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Abstract 
For a given classification task, there are typically several 
learning algorithms available. The question then arises: 
which is the most appropriate algorithm to apply. Recently, 
we proposed a new algorithm for making such a selection 
based on landmarking - a meta-learning strategy that utilises 
meta-features that are measurements based on efficient 
learning algorithms. This algorithm, which creates a set of 
landmarkers that each utilise subsets of the algorithms being 
landmarked, was shown to be able to estimate accuracy 
well, even when employing a small fraction of the given 
algorithms. However, that version of the algorithm has 
exponential computational complexity for training. In this 
paper, we propose a hill-climbing version of the landmarker 
generation algorithm, which requires only polynomial 
training time complexity. Our experiments show that the 
landmarkers formed have similar results to the more 
complex version of the algorithm. 

1. Introduction   
The choice of machine learning algorithm can be a vital 
factor in determining the success or failure of a learning 
solution. Theoretical (Wolpert, 2001), as well as empirical 
results (Michie et al., 1994) suggest that no one algorithm 
is generically superior; this means that we cannot always 
rely on one particular algorithm to solve all our learning 
problems. Accordingly, selection is typically done via 
some form of holdout testing. However, with the growing 
plethora of machine learning algorithms, and because 
several different representations are usually reasonable for 
a given problem, such evaluation is often computationally 
unviable. As an alternative, some meta-learning (Giraud-
Carrier et al., 2004; Vilalta and Drissi, 2002) techniques 
utilise past experience or meta-knowledge in order to learn 
when to use which learning algorithm. 
 As with standard machine learning, the success of meta-
learning is greatly dependent upon the quality of the 
features chosen. And while various strategies for defining 
such meta-features have been proposed (e.g. Kalousis and 
Hilario, 2001; Brazdil et al., 1994; Michie et al., 1994), 
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there has been no consensus on what constitutes good 
features. 
 Landmarking (Fürnkranz and Petrak, 2001; Pfahringer 
et al., 2000) is a new and promising approach that 
characterises datasets by directly measuring the 
performance of simple and fast learning algorithms called 
landmarkers. However, the selection of landmarkers is 
typically done in an ad hoc fashion, with the landmarkers 
generated focused on characterising an arbitrary set of 
algorithms. In previous work (Ler et al., 2004b, 2004c), we 
reinterpreted the role of landmarkers, defining each as a set 
of learning algorithms that characterises the pattern of 
performance of one specific learning algorithm. As 
criteria, we specified that these landmarkers should each 
be both efficient and correlated (as compared with the 
landmarked algorithm). However, the landmarker 
generation algorithm proposed (based on the all-subsets 
regression technique (Miller, 2002)) has an exponential 
training time computational complexity, making it 
unwieldy. 
 In this paper, we propose an alternate hill-climbing 
landmarker generation algorithm based on the forward 
selection (Miller, 2002) method for variable selection in 
regression. We show that this version of the landmarker 
generation algorithm performs almost as well as the all-
subsets version, while requiring polynomial (as opposed to 
exponential) training time complexity.   

2. Landmarking and Landmarkers 
In the literature (Fürnkranz and Petrak, 2001; Pfahringer et 
al., 2000), a landmarker is typically associated with a 
single algorithm with low computational complexity. The 
general idea is that the performance of a learning algorithm 
on a dataset reveals some characteristics of that dataset. 
However, in previous Landmarking work (Pfahringer et 
al., 2000), despite the presence of two landmarker criteria 
(i.e. efficiency and bias diversity), no actual mechanism for 
generating appropriate landmarkers were defined, and the 
choice of landmarkers was made in an ad hoc fashion.  
 In (Ler et al., 2004b, 2004c), landmarking and 
landmarkers were redefined. Let: (i) a landmarking 
element be an algorithm whose performance is utilised as a 
dataset characteristic, and (ii) a landmarker be a function 
over the performance of a set of landmarking algorithms, 



which resembles the performance (e.g. accuracy) of one 
specific learning algorithm; then landmarking is thus the 
process of generating a set of algorithm estimators – i.e. 
landmarkers. 
 Consequently, we also suggest new landmarker criteria. 
Previously (Pfahringer et al., 2000), it was suggested that 
each landmarking element be (i) efficient, and (ii) bias 
diverse with respect to the other chosen landmarkers. 
However, as landmarker (and not landmarking element) 
criteria, there is no guarantee that the landmarkers selected 
via these criteria will be able to characterise the 
performance of one, and even less so, a set of candidate 
algorithms (Ler et al., 2004b). Instead, in (Ler et al., 
2004b, 2004c), we proposed that each landmarker be: (i) 
correlated – i.e. each landmarker should as closely as 
possible have its output resemble the performance of the 
candidate algorithm being landmarked, and (ii) efficient. 

2.1 Using Criteria to Select Landmarkers 
Intuitively, two algorithms with similar performance will 
be closer to each other in a space of algorithm 
performance. Conceptually, the distance between two 
algorithms a and l can be regarded as ||a – l||. Also, we may 
express ||a – l||2 as ||a||2 + ||l||2 – 2 a.l. Thus, if a is close to l, 
this implies that ||a – l||2 is small, and thus that a.l is 
relatively large. This pertains to the correlativity criterion 
we use to check if a landmarker (e.g. l) is representative of 
the performance of some candidate algorithm (e.g. a). 
Accordingly, correlation may be measured based on r 
(Wickens, 1995): 
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 Several other heuristics similarly apply, including r2 (i.e. 
the squared Pearson’s correlation coefficient), Mallow’s Cp 
criterion, Akaike and Bayesian Information Criteria (i.e. 
AIC and BIC respectively) (Miller, 2002). In terms of 
efficiency, simply utilising the (computational) time taken 
to run a given landmarker would suffice. However, 
aggregating the two into a single heuristic is more difficult; 
several methods to do this have been proposed in (Ler et 
al., 2004a). 

2.2 Potential Landmarking Elements 
Essentially, any learning algorithm could be utilised as a 
landmarking element. Therefore, the initial search space 
for landmarking elements is extremely large. One remedy 
is to only consider algorithms that are less complex 
versions of the candidate algorithms. Such modifications 
may be categorised into two groups: 
• Algorithm specific reductions, which relate to the 

actual inner workings of one particular algorithm, 
and could include: limiting the structure formed 
(e.g. decision stumps for decision trees), and/or 
limiting the internal search mechanisms within the 
algorithm (e.g. using randomness (Dietterich, 1997)). 

• Algorithm generic reductions, which relate to 
generic modifications that may be applied to any 
learning algorithm. As per [4], such modifications 
could be similar to the sub-sampling techniques 
used in ensemble literature (Dietterich, 1997). 

 Another method of doing this, is to utilise a subset set of 
the given candidate algorithms itself (Ler et al., 2004b, 
2004c). This is described in further detail in Section 3. 

3. The Proposed Hill-climbing Landmarker 
Generation Algorithm 

In previous work (Ler et al., 2004a, 2004b, 2004c), we 
reinterpret the role of landmarkers and proposed to use a 
subset of the available algorithms as landmarking 
elements. More specifically, given a set of candidate 
algorithms A = {a1, …, an}, we seek to select a set of 
landmarkers L’ = {l1’, …, ln’} (where each li’ is the 
landmarker for ai and utilises the landmarking elements 
li’.elements) such that: (i) ∀li’ ∈ L’, li’.elements ⊂ A, and 
(ii) the union of all li’.elements (i.e. L’.elements) is a 
(proper) subset of A. Thus, given the potential 
landmarking element sets (i.e. each subset of A), the all-
subsets landmarker generation algorithm would generate 
L’ by selecting the landmarking element set (i.e. the subset 
of A) that achieved the highest heuristic score. This 
method required the computation of ( ) ).(1
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regression functions, where n = |A|. Given that the 
computation of each regression function has complexity 
O(m), where m is the number of performance estimates 
(i.e. datasets), the complexity of the all-subsets landmarker 
generation algorithm is O(nm.2n), which makes the 
method unwieldy for high n. (However, note that this 
complexity is associated with training time and not runtime 
execution – i.e. application on a new dataset) As a more 
efficient alternative, we propose a hill-climbing version of 
the landmarker generation algorithm, which relates to the 
previous version of the algorithm in the same manner that 
the standard forward selection (Miller, 2002) relates to all-
subsets regression (Miller, 2002). 
 The standard forward selection procedure begins by 
assigning no independents – i.e. using only the mean value 
of the dependent for estimation. It then iteratively attempts 
to add landmarking elements (i.e. independents) one by 
one. In each iteration, it first computes the regression 
functions that each utilise a set of independents consisting 
of the union of the current set of chosen independents and 
one of the remaining unused independents. Subsequently, 
the best model new_model is selected using some heuristic 
or criterion measure (e.g. r2, Cp), and is compared with the 
previous model (i.e. the model including all the previously 
selected independents) old_model via a F-test. This F-test 
checks if the computed F = (SSE(old_model) - 
SSE(new_model)) / MSE(new_model) is greater than 4.0 
(which is roughly the F value associated with confidence  
= 0.95, dfn = 1, and dfd (i.e. n – m – 1) > 10). If this 
inequality holds, then: (i) the new model is adopted, (ii) the 



newly applied independent is removed from the potential 
set of independents, and (iii) we proceed to the next 
iteration. Else, the procedure stops and the final adopted 
model is old_model. For more details on the forward 
selection procedure see (Miller, 2002). 
 Essentially, the standard forward selection procedure 
restricts the amount of computation by excluding models 
that do not include the already chosen independents. More 
specifically, given a total number of independents n, in any 
iteration i, only n - (i - 1) regression functions need be 
constructed and evaluated, each pertaining to the union of 
the previously chosen independents and one of the 
remaining independents in n that had not been chosen in 
any previous iteration. 
 Thus, instead of evaluating all possible subsets of A and 
computing ( ) ).(1
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hill-climbing landmarker generation algorithm at most 
requires the computation of ( ) ).(1
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functions. This translates to a (training time) complexity of 
O(mn3), reducing a previously exponential complexity to a 
polynomial one. However, this is a hill-climbing approach, 
and thus may not find the optimal model with respect to 
the chosen criterion, e.g. r2). 

3.1 Algorithm Description 
The hill-climbing version of the landmarker generation 
algorithm is essentially a slightly more complicated 
version of the standard forward selection procedure 
described in the previous section; it is described in Figure 
1. As per the previous all-subsets version of the algorithm, 
the general idea is to use a subset of the available 
algorithms as potential landmarking elements. Loosely, 
this idea assumes that: (i) several of the available 
algorithms will have similar performance patterns, such 
that one pattern is representative of several; and (ii) if a 
given algorithm has a very dissimilar performance pattern 
(as compared to the other algorithms), that performance 
pattern can be correlated to the conjunction of several 
others. To re-iterate, given a set of candidate algorithms A 
= {a1, …, an}, we seek to select a set of landmarkers L’ = 
{l1’, …, ln’} (where each li’ is the landmarker for ai and 
utilises the landmarking elements li’.elements) such that: 
(i) ∀li’ ∈ L’, li’.elements ⊂ A, and (ii) the union of all 
li’.elements (i.e. union(L’.elements)) is a (proper) subset of 
A. For example, given A = {a1, a2, a3, a4}, a possible set of 
selected landmarkers may correspond to L’, such that 
L’.elements = {a1, a2}, and l1’.elements = {a1}, l2’.elements 
= {a2}, l3’.elements = {a1, a2}, l4’.elements = {a2}. 
 As in the all-subsets version, we require that L’.elements 
⊂ A because our objective is to incur less computational 
cost then actually evaluating A; without this condition, 
there is a chance that L’.elements = A, which would 
invalidate the efficiency criterion. Referring back to the 
example above, we see that to obtain the performance of 
each ai ∈ A, on some new dataset snew, we only have to 
evaluate a1 and a2 on snew (i.e. we evaluate a1 and a2, and 
use those values to estimate the performance of a3 and a4). 
 Thus, if L’.elements = A, we would not have made any 

gains in efficiency, as all ai ∈ A would have to be 
evaluated. This means that in any iteration of the hill-
climbing algorithm, we must ensure that the union of the 
current landmarking algorithms selected must not equal A. 
(Note that throughout the remainder of this paper, we use: 
the term landmarking elements interchangeably with the 
term independents, and the term dependents for the 
remaining algorithms – i.e. A \ independents.) 

Figure 1. Pseudo code for the proposed hill-climbing landmarker 
generation algorithm 

Inputs:  
- A = {a1, …, an}, a set of n candidate algorithms; and 
- for ∀ai ∈ A, },...,,{ ,1, maaa iii

ϕϕϕ =  the performance estimates for 
algorithm ai on a corresponding set of datasets S = {s1, …, sm}. 

Output: 
- L’ = {l1’, …, ln’}, a set of landmarkers, where each li’ is the chosen 

landmarker for ai. 
Let: 
- get_regression_fn(dependent, independents) returns the 

coefficients of the for the linear regression function corresponding 
to the input dependent and independents. 

- find_heuristic(coefficients) returns the heuristic (e.g. r2) for the 
regression function corresponding to coefficients.  

- SSE(coefficients) returns the sum of squared errors associated with 
the regression function corresponding to coefficients. 

- MSE(coefficients) returns the mean squared error associated with 
the regression function corresponding to coefficients. 

- ∀ai ∈ A, }...,,{ ,1, maaa iii
ϕϕϕ = be globally accessible 

- max_independents  = maximum number of algorithms to evaluate. 
The hillclimbing landmarker generation algorithm: 
generate_landmarkers(A) returns L’ 
1  L’ = nil 
2  for ∀ai ∈ A 
3      L[ai] = get_regression_fn(ai, φ) 
4  chosen = φ 
5  valid = true 
6  while valid 
7      fns = nil 
8      sum_heuristic = nil 
9      for ∀ai ∈ A \ chosen 
10         for ∀aj ∈ A \ {chosen ∪ ai} 
11             fns[ai][aj] = get_regression_fn(ai, chosen ∪ aj) 
12             sum_heuristic[aj] += find_heuristic(fns[ai][aj]) 
13    best_independent = ak | sum_heuristic[ak] = 

][_argmax
\

x
chosenAa

aheuristicsum
x∈∀

 

14    chosen = chosen ∪ best_independent 
15    valid_update = false 
16    for ∀ai ∈ A 
17    if ai ∈ chosen 
18        L’[ai] = ai 
19    else if [SSE(L’[ai]) – SSE(fns[ai][best_independent])] /  

MSE(fns[ai][best_independent]) > 4.0 
20        L’[ai] = fns[ai][best_independent] 
21        valid_update = true 
22    if !valid_update or |chosen| == max_independents 
23        valid = false 



 It also becomes evident that any chosen landmarking 
element ai, must be evaluated, and therefore need not be 
estimated. In fact, from our example, we see that l1’ and l2’ 
are really not landmarkers; they are merely evaluations of 
the algorithms a1 and a2. Thus, with each iteration, two 
points become clear. The first is that two subsets of A may 
be defined: (i) the algorithms to be estimated I = {ai | ai ⊂ 
A \ current_L’.elements} (i.e. dependents – the algorithms 
that require landmarkers; and correspondingly, the 
algorithms yet to be chosen – the potential independents or 
landmarking elements), and (ii) the algorithms to be 
evaluated J = {ai | ai ⊂ current_L’.elements} (i.e. the 
chosen landmarking algorithms – represented by the 
variable chosen in the pseudo code in Figure 1). Based on 
L’.elements from our example, these are: I = {a3, a4}, and 
J = {a1, a2}. Secondly, we seek to move one of the 
algorithms from I to J. Note that essentially any number of 
algorithms (less than |A|) may be moved via a single 
iteration. However, doing this increases the complexity of 
the algorithm. In fact, when attempting to move |A| – 1 
algorithms in a single iteration, we are actually executing 
the original all-subsets version of the algorithm. 
 With either version of the landmarker generation 
algorithm, we begin with I = A and J = φ. To shift k < |A| 
algorithms from I to J, we essentially select the k 
algorithms that yield the greatest overall utility (i.e. 
measured based on the heuristic chosen – e.g. r2 or r2 + 
efficiency gained). As an independent, each algorithm 
attains a certain amount of correlation to each of its 
applicable dependents. Thus, we gauge the utility of each 
independent based on the mean correlation with its 
applicable dependents (note that the number of applicable 
dependents for any potential independent will always be 
the same; i.e. in iteration i, there will be |A| – |J| – 1 
dependents for each independent). For example, given A = 
{a1, a2, a3, a4}, and assuming we wish choose a single 
algorithm (k = 1) based solely on r2, then given the r2 
values for A in Table 1, we see that as an independent (i.e. 
landmarking algorithm), a4 has the highest overall utility. 
The calculation for cases where k > 1 is slightly more 
complicated, and since the proposed hill-climbing version 
only requires the calculation for k = 1, we will not 
elaborate further; for a description of the selection method 
for k > 1, see (Ler et al., 2004c). 
 Another issue that arises when adapting the standard 
forward selection to our landmarker generation scenario is 
that the original stopping criterion (i.e. F-test) must be 
modified. Essentially, the new stopping criteria requires 
that: (i) the F-test be adapted to the case where a single 
independent is chosen for multiple dependents, and (ii) that 
a limit be imposed on the total number of independents so 
that L’.elements ⊂ A is ensured (so that a dynamic limit on 
the training time computational cost may be imposed). 
 The hill-climbing algorithm seeks to mimic standard 
forward selection, which in each iteration selects the 
independent with the highest criterion measure (e.g. r2). 
However, since the proposed algorithm makes this 
selection based on an overall utility, it is likely that at least 
for some dependents, the independent with the highest 

criterion measure is not chosen. To (partially) account for 
this, we do not stop attempting to utilise more 
independents for any remaining dependent even when an 
F-test for that dependent fails. Instead, out stopping 
criterion (over all remaining dependents) applies 
whenever: (i) the selected independents J reaches a certain 
limit – i.e. |J| > the maximum number of algorithm we 
wish to evaluate; and (ii) if all the F-tests (i.e. over all 
remaining dependents) fail for the currently selected 
independent. 

Dependent Indep. a1 a2 a3 a4 
Mean r2 

a1 NA 0.5 0.3 0.7 1.5/3 = 0.5 
a2 0.5 NA 0.7 0.6 1.8/3 = 0.6 
a3 0.3 0.7 NA 0.8 1.8/3 = 0.6 
a4 0.7 0.6 0.8 NA 2.1/3 = 0.7 

Table 1. Example r2 values and overall utility of A = {a1, a2, a3, 
a4} for the one algorithm case. 

3.2 Heuristics for Correlativity and Efficiency 
To choose between the various potential landmarkers (i.e. 
the regression functions corresponding to the various 
independent set options in each iteration), we require a 
criterion measure or heuristic that measures the utility of 
each remaining dependent (i.e. ∀ai ∈ A \ J) to potential 
independent set (i.e. (∀aj ∈ A \ (I ∪ ai)) I ∪ aj) pairing. 
Given the specified correlativity and efficiency landmarker 
criteria, two heuristics are evaluated. The first is the 
squared Pearson product moment coefficient or coefficient 
of determination r2. By adopting this basic measure of 
correlation, we rely on the stopping criteria L’.elements ⊂ 
A to ensure the efficiency criterion is met. This means that 
in each iteration, the choice of independent is purely 
guided by its correlativity utility – i.e. the (computational) 
cost over the potential independents is ignored. And the 
second, a semi cost-sensitive variant of the plain r2 
criterion: r2(ai, lk) + ((eff(A) - eff(lk)) / eff(A)), where ai is 
the dependent, lk is the potential landmarker, and A is the 
set of all candidate algorithms, and thus r2(ai, lk) is the r2 
value observed over the ai – lk pairing, and eff(..) is the 
estimated overall computational cost (i.e. the time taken 
for training and testing) of its subject. Essentially, (eff(A) – 
eff(lk)) / eff(A) corresponds to the amount of efficiency 
gained (or time/computation saved) when lk.elements is 
evaluated instead of A. Note that we have proposed several 
approaches for estimating eff(..) (Ler et al., 2004a, 2004b). 
In this paper, we adopt the simpler and less space intensive 
method specified in (Ler et al., 2004b), which simply takes 
the mean training and runtime computational cost over the 
training datasets for each relevant ax in A. 
 
 



4. Experiments, Results and Analysis 
For our experiments we utilise 10 classification learning 
algorithms from WEKA (Witten and Frank, 2000) (i.e. 
naïve Bayes, k-nearest neighbour (with k = 1 and 7), 
polynomial support vector machine, decision stump, J4.8 
(a WEKA implementation of C4.5), random forest, 
decision table, Ripper, and ZeroR) (i.e as A) and 34 
classification datasets randomly chosen from the UCI 
repository (Blake and Merz, 1998). Leave-one-out cross-
validation is used to test the proposed landmarker 
generation algorithm. 

No. Algorithms Evaluated, | L’.elements|  
1 2 3 4 5 6 7 8 9 

Mean 
EG 92.4 85.3 83.6 83.1 82.7 44.1 52.1 23.8 8.4

Mean rs 0.55 0.59 0.68 0.73 0.79 0.81 0.86 0.92 0.97
Mean 
AO 71.5 74.1 78.0 80.5 82.9 85.2 88.7 93.1 96.3

Assured 
AO 0.0 2.2 6.7 13.3 22.2 33.3 46.7 62.2 80.0

Mean r2 0.64 0.81 0.89 0.92 0.94 0.95 0.96 0.97 0.98

Table 2. Results for the all-subsets version (plain r2) 

No. Algorithms Evaluated, | L’.elements|  
1 2 3 4 5 6 7 8 9 

Mean 
EG 97.5 97.1 97.0 88.9 82.7 82.1 67.5 54.2 9.2

Mean rs 0.52 0.59 0.69 0.71 0.76 0.83 0.87 0.91 0.93
Mean 
AO 70.7 73.8 78.4 79.7 82.8 86.7 89.4 92.4 94.8

Assured 
AO 0.0 2.2 6.7 13.3 22.2 33.3 46.7 62.2 80.0

Mean r2 0.63 0.81 0.87 0.88 0.89 0.91 0.92 0.92 0.93

Table 3. Results for the all-subsets version (r2 + EG) 

 For each fold we use 33 of the datasets to generate 
landmarkers as described in Section 3. The resultant set of 
landmarkers indicates which algorithms must be evaluated 
and which estimated (i.e. the algorithms in L’.elements, 
and the remaining A \ L’.elements respectively). On the 
dataset left out, we first run the algorithms that must me 
evaluated and then use their accuracy results (attained via 
stratified ten-fold cross-validation) to estimate the 
performance of the other algorithms using the regression 
functions computed during landmarker generation. 
 The version of the algorithm described in Section 3.1 
will attempt to find a set of landmarkers L’ such that 
|L’.elements| ≤ max_independents (the user specified 
parameter) and where the chosen landmarkers only 
includes algorithms (i.e. independents) that have not failed 

all F-tests. Thus it is possible that the hill-climbing 
landmarker generation algorithm returns an L’ such that 
|L’.elements| < max_independents. Correspondingly, some 
modifications to the proposed algorithm were made in 
order to make a direct comparison with the results from the 
all-subsets version, which (in those experiments – see (Ler 
et al., 2004b)) produces a set of landmarkers for each 
possible size of L’.elements < |A|. In order to ensure that a 
specific number of independents are utilised (i.e. a specific 
number of landmarking algorithms are run), the hill-
climbing version will, when it encounters the situation 
where |L’.elements| < max_independents and all F-tests 
for the current independent fail, continue to move 
algorithms from I to J without changing the chosen models 
(i.e. independents) for the remaining algorithm to be 
estimated in I. In each such iteration, the dependent 
algorithm (i.e. landmarked algorithm) with the model with 
lowest utility is moved. Thus, for each dataset/fold, 9 sets 
of landmarkers and correspondingly, 9 sets of accuracy 
estimates for A are attained (since |A| = 10). The following 
three evaluations are reported for each of these sets: 

• Efficiency gained (EG): the mean percentage of 
computation saved (across the 34 datasets or 
folds) by running the corresponding L’.elements 
instead of A. 

• Rank order correlation (rs): the mean 
Spearman’s rank order correlation coefficient rs 
(across the 34 datasets or folds), measuring the 
rank correlation between: (i) the rank order of the 
accuracies estimated via the landmarkers and 
regression, and (ii) the rank order of the 
accuracies evaluated via ten-fold cross-validation. 

• Algorithm-pair ordering (AO): the mean 
percentage of algorithm pairings in which the 
order predicted via the landmarkers is the same as 
that observed via ten-fold cross-validation. Note, 
with |A| = 10, there are 10C2 = 45 pairings. Given 
that x = |L’.elements| are evaluating (via ten-fold 
cross-validation), xC2 algorithm pairs will 
correspond to the ordering that is found via ten-
fold cross-validation. We denote this as assured 
AO, the pairings that are guaranteed to be correct. 

 The results of the all-subsets version of the landmarker 
generation algorithm using the plain r2 and r2 + efficiency 
gained heuristics are given in Table 2 and 3 respectively, 
while the results from the hill-climbing (forward selection) 
version are given in Tables 4 and 5. 
 From Tables 2 through 5, we observe that the hill-
climbing landmarker generation algorithm quite closely 
matches the predictive performance of the all-subsets 
version. Correspondingly, we find that even when few 
landmarking algorithms are utilised, the generated 
landmarkers are still able to produce a reasonable estimate 
while making a sizable gain in efficiency. And as with the 
all-subsets result, when we allow the generation algorithm 
to utilise larger sets of candidate algorithms as landmarkers 
(i.e. as we allow larger |L’.elements|), the r2, rs, and AO all 



increase, and the efficiency gained decreases, with all the 
values approaching the ten-fold cross-validation result. 

No. Algorithms Evaluated, | L’.elements|   
1 2 3 4 5 6 7 8 9 

Mean 
EG 92.4 92.4 84.7 84.2 83.8 68.7 51.5 23.5 9.0

Mean rs 0.53 0.47 0.57 0.73 0.79 0.83 0.87 0.92 0.96
Mean 
AO 70.8 68.6 72.6 80.0 82.8 86.1 89.4 92.8 96.0

Assured 
AO 0.0 2.2 6.7 13.3 22.2 33.3 46.7 62.2 80.0

Mean r2 0.64 0.78 0.85 0.91 0.92 0.93 0.94 0.94 0.95

Table 4. Results for the hill-climbing version (plain r2) 

No. Algorithms Evaluated, | L’.elements|   
1 2 3 4 5 6 7 8 9 

Mean 
EG 97.5 97.1 96.7 96.6 88.3 82.0 67.1 49.9 10.6

Mean rs 0.50 0.56 0.74 0.74 0.77 0.84 0.87 0.89 0.94
Mean 
AO 69.9 72.6 80.3 80.7 83.4 86.3 89.2 91.7 95.4

Assured 
AO 0.0 2.2 6.7 13.3 22.2 33.3 46.7 62.2 80.0

Mean r2 0.63 0.80 0.85 0.87 0.89 0.91 0.91 0.92 0.93

Table 5. Results for the hill-climbing version (r2 + EG) 
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