
Speeding-up Model Selection for Support Vector Machines

DucDung Nguyen and TuBao Ho

Japan Advanced Institute of Science and Technology
1-1, Asahidai, Tatsunokuchi, Ishikawa 923-1292 Japan

 {dungduc, bao}@jaist.ac.jp

Abstract
One big difficulty in the practical use of support vector
machines is the selection of a suitable kernel function and
its appropriate parameter setting for a given application.
There is no rule for the selection and people have to
estimate the machine’s performance based on a costly
multi-trial iteration of training and testing phases. In this
paper, we describe a method to reduce the model selection
training time for support vector machines. The main idea is,
in the process of trying a series of models, the support
vectors in previously trained machines are used to initialize
the working set in training a new machine. This
initialization helps to reduce the number of required
optimization loops, thus reducing the training time of the
model selection process. Experimental results on real-life
datasets show that the training time for each subsequent
machine can be reduced effectively in a variety of situations
in the model selection process. The method is applicable to
different model search strategies and does not affect the
model selection result.

Introduction
In a tutorial paper on support vector machines (SVMs) for
pattern recognition, Burges (Burges 1998) pointed out
three main limitations of the support vector learning
approach. The biggest limitation lies in the choice of the
kernel and its parameter setting. The second limitation is
speed and size, in both the training and testing phases, and
the third limitation is dealing with discrete data.
Unfortunately, solving the model selection problem for
SVMs means we must solve the first two major limitations
mentioned above.

The model selection (MS) problem asks the following
question (Scheffer and Joachims 1999; Kearns et al. 1995;
Forster 2000): given an observed data set, which model or
learning algorithm and with which parameter setting will
perform best on the unseen data? For SVMs, it is necessary
to select the most suitable kernel, its parameter value(s),
and the appropriate error cost. To answer the question,
candidate models should be tried, and the model with the
highest estimated performance should be selected. This is a

Copyright © 2005, American Association for Artificial Intelligence
 (www.aaai.org). All rights reserved.

costly task because it requires multiple trials of training
and testing models.

In this paper we describe a method to speed up the model
selection process by reducing the training time of the
models being considered. The main idea is, in the sequence
of trying models, the results of previously trained
machines are reused to train new machines. More
concretely, the support vectors in previously trained
machines are used to initialize the working set in training
each new machine. This initialization of the working set
helps to reduce the required number of optimization loops,
so the optimization process can converge more quickly.
Experimental results on three real-life datasets sat-image,
letter recognition, and shuttle in the StatLog collection
(Michie, Spiegelhalter, and Taylor 1994) show that the
training time for each subsequent machine can be reduced
from 28.8% to 85.5% depending on situations in the MS
process. The method is applicable to common model
search strategies like grid search (Hsu and Lin 2002),
pattern search (Momma and Bennett 2002), or gradient-
based (Chapelle and Vapnik 2000; Keerthi 2002), and does
not change the result of model selection.

Model Selection for Support Vector Machines

Support Vector Learning
The support vector learning approach (Vapnik 1995) finds
the separating hyperplane that maximizes the distance from
the plane to the training data, either in the input space or in
the feature space, depending on the choice of kernel. For a
two-class classification problem, suppose that we are given
a set of training data S = {(xi, yi)}i=1,…,N, where xi ∈ Rd and
yi ∈ {-1, 1}; support vector learning finds the optimal
hyperplane by maximizing the following function:

∑ ∑
= =

−=
N

i

N

ji
jijijii xxKyy

1 1,

),(
2
1)W(αααα

under constraints

NiC

y

i

N

ii

,...,1,0

0
1i

=≤≤

=∑
=

α

α

The norm of the plane is determined by a linear
combination of vectors xi with associated coefficient αi >
0, called support vectors (SVs). The parameter C controls
the trade-off between the complexity of the decision
function and the number of training errors. The decision
function then takes the form:

+= ∑

>

bxxKysignxf
i

iii
0

),()(
α

α

where K(x, y) is a function calculating the dot product of
two vectors in the feature space. Different kernel functions
will produce different types of machines. For example, the
machine might be a polynomial (polynomial kernel), a
radial basis function (Gaussian RBF kernel), or a particular
type of two-layer sigmoidal neural network (sigmoidal
kernel) (Burges 1998). Common kernels are listed in Table
1.

Table 1: Common kernel functions.

)1).(tanh(, Sigmoidal
)1).((, Polynomial

exp , RBFGaussian

.),(Linear
2

+=
+=

−−=

=

yxy)K(x
yxy)K(x

)yx(y)K(x

yxyxK

d

κ

γ

Model Selection for Support Vector Machines
k-fold cross validation is one of the most widely used
methods for performance evaluation and model selection,
not only for SVMs but also for other learning approaches.
In k-fold cross validation, the available dataset S is divided
into k disjoint parts S = S1∪S2∪…∪Sk. Models are trained
on the k-1 parts S1∪S2∪…Si-1∪Si+1∪…Sk and tested on the
remaining part Si. The performances of k validation tests
are then averaged. Though the k-fold cross validation
method is simple, consistent (Shao and Tu 1995), almost
unbiased (Efron and Tibshirani 1993), and works well in
many applications (Kohavi 1995); the main drawback of k-
fold cross validation is its high computational cost. For
evaluating one model, 10-fold cross validation needs 10
times of training and testing. Another approach to
estimating the performance of a SVM is to determine its
upper-bound of error; users then look for the machine that
has the lowest bound, instead of the lowest error estimated
by the cross validation. In this way each model is trained
and tested just one time. Various kinds of bounds have
been calculated as a function of the training error and the
complexity of the machine (such as the VC-dimension of
the machine (Vapnik 1998), the radius-margin ratio
(Vapnik and Chapelle 2000; Keerthi 2002), and the span of
support vectors (Chapelle and Vapnik 2000)).

For a given application, the user must choose the type of
kernel, its parameter value(s), and the error cost for the
SVM training program. For example, when the Gaussian
RBF kernel is chosen, the user must select the parameter
determining the width γ of the function and the penalty
cost C. Because these two parameters take values in R,
then there is an infinite number of possible pairs of
parameters, or infinite models which could be taken into
consideration. Even when the grid search method is
applied (Hsu and Lin 2002), the number of candidate
models is still very large. To reduce this number, one can
apply a pattern search (Momma and Bennett 2002) in the
parameter space, or when the derivation of the bounds can
be calculated or approximated, the gradient method
(Chapelle and Vapnik 2000; Keerthi 2002) can be used to
reduce the number of models considered.

All the above model selection methods require trying a
series of models, or running the SVM learning program
many times with different parameter values. To speed up
this process we can apply a data filtering technique to
reduce the size of the problem (Ou et al. 2003), or seeding
the initial solution using the solution of another machine of
the same kernel (DeCoste and Wagstaff 2000). In this
paper we propose a new method to speed up the training
phase in MS for SVMs by using SVs in previously trained
machines to build up the working set in training a new
machine. This helps to reduce the number of optimization
loops, and thus can reduce the training time.

Speeding-up Model Selection

The General Decomposition Algorithm for SVM
Training
Support vector learning solves a constrained quadratic
optimization of N variables, where N is the number of
training data. This becomes a heavy task when N is big,
and there exist a large number of proposed solutions to this
problem. One common framework that has been described
in literature, as well as implemented in most free and
commercial software, is the decomposition algorithm
described in Table 2. The original big quadratic
programming (QP) problem is decomposed into a
sequence of smaller QPs (Osuna, Freund, and Girosi 1997).
The result of the decomposition method is ensured to be
consistent with the original problem due to the convexity
and the uniqueness of the global solution. In this method
the size of the working set (WS) is specified in advance, to
be big enough to cover all SVs and small enough not to
exceed the capacity of the computer (e.g. RAM memory).
Each small QP on the WS is solved using existing
techniques, most frequently the sequential minimal
optimization (SMO) algorithm (Platt 1999), with a faster
speed and a much smaller memory requirement. After that,
the WS is updated by replacing vectors with zero

Table 2: Decomposition Algorithm for SVM Training.
SVM Learning Algorithm

Input:

a set S of N training examples {(xi,yi)}i=1…N
the size of the working set l

Output:
a set of N coefficient {αi} i=1…N

// Initialization
1. Set all αi to zero
2. Select a working set B of size l
// Optimization
3. Repeat
4. Solve the local optimization on B
5. Update the working set B
6. Until the global optimization condition is satisfied

coefficient by other vectors (not in the WS) that does not
satisfy the optimization conditions (the Karush-Kuhn-
Tucker conditions). The process is repeated until there is
no vector violating the KKT conditions, or the global
optimization conditions are met.

Building the Working Set
The selection of the WS in the above algorithm has a big
impact on the convergence of the decomposition method.
If all support vectors (those with the corresponding αi > 0)
are selected in the initial WS, then the optimization loop in
the decomposition method is performed just one time. In
other words, a better initial working set with as many
support vectors as possible will produce a closer local
solution to the global solution, and will lead to a faster
global convergence. However, in practice we don’t know
in advance which training vector will be the support vector,
and in practice there is no way but to randomly initialize
the working set, e.g. (Dong, Krzyzak, and Suen 2003). We
can also increase the number of support vectors to be
included by increasing the size of the WS, but the side
effect is that this will also increase the optimization time
on the WS, and therefore will increase the training time
(Dong, Krzyzak, and Suen 2003). Moreover, the size of
the WS is limited by the memory of the computer, due to
the requirement of the kernel matrix.

Our method starts with the fact that support vectors are
training examples that lie close to the border between two
classes, and two different machines may have many of
them in common. This property has been reported in
literature; for example, on the USPS hand-written digit
dataset, two different machines trained by two different
kernels, RBF and polynomial, share more than 80% of
support vectors (Vapnik 1998). To reconfirm this
argument we have conducted intensive experiments on

three datasets, sat-image, letter recognition, and shuttle,
from the StatLog collection (Michie, Spiegelhalter, and
Taylor 1994). Details are reported in Figure 1. The results
of these experiments show that two different machines
trained by different parameter settings might still share a
large number of support vectors. In MS context, many
models must be tried, and we can benefit from using the
information of previously trained models in training new
ones.

One simple yet effective way is to select the SVs in trained
machines as the initial working set for training a new
machine. This method faces two difficulties. First, when
the number of classes in the dataset is more than two, then
the number of SVM required to build-up a classifier is m
or m*(m-1)/2 binary classifiers depending on whether the
selected strategy is one-versus-one or one-versus-rest,
where m is the number of classes. In order to retain the
information of previously trained machines, we need m or
m*(m-1)/2 different sets of SVs. The second problem is
that because the size of the working set is given in advance
then the total number of SVs may exceed this limitation. In
our experiments, a FIFO (First In First Out) queue
structure with the same size as the working set was used to
store the SVs of previously trained (binary) machines.
With this structure, all the SVs of the latest trained
machine (supposed to be closest to the next machine) are
kept in the initial working set.

Experiments
We conducted experiments on three datasets in the StatLog
collection: sat-image, letter recognition, and shuttle. These
datasets are summarized in Table 3. They were chosen for
their generality in dimension, size, number of classes, and
the class distribution.

Table 3: Datasets used in experiments
Dataset # Attribute # Class Size

Sat-image 36 6 4,435
Letter recognition 16 26 15,000
Shuttle 9 7 43,500

To see the effect of the method in real situations, we
conducted experiments in different scenarios, including
fixing the kernel and varying the cost parameter, fixing the
cost and changing the kernel, and changing both kernel
and cost parameter. In the first scenario we fixed the kernel
to be linear and varied the cost parameter from 1 to 10
(Figure 2: a, b, c). The second scenario was to fix the cost
parameter at 1 and train the machines with polynomial
kernels of degree from 2 to 9 (Figure 2: d, e, f). The third
scenario used Gaussian RBF kernels of the width γ
changing from 0.01 to 0.1 with a step of 0.01 and varied
the cost parameter from 1 to 10 (Figure 2: g, h, i). The
kernel cache sizes were 2000 (sat-image), 2000 (letter

Figure 1: Support vectors in two different machines learned from three datasets sat-image, letter recognition, and shuttle: (a)
linear machines learned with different error cost C = 1 and C = 2, (b) polynomial machines of degree two and three learned
with the same error cost C = 1, (c) RBF machines learned with different cost penalties C = 1 and C = 2. Two different
machines trained by two different parameter settings may share a big portion of SVs.

(a)

(b)

(c)

(d)

(e)

(f)

(g)

(h)

(i)

Figure 2: Reduction in number of required optimization loops and training time on three datasets sat-image (a-d-g), letter
recognition (b-e-h), and shuttle (c-f-i), and in different situations: the same linear kernel with different cost (a-b-c),
polynomial kernels of different degree with the same cost, and different RBF kernels with different costs. All measures
(average number of loops and average training time) are normalized into (0,1]. “WS” stands for the proposed working set
selection method.

(a)

(b)

(c)

recognition), and 10,000 (shuttle). The optimization
program was an implementation of the SMO algorithm and
its improvement (Platt 1999; Keerthi et al. 2001).
Experiments were conducted on a PC Windows XP with
2.99 GH, 2GB RAM.

Experimental results are reported in Figure 2. In this figure,
we compare the number of optimization loops and running
time for each parameter setting on the three datasets.
Because the numbers of classes are greater than 2 for all
three datasets then for each parameter setting the training
program had to run m times, where m is the number of
classes (using one-versus-rest strategy). For comparison
purpose, the number of optimization loops and running
time in Figure 2 were averaged and normalized into (0,1]
(divided by the maximum value). From the results we can
see that in every situation the training time for each
subsequent machine was reduced significantly, from 22.8%
(shuttle dataset, RBF kernel, error cost 2) to 85.5% (sat-
image dataset, linear kernel, cost 7).

Conclusion
We have described a method to speed up the training phase
in model selection for support vector machines. The
method utilizes the support vectors of previously trained
machines to initialize the working set in training a new
machine. This initialization scheme makes the training
process converge more quickly. Experiment results on real
life datasets show that the training time of subsequent
machines can be reduced significantly.

In comparing with other methods, the proposed one has
two main advantages. First, it does not change the result of
model selection. This is because the proposed method aims
at initializing a better working set, leading to a faster
convergence in training. In (Ou et al. 2003), a data filtering
method is used to reduce the number of data in the dataset,
or to reduce the size of the optimization problem. The data
reduction makes the model selection process run faster, but
the result is not the same as working on the entire available
dataset due to the distortion of the training data. Moreover,
the data-filtering algorithm has its own parameter k (in k-
NN classification), so for each application it is necessary to
do another model selection job in order to find the best
value of k. The second advantage is the applicability of the
proposed method in different situations and for different
model search strategies like grid search (Hsu and Lin
2002), pattern search (Momma and Bennett 2002), and
gradient-based methods (Chapelle and Vapnik 2000;
Keerthi 2002). The alpha-seeding method in (DeCoste and
Wagstaff 2000) is limited to one kind of kernel and with a
limited scheme of varying cost parameter. Experiment
results on the adult dataset in the UCI corpus with linear
kernel show the effectiveness of the alpha-seeding method
(a reported of 5 times faster), but for machines with

different kernels and different cost values, this method is
not applicable.
The future work of this research is to enhance the way we
utilize previously trained machines in initializing the
working set, for example, using not only the support
vectors (those with a distance to the separating hyperplane
smaller than or equal one), but also the vectors that lie
close to the separating plane (those with a distance to the
separating hyperplane greater than one).

References
Burges C. J. C. 1998. A Tutorial on Support Vector
Machines for Pattern Recognition. Knowledge Discovery
and Data Mining 2(2):121-167.
Chapelle O. and Vapnik V. 2000. Model selection for
support vector machines. Advances in Neural Information
Processing Systems 12, ed. S.A. Solla, T.K. Leen and K.
R. Muller. Cambridge, MA.: MIT Press.
DeCoste D. and Wagstaff K. 2000. Alpha Seeding for
Support Vector Machines. International Conference on
Knowledge Discovery & Data Mining (KDD-2000).
Dong J. X., Krzyzak A., and Suen C. Y. 2003. A fast SVM
training algorithm. International Journal of Pattern
Recognition and Artificial Intelligence 17(3): 367-384.
Efron B. and Tibshirani R. 1993. An Introduction to the
Bootstrap, London : Chapman & Hall.
Forster M. R. 2000. Key Concepts in Model Selection:
Performance and Generalizability. Journal of
Mathematical Psychology 44:205-231.
Hsu C. W. and Lin C. J. 2002. A comparison on methods
for multi-class support vector machines. IEEE
Transactions on Neural Networks 13:415-425.
Kearns M., Mansour Y., Andrew Y. Ng. and Ron D. 1997.
An Experimental and Theoretical Comparison of Model
Selection Methods. Machine Learning 27(1):7-50.
Keerthi S., Shevade S., Bhattacharyya C., and Murthy K.
2001. Improvements to platt’s smo algorithm for svm
classifier design. Neural Computation 13: 637–649.
Keerthi S.S. 2002. Efficient tuning of SVM
hyperparameters using radius/margin bound and iterative
algorithms. IEEE Transactions on Neural Networks 13:
1225-1229.
Kohavi R. 1995. A study of cross-validation and bootstrap
for accuracy estimation and model selection. In
Proceedings of the Fourteenth International Joint
Conference on Artificial Intelligence, 1137-1143, San
Mateo, CA: Morgan Kaufmann.
Michie D., Spiegelhalter D. J., and Taylor C. C. 1994.
Machine Learning, Neural and Statistical Classification.
N.Y.: Ellis Horwood.
Momma M. and Bennett K.P. 2002. A pattern search
method for model selection of support vector regression. In
Proc. of SIAM Conference on Data Mining.
Osuna E., Freund R., and Girosi F. 1997. An improved
training algorithm for support vector machines. In J.
Principe, L. Gile, N. Morgan, and E. Wilson, editors,

Neural Networks for Signal Processing VII - Proceedings
of the 1997 IEEE Workshop, 276 - 285, New York.
Ou Yu-Yen, Chen Chien-Yu, Hwang Shien-Ching, and
Oyang Yen-Jen. Expediting Model Selection for Support
Vector Machines Based on Data Reduction. In
Proceedings of the 2003 IEEE International Conference
on Systems, Man, and Cybernetics. Washington D.C.
Platt J. 1999. Fast training of support vector machines
using sequential minimal optimization. In B. Schölkopf, C.
J. C. Burges, and A. J. Smola, editors, Advances in Kernel
Methods - Support Vector Learning, 185-208. Cambridge,
MA.: MIT Press.
Scheffer T. and Joachims T. 1999. Expected error analysis
for model selection. In Proceedings of ICML-99, 16th
International Conference on Machine Learning. San
Francisco: Morgan Kaufmann.
Shao J. and Tu D. 1995. The Jackknife and Bootstrap.
New York: Springer-Verlag.
Vapnik V. 1995. The Nature of Statistical Learning Theory.
N.Y.: Springer.
Vapnik V. 1998. Statistical Learning Theory. N.Y.: John
Wiley & Sons.
Vapnik V. and Chapelle O. 2000. Bounds on Error
Expectation for Support Vector Machines. Neural
Computation 12(9):2013-2036.

