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Abstract 
One big difficulty in the practical use of support vector 
machines is the selection of a suitable kernel function and 
its appropriate parameter setting for a given application. 
There is no rule for the selection and people have to 
estimate the machine’s performance based on a costly 
multi-trial iteration of training and testing phases. In this 
paper, we describe a method to reduce the model selection 
training time for support vector machines. The main idea is, 
in the process of trying a series of models, the support 
vectors in previously trained machines are used to initialize 
the working set in training a new machine. This 
initialization helps to reduce the number of required 
optimization loops, thus reducing the training time of the 
model selection process. Experimental results on real-life 
datasets show that the training time for each subsequent 
machine can be reduced effectively in a variety of situations 
in the model selection process. The method is applicable to 
different model search strategies and does not affect the 
model selection result. 

Introduction   
In a tutorial paper on support vector machines (SVMs) for 
pattern recognition, Burges (Burges 1998) pointed out 
three main limitations of the support vector learning 
approach. The biggest limitation lies in the choice of the 
kernel and its parameter setting. The second limitation is 
speed and size, in both the training and testing phases, and 
the third limitation is dealing with discrete data. 
Unfortunately, solving the model selection problem for 
SVMs means we must solve the first two major limitations 
mentioned above. 
 
The model selection (MS) problem asks the following 
question (Scheffer and Joachims 1999; Kearns et al. 1995; 
Forster 2000): given an observed data set, which model or 
learning algorithm and with which parameter setting will 
perform best on the unseen data? For SVMs, it is necessary 
to select the most suitable kernel, its parameter value(s), 
and the appropriate error cost. To answer the question, 
candidate models should be tried, and the model with the 
highest estimated performance should be selected. This is a 
                                                 
Copyright © 2005, American Association for Artificial Intelligence  
 (www.aaai.org). All rights reserved. 
 

costly task because it requires multiple trials of training 
and testing models. 
 
In this paper we describe a method to speed up the model 
selection process by reducing the training time of the 
models being considered. The main idea is, in the sequence 
of trying models, the results of previously trained 
machines are reused to train new machines. More 
concretely, the support vectors in previously trained 
machines are used to initialize the working set in training 
each new machine. This initialization of the working set 
helps to reduce the required number of optimization loops, 
so the optimization process can converge more quickly. 
Experimental results on three real-life datasets sat-image, 
letter recognition, and shuttle in the StatLog collection 
(Michie, Spiegelhalter, and Taylor 1994) show that the 
training time for each subsequent machine can be reduced 
from 28.8% to 85.5% depending on situations in the MS 
process. The method is applicable to common model 
search strategies like grid search (Hsu and Lin 2002), 
pattern search (Momma and Bennett 2002), or gradient-
based (Chapelle and Vapnik 2000; Keerthi 2002), and does 
not change the result of model selection. 

Model Selection for Support Vector Machines 

Support Vector Learning 
The support vector learning approach (Vapnik 1995) finds 
the separating hyperplane that maximizes the distance from 
the plane to the training data, either in the input space or in 
the feature space, depending on the choice of kernel. For a 
two-class classification problem, suppose that we are given 
a set of training data S = {(xi, yi)}i=1,…,N, where xi ∈ Rd and 
yi ∈ {-1, 1}; support vector learning finds the optimal 
hyperplane by maximizing the following function: 
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The norm of the plane is determined by a linear 
combination of vectors xi with associated coefficient αi > 
0, called support vectors (SVs). The parameter C controls 
the trade-off between the complexity of the decision 
function and the number of training errors. The decision 
function then takes the form: 
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where K(x, y) is a function calculating the dot product of 
two vectors in the feature space. Different kernel functions 
will produce different types of machines. For example, the 
machine might be a polynomial (polynomial kernel), a 
radial basis function (Gaussian RBF kernel), or a particular 
type of two-layer sigmoidal neural network (sigmoidal 
kernel) (Burges 1998). Common kernels are listed in Table 
1. 
 

Table 1: Common kernel functions. 
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Model Selection for Support Vector Machines 
k-fold cross validation is one of the most widely used 
methods for performance evaluation and model selection, 
not only for SVMs but also for other learning approaches. 
In k-fold cross validation, the available dataset S is divided 
into k disjoint parts S = S1∪S2∪…∪Sk. Models are trained 
on the k-1 parts S1∪S2∪…Si-1∪Si+1∪…Sk and tested on the 
remaining part Si. The performances of k validation tests 
are then averaged. Though the k-fold cross validation 
method is simple, consistent (Shao and Tu 1995), almost 
unbiased (Efron and Tibshirani 1993), and works well in 
many applications (Kohavi 1995); the main drawback of k-
fold cross validation is its high computational cost. For 
evaluating one model, 10-fold cross validation needs 10 
times of training and testing. Another approach to 
estimating the performance of a SVM is to determine its 
upper-bound of error; users then look for the machine that 
has the lowest bound, instead of the lowest error estimated 
by the cross validation. In this way each model is trained 
and tested just one time. Various kinds of bounds have 
been calculated as a function of the training error and the 
complexity of the machine (such as the VC-dimension of 
the machine (Vapnik 1998), the radius-margin ratio 
(Vapnik and Chapelle 2000; Keerthi 2002), and the span of 
support vectors (Chapelle and Vapnik 2000)). 
 

For a given application, the user must choose the type of 
kernel, its parameter value(s), and the error cost for the 
SVM training program. For example, when the Gaussian 
RBF kernel is chosen, the user must select the parameter 
determining the width γ of the function and the penalty 
cost C. Because these two parameters take values in R, 
then there is an infinite number of possible pairs of 
parameters, or infinite models which could be taken into 
consideration. Even when the grid search method is 
applied (Hsu and Lin 2002), the number of candidate 
models is still very large. To reduce this number, one can 
apply a pattern search (Momma and Bennett 2002) in the 
parameter space, or when the derivation of the bounds can 
be calculated or approximated, the gradient method 
(Chapelle and Vapnik 2000; Keerthi 2002) can be used to 
reduce the number of models considered. 
 
All the above model selection methods require trying a 
series of models, or running the SVM learning program 
many times with different parameter values. To speed up 
this process we can apply a data filtering technique to 
reduce the size of the problem (Ou et al. 2003), or seeding 
the initial solution using the solution of another machine of 
the same kernel (DeCoste and Wagstaff 2000). In this 
paper we propose a new method to speed up the training 
phase in MS for SVMs by using SVs in previously trained 
machines to build up the working set in training a new 
machine. This helps to reduce the number of optimization 
loops, and thus can reduce the training time. 

Speeding-up Model Selection 

The General Decomposition Algorithm for SVM 
Training 
Support vector learning solves a constrained quadratic 
optimization of N variables, where N is the number of 
training data. This becomes a heavy task when N is big, 
and there exist a large number of proposed solutions to this 
problem. One common framework that has been described 
in literature, as well as implemented in most free and 
commercial software, is the decomposition algorithm 
described in Table 2. The original big quadratic 
programming (QP) problem is decomposed into a 
sequence of smaller QPs (Osuna, Freund, and Girosi 1997). 
The result of the decomposition method is ensured to be 
consistent with the original problem due to the convexity 
and the uniqueness of the global solution. In this method 
the size of the working set (WS) is specified in advance, to 
be big enough to cover all SVs and small enough not to 
exceed the capacity of the computer (e.g. RAM memory). 
Each small QP on the WS is solved using existing 
techniques, most frequently the sequential minimal 
optimization (SMO) algorithm (Platt 1999), with a faster 
speed and a much smaller memory requirement. After that, 
the   WS   is   updated   by   replacing   vectors   with   zero  



Table 2: Decomposition Algorithm for SVM Training. 
SVM Learning Algorithm 
 
Input: 

a set S of N training examples {(xi,yi)}i=1…N 
the size of the working set l 

Output: 
a set of N coefficient {αi} i=1…N 

 
// Initialization 
1. Set all αi to zero 
2. Select a working set B of size l 
// Optimization 
3. Repeat 
4. Solve the local optimization on B 
5. Update the working set B 
6. Until the global optimization condition is satisfied 
 

 
 
coefficient by other vectors (not in the WS) that does not 
satisfy the optimization conditions (the Karush-Kuhn-
Tucker conditions). The process is repeated until there is 
no vector violating the KKT conditions, or the global 
optimization conditions are met. 

Building the Working Set 
The selection of the WS in the above algorithm has a big 
impact on the convergence of the decomposition method. 
If all support vectors (those with the corresponding αi > 0) 
are selected in the initial WS, then the optimization loop in 
the decomposition method is performed just one time. In 
other words, a better initial working set with as many 
support vectors as possible will produce a closer local 
solution to the global solution, and will lead to a faster 
global convergence. However, in practice we don’t know 
in advance which training vector will be the support vector, 
and in practice there is no way but to randomly initialize 
the working set, e.g. (Dong, Krzyzak, and Suen 2003). We 
can also increase the number of support vectors to be 
included by increasing the size of the WS, but the side 
effect is that this will also increase the optimization time 
on the WS, and therefore will increase the training time 
(Dong, Krzyzak, and Suen 2003). Moreover, the size of 
the WS is limited by the memory of the computer, due to 
the requirement of the kernel matrix.  
 
Our method starts with the fact that support vectors are 
training examples that lie close to the border between two 
classes, and two different machines may have many of 
them in common. This property has been reported in 
literature; for example, on the USPS hand-written digit 
dataset, two different machines trained by two different 
kernels, RBF and polynomial, share more than 80% of 
support vectors (Vapnik 1998). To reconfirm this 
argument we have conducted intensive experiments on 

three datasets, sat-image, letter recognition, and shuttle, 
from the StatLog collection (Michie, Spiegelhalter, and 
Taylor 1994). Details are reported in Figure 1. The results 
of these experiments show that two different machines 
trained by different parameter settings might still share a 
large number of support vectors. In MS context, many 
models must be tried, and we can benefit from using the 
information of previously trained models in training new 
ones. 
 
One simple yet effective way is to select the SVs in trained 
machines as the initial working set for training a new 
machine. This method faces two difficulties. First, when 
the number of classes in the dataset is more than two, then 
the number of SVM required to build-up a classifier is m 
or m*(m-1)/2 binary classifiers depending on whether the 
selected strategy is one-versus-one or one-versus-rest, 
where m is the number of classes. In order to retain the 
information of previously trained machines, we need m or 
m*(m-1)/2 different sets of SVs. The second problem is 
that because the size of the working set is given in advance 
then the total number of SVs may exceed this limitation. In 
our experiments, a FIFO (First In First Out) queue 
structure with the same size as the working set was used to 
store the SVs of previously trained (binary) machines. 
With this structure, all the SVs of the latest trained 
machine (supposed to be closest to the next machine) are 
kept in the initial working set. 

Experiments 
We conducted experiments on three datasets in the StatLog 
collection: sat-image, letter recognition, and shuttle. These 
datasets are summarized in Table 3. They were chosen for 
their generality in dimension, size, number of classes, and 
the class distribution. 
 

Table 3: Datasets used in experiments 
Dataset # Attribute # Class Size 

Sat-image 36 6 4,435 
Letter recognition 16 26 15,000 
Shuttle 9 7 43,500 

 
 
To see the effect of the method in real situations, we 
conducted experiments in different scenarios, including 
fixing the kernel and varying the cost parameter, fixing the 
cost and changing the kernel, and changing both kernel 
and cost parameter. In the first scenario we fixed the kernel 
to be linear and varied the cost parameter from 1 to 10 
(Figure 2: a, b, c). The second scenario was to fix the cost 
parameter at 1 and train the machines with polynomial 
kernels of degree from 2 to 9 (Figure 2: d, e, f). The third 
scenario used Gaussian RBF kernels of the width γ 
changing from 0.01 to 0.1 with a step of 0.01 and varied 
the cost parameter from 1 to 10 (Figure 2: g, h, i). The 
kernel  cache   sizes   were 2000 (sat-image),  2000  (letter  



Figure 1: Support vectors in two different machines learned from three datasets sat-image, letter recognition, and shuttle: (a) 
linear machines learned with different error cost C = 1 and C = 2, (b) polynomial machines of degree two and three learned 
with the same error cost C = 1, (c) RBF machines learned with different cost penalties C = 1 and C = 2. Two different 
machines trained by two different parameter settings may share a big portion of SVs. 
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Figure 2: Reduction in number of required optimization loops and training time on three datasets sat-image (a-d-g), letter 
recognition (b-e-h), and shuttle (c-f-i), and in different situations: the same linear kernel with different cost (a-b-c), 
polynomial kernels of different degree with the same cost, and different RBF kernels with different costs. All measures 
(average number of loops and average training time) are normalized into (0,1]. “WS” stands for the proposed working set 
selection method. 
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recognition), and 10,000 (shuttle). The optimization 
program was an implementation of the SMO algorithm and 
its improvement (Platt 1999; Keerthi et al. 2001). 
Experiments were conducted on a PC Windows XP with 
2.99 GH, 2GB RAM. 
 
Experimental results are reported in Figure 2. In this figure, 
we compare the number of optimization loops and running 
time for each parameter setting on the three datasets. 
Because the numbers of classes are greater than 2 for all 
three datasets then for each parameter setting the training 
program had to run m times, where m is the number of 
classes (using one-versus-rest strategy). For comparison 
purpose, the number of optimization loops and running 
time in Figure 2 were averaged and normalized into (0,1] 
(divided by the maximum value). From the results we can 
see that in every situation the training time for each 
subsequent machine was reduced significantly, from 22.8% 
(shuttle dataset, RBF kernel, error cost 2) to 85.5% (sat-
image dataset, linear kernel, cost 7). 

Conclusion 
We have described a method to speed up the training phase 
in model selection for support vector machines. The 
method utilizes the support vectors of previously trained 
machines to initialize the working set in training a new 
machine. This initialization scheme makes the training 
process converge more quickly. Experiment results on real 
life datasets show that the training time of subsequent 
machines can be reduced significantly. 
 
In comparing with other methods, the proposed one has 
two main advantages. First, it does not change the result of 
model selection. This is because the proposed method aims 
at initializing a better working set, leading to a faster 
convergence in training. In (Ou et al. 2003), a data filtering 
method is used to reduce the number of data in the dataset, 
or to reduce the size of the optimization problem. The data 
reduction makes the model selection process run faster, but 
the result is not the same as working on the entire available 
dataset due to the distortion of the training data. Moreover, 
the data-filtering algorithm has its own parameter k (in k-
NN classification), so for each application it is necessary to 
do another model selection job in order to find the best 
value of k. The second advantage is the applicability of the 
proposed method in different situations and for different 
model search strategies like grid search (Hsu and Lin 
2002), pattern search (Momma and Bennett 2002), and 
gradient-based methods (Chapelle and Vapnik 2000; 
Keerthi 2002). The alpha-seeding method in (DeCoste and 
Wagstaff 2000) is limited to one kind of kernel and with a 
limited scheme of varying cost parameter. Experiment 
results on the adult dataset in the UCI corpus with linear 
kernel show the effectiveness of the alpha-seeding method 
(a reported of 5 times faster), but for machines with 

different kernels and different cost values, this method is 
not applicable.  
The future work of this research is to enhance the way we 
utilize previously trained machines in initializing the 
working set, for example, using not only the support 
vectors (those with a distance to the separating hyperplane 
smaller than or equal one), but also the vectors that lie 
close to the separating plane (those with a distance to the 
separating hyperplane greater than one). 
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