200044006900730073006500200069006e006e007300740069006c006c0069006e00670065006e00650020006b0072006500760065007200200073006b00720069006600740069006e006e00620079006700670069006e0067002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e00740020006d006500640020006800f6006700720065002000620069006c0064007500700070006c00f60073006e0069006e00670020006600f60072002000700072006500700072006500730073007500740073006b0072006900660074006500720020006100760020006800f600670020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e00200044006500730073006100200069006e0073007400e4006c006c006e0069006e0067006100720020006b007200e400760065007200200069006e006b006c00750064006500720069006e00670020006100760020007400650063006b0065006e0073006e006900740074002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

