

Source Code Fingerprinting Using Graph Grammar Induction

Istvan Jonyer, Prach Apiratikul, Johnson Thomas

Oklahoma State University, Department of Computer Science
700 N Greenwood Ave, Tulsa, OK 74106

Abstract
In this work we introduce a novel method for source code
fingerprinting based on frequent pattern discovery using a
graph grammar induction system, and use it for detecting
cases of plagiarism. This approach is radically different
from others in that we are not looking for similarities
between documents, but similarities between fingerprints,
which are made up of recurring patterns within the same
source code. The advantage to our approach is that
fingerprints consist of any part of the text, and has no
connection to functionality of the code. Rather, it
concentrates on the habits of the coder, which, in most
cases, will be very hard to identify by a plagiarizer, and
almost impossible to remove.

Introduction
The purpose of a document fingerprinting system is to

identifying common segments of text between documents,
typically for the purposes of finding citations, references or
cases of plagiarism. A special type of document is soft-
ware source code, which is easily copied or plagiarized,
especially that most source code is kept confidential. In
this work we develop a new technique for source code
fingerprinting using graph grammar induction, and use it to
detect plagiarism in academic programming assignments.

Detecting plagiarism, especially in software source code,
poses challenges, since the plagiarizing party will most
often attempt to hide the traces of the activity. This is most
often done by changing details that do not alter the
meaning. In an essay, this would mean replacing words
with synonyms, and rephrasing sentences. In source code,
this would mean changing comments, changing variable
names, and rewriting constructs with equivalent ones, like
replacing a for-loop with a while-loop.

Various automated techniques have been proposed for
finding similarities in both source code and text
documents. The most successful ones dealing with source
code examine program structure, realizing that changing
variable and function names is irrelevant to the program’s
functionality, but is effective in fooling a human examiner.

We propose a different technique, in which frequent
patterns within the same source code are found, composing
a grammar fingerprint. Grammars generated from different
source files are then compared to see if the fingerprints in
both source files are a close match, thus indicating a
possible plagiarism case.

The next section examines previous work on the subject.

Copyright © 2005, American Association for Artificial Intelligence.
(www.aaai.org). All rights reserved.

Then, we introduce our algorithm and outline the
experimental methodology. Finally we present our results,
and end with conclusions.

Related Work
Document copy detection techniques have been proposed

previously. Some examples include MOSS (Schleimer et
al, 2003), SCAM (Shivakumar and Garcia-Molina, 1995)
and COPS (Brin, 1995), among which only MOSS
(Measure of Software Similarity) addresses the problem of
source code copying.

MOSS was developed at Berkeley in 1994 and with
different programming languages, including C, C++, Java,
Pascal, etc. It works as follows. First, all significant words
or phrases are extracted from the source code. All
uninteresting or noise data are ignored using the follwing
techniques (Schleimer et al, 2003). Whitespace insensiti-
vity leaves strings unaffected, but it removes whitespace
characters, capitalization and punctuation. Noise suppressi-
on affects short or common words. Whitespace insensiti-
vity and noise suppression can be defined differently
depending on various domains or programming languages.

After the documents are clean of noise, MOSS combines
all text in the document together and divides them to small
sub-strings. Then sequences of sub-strings of length k are
created, all of which are then associated with a sequence
number, computed using a hash-function. Finally, these
sequence numbers of the two documents are compared. In
large documents, we will get a long sequence of indices,
which can be shortened by removing a certain set of them,
for instance those which can be divided by 4.

Source Code Fingerprinting Using GGI
As mentioned previously, the idea behind our algorithm

is that recurring patterns can be found in source code, and
any text-based document as well, that have tell-tale signs
of the author’s identity via his or her habits. One key
insight is that capitalization, punctuation and spacing of
textual units, among other things, are as important in
identifying an author as the text itself. Some systems
remove these features and consider them noise, which may
even be a requirement for the functioning of the system.

Our approach is to let a data mining system decide what
is important in the source code and what is not. That is, we
assume that recurring, repeating patterns are important,
and comprise the fingerprint, while patterns that occur only
once can be disregarded. This is slightly counterintuitive,
since code fragments that occur only once may just as well
be copied as others. However, we’d like to point out that

our first goal is to identify habits of the code’s author,
hence developing a fingerprint. We hypothesize that
comparing fingerprints will lead to an effective plagiarism
detection system.

We are also hoping not to have to define what makes a
good fingerprint, but let the data mining algorithm define it
for us. If we use a good, general-purpose data miner, we
should not need to direct the pattern discovery in any way.

The system will consist of a data mining algorithm
capable of generating grammars, which we will call the
fingerprint. A secondary algorithm will have the job of
computing the similarity of two fingerprints and returning
a similarity percentage. The details of the system follow,
starting with the data mining system.

SubdueGL
The general-purpose data mining system we are using for

generating the fingerprints is called SubdueGL (Jonyer et
al 2002). The name stands for Subdue Grammar Learner,
and is based on the Subdue system by Cook and Holder
(2000) for discovering common substructures in graphs.
SubdueGL takes data sets in graph format as its input. The
graph representation includes the standard features of
graphs: labeled vertices and labeled directed or undirected
edges. When converting data to a graph representation,
objects and values are mapped to vertices, and relation-
ships and attributes are mapped to edges. We discuss
specific graph-representation choices in the next section.

The SubdueGL algorithm follows a bottom-up approach
to graph grammar learning by performing an iterative
search on the input graph such that each iteration results in
a grammar production. When a production is found, the
right side of the production is abstracted away from the
input graph by replacing each occurrence of it by the non-
terminal on the left side. SubdueGL iterates until the entire
input graph is abstracted into a single non-terminal, or a
user-defined stopping condition is reached.

In each iteration SubdueGL performs a beam search for
the best substructure to be used in the next production rule.
The search starts by finding each uniquely labeled vertex
and all their instances in the input graph. The subgraph
definition and all instances are referred to as a substruc-
ture. The ExtendSubstructure search operator is applied to
each of these single-vertex substructures to produce sub-
structures with two vertices and one edge. This operator
extends the instances of a substructure by one edge in all
possible directions to form new instances. Subsets of simi-
lar instances are collected to form new, recursive substruc-
tures, and another operator allows for alternative produc-
tions. Detailed discussions can be found in (Jonyer 2004).

As all data mining systems, SubdueGL has many options
that affect its results. Some of the most important ones are
options to disallow alternative productions, recursive
productions, productions that contain logical relationships,
as well as settings for the number of rules a grammar
should contain, both explicitly, and in terms of the size of
the input. We discuss these options in a subsequent section
where we fine tune these settings using a controlled

domain. A sample grammar containing recursion (S2) and
alternative productions (S3) is shown in Figure 1.

Figure 1 Sample SubdueGL graph grammar productions

 Graph Representation of Computer Programs
There are many different ways a computer program can

be represented in graph format. Since the specific graph
representation has an influence on the performance of the
fingerprint generator, we experimented with a number of
different approaches, which are shown in Figure 2.

The two main approaches we looked at were: converting
the source code directly to graph; and converting the
abstract syntax-tree (AST) representation of the program to
graph, which was obtained from the compiler.

The AST representation was thought to have great
potential, since it represents the structure of the program.
To get the AST graph, we compiled the program using a
compiler switch that outputs the program’s AST, which we
then converted to SubdueGL’s graph format. Both nodes
and edges in the original AST are labeled, so there is a
straightforward conversion to graph format.

When converting the source code directly to a graph
representation, we also had a few design choices to make.
The simplest way to convert source code, or any text for
that matter, to graph is to break up the text into tokens and
associate them with vertices. Because of the linear nature
of text, these tokens are connected via edges. These edges
may represent relationships between tokens. Without
analyzing the meaning of tokens, however, the only
sensible way to label edges is to label them uniformly,
perhaps with the label ‘next’, as shown in Figure 2.

Since we can analyze tokens in source code quite easily
and know the function of each token, we decided to
experiment with an alternative representation as well,
where edges are labeled according to the function of the
previous token. If a token is a function name, it is followed
by an edge labeled “FUNC”, a variable by “VAR”, etc.

Alternatively, we tried a representation in which the
user-defined names (variables, functions, and numbers) are
all replaced by a generic token, corresponding to the
function of the token, as shown in Figure 2 under “vertex”.
For the sake of completeness, we combined these previous
two representations for a fourth type of graph, shown
under “combination” in Figure 2.

In the past we’ve had great success with representing
linear domains, such as DNA and proteins, using the
‘backbone’-style graph, also shown in Figure 2. Here, we
have a generic backbone, from which the specific tokens
hang off. It normally allows for skipping some tokens
while including others.

S2 a

b S3

S2

S3 c d e f

a

b S3

Figure 2 Graph representations of computer programs

Noise Suppression
We also have to consider noise suppression when

analyzing source code. In the case of the AST-
representations, there is not much noise to speak of, as the
compiler already removes all irrelevant information, such
as comments, white-space characters, string substitutions,
etc. The closest to noise in this case are the actual names of
variables, and other user-defined identifiers, which can
easily be changed. To address this, we have a version of
AST where user defined names are excluded from the tree.

When converting source code directly to a graph we do
have to deal with noise suppression more directly
ourselves. Generalizing user-defined identifier names was
one aspect. Others have to do with completely disregarding
text that is irrelevant in terms of the functionality of the
code. This would be text that can be easily changed by a
plagiarizer, such as strings, and comments. Text that is part
of the functional source code is harder to alter in a way
that it does not affect the functionality of the code, except
perhaps replacing variable and function names, which we
addressed previously. Replacing control constructs and
assignments is more involved, and most plagiarizers do not

go that extra mile. Further, changing the order in which
statements appear in a computer program completely alters
its meaning, so that is not a possible avenue for cheaters.

Since comments are easy to modify, insert and delete, we
do not include any information about them in our graph
representation. We do include strings, but not verbatim.
Since strings are easily changed, but not easily removed,
we decided to include the information that a string is
present, but not the actual string itself. Therefore, wherever
a string appears, we insert the token “STRING” in our
graph representation.

Experimental Results
In this section we describe our experimental results,

starting with a controlled domain to see which graph
representation and SubdueGL settings are the most
productive in defining a fingerprint. We have also delayed
the discussion of fingerprint comparison to this section.

Controlled Domain
We selected a C++ program with 720 lines of code,

which is an instructor-implementation of a programming
assignment. Then, we posed as plagiarizers, and changed

function_decl

“main”

name

function_type

type body

compound_stm

integer_cst

size
body

scope_stmt

main()
{
 float avg = 0;
 ...

main () { float avg = 0 ; …
next next next next next next next next next

main () { float avg = 0 ; …
FUNC next next next TYPE VAR next NUM next

Sample code: Partial AST representation:

Simple:

Linear representations:

Relationship:

FUNC () { TYPE VAR = NUM ; …
next next next next next next next next next

Vertex:

FUNC () { TYPE VAR = NUM ; …
FUNC next next next TYPE VAR next NUM next

Combination:

token token token token token token token token token …
next next next next next next next next next

Backbone:

main () { float avg = 0 ;

the program to try to fool a grader. We used the two most
popular techniques: changing identifier names, and
changing the order in which functions appear in the
program. Specifically, we changed 3, 6, 9, 12 and 15
identifiers, as well as rearranged the order of functions 1 to
5 times. We converted each of these derivative programs
to graph format, used SubdueGL to generate a fingerprint
and, finally, compared the fingerprint to the fingerprint of
the original program to obtain a percentage similarity
between the two.

We performed tests for all graph representations, and
with different settings on SubdueGL, comparing the results
to MOSS. First, however, let us discuss how the similarity
percentage is computed.

To obtain the percentage similarity between two finger-
prints, we compare each rule in the first grammar to each
rule in the second grammar. Since the right side of each
production is a graph, the difference between two rules is
measured by the number of graph transformations needed
to morph one graph to the other. This is accomplished by a
graph isomorphism computation. Even though theoretical-
ly this is an NP-complete operation, in practice comparing
two full grammars with hundreds of rules typically takes
less than a second. This is because the typical grammar
rule is small, containing only a handful of vertices.

For each rule in the first grammar we find the closest
matching rule in the second grammar. That rule is not
considered when matching the rest of the first grammar.
All transformation costs are added together, and converted
to a percentage, based on the size of the two grammars.

For example, given two grammars G1 of size 300 (150
vertices + 150 edges total) and G2 of size 200, it would
take 300 transformations to morph one graph to the other.
Therefore, 100% corresponds to 300 transformations. If we
need 30 transformations to morph one to the other, then we
say that they are (300 – 30) / 300 = 90% similar.

Table 1 Controlled domain results: With alternative
productions and recursion

Table 1 shows the results obtained such that SubdueGL

generated grammars containing alternative and recursive
productions. As the table shows, the results are not
impressive. While changing variable names does not seem
to fool the system, rearranging the order of functions does.
Interesting to note that, when examining the grammar rules

produced by SubdueGL, no recursive productions appear
in any of the grammars. This is expected, since recursive
rules in a sequential domain only show up if the pattern
described by the production repeats in sequential order.
Alternative productions, on the other hand are plentiful.

As the table shows, the AST representation was not
sensitive at all to the changing of variable names, which
was expected. However, it was extremely sensitive to the
rearrangement of the order of functions, which was
unexpected. In fact, the AST should have completely
removed the effects of that rearrangement, since in graph
format a set of functions form a set of connected graphs,
which are not linked to one another via edges. What we
saw, however, was that the complier had different
information based on which function was defined already,
and therefore it produced slightly different syntax trees for
subsequently defined functions. Since information in the
AST is highly structured (each piece of information is
contained in additional nodes or subtrees), a small change
in available information to the complier can result in large
changes in the AST. Unfortunately, this phenomenon
defeated the AST-approach as an effective representation.

Experiments using the backbone structure failed to
produce meaningful fingerprints. That is, only the
backbone structure itself appeared in rules, and not the
code tokens. Results from these runs are hence not shown.

Results in Table 2 were generated using settings for
SubdueGL that disallow alternative and recursive
productions. As we can see, these results are much better.
We can see that only the AST representation proved to be
too sensitive to the rearrangement of functions, while the
others show good results for both variable renaming and
function rearrangements. Since all percentages seem
reasonable, we have to make a choice on which
representation to use based on the subtle differences
between them.

The simple representation actually performed better than
we expected, since renaming and rearranging did not
change the similarity very much. In fact, one might argue
that it includes more information than the combo format

and MOSS, since the actual similarity
between the files is less than reported
by combo and MOSS. Namely, when
changing a variable, the similarity to
the original document decreases, a
fact not reflected in our combination
representation, and in MOSS. The
similarity numbers were most
proportional to the actual similarity
between the file using the simple
representation.

On the other hand, one might argue
that, for the purposes of plagiarism detection, we are not
interested in the actual similarity of the programs, but the
rather, in the likelihood that one code was copied from the
other. In our view this is a matter of personal preference.
For instance, when MOSS reports 97%, we expect to see
nearly identical codes, which may not be the case at all. A

Description Simple Vertex Relation. Combo AST MOSS
Itself 100.0% 100.0% 100.0% 100.0% 100.0% 99%
Renamed 3 variables 99.3% 99.6% 98.9% 99.5% 100.0% 99%
Renamed 6 variables 97.5% 99.0% 97.9% 99.0% 100.0% 99%
Renamed 9 variables 98.0% 99.0% 97.4% 99.0% 100.0% 99%
Renamed 12 variables 97.6% 99.0% 97.3% 99.0% 100.0% 99%
Renamed 15 variables 96.7% 99.0% 96.3% 99.0% 100.0% 99%
Rearranged 1 time 44.4% 45.4% 59.4% 56.0% 16.7% 99%
Rearranged 2 times 37.2% 60.9% 60.0% 46.8% 19.2% 99%
Rearranged 3 times 40.6% 48.2% 59.4% 43.4% 17.1% 99%
Rearranged 4 times 47.2% 33.2% 61.2% 39.5% 17.0% 97%
Rearranged 5 times 43.1% 33.2% 63.2% 40.6% 17.3% 97%

human examiner often has to look very closely to see the
similarities. On the other hand, identical programs have
also been reported to be only 97% similar in MOSS. In a
third argument one might say that the actual number is
irrelevant (e.g., 90% vs 97%), since such high numbers
almost certainly indicate a case of plagiarism.

Unfortunately, fingerprints produced by SubdueGL
contain about 80 production rules for this problem, which
is prohibitively large for inclusion in this paper.

 Table 2 Controlled domain results: No alternative or
recursive productions

Real-World Experiments
Based on our experience with our controlled domain, we

have decided to use both the simple and combo
representations in a real-world scenario, in which we
compared students’ programming assignments from three
different assignments from two different classes. In each
case 19 programming assignments were analyzed, which
were written in the C or C++ programming languages.

Table 3 summarizes the results of comparing each
program pair-wise. The upper left triangle shows the first
assignment while the lower right shows the second
assignment. The third assignment we analyzed did not
produce any suspicion of plagiarism, and to save space, is
not shown.

We performed the comparison using both the simple and
combo representations, but there were no significant
differences between the two approaches, and results shown
are those using the simple graph format. Most comparisons
yielded a similarity between 25 to 45%. The average
similarity in assignment 1 was 43%, with a standard
deviation of 8.6%. Assignment 2 had an average of 38%
and standard deviation of 9.5%. Assignment 3 was also in
line with these numbers (35% and 10.6%). These
similarities may be a bit higher than one would expect,
especially for the purposes of plagiarism detection.
However, we must realize that the fingerprints produced
may contain a number of similar or even identical
components (grammar rules) between fingerprints, which
may not point to a case of plagiarism. For instance, almost
all code is certain to contain a few for-loops with i as the
iterator: “for(i=0;i<”. Or even smaller rules, like “[i]”
and “) {“. Some of these patterns identified by SubdueGL

are very common, and are the result of the structure of the
programming language, not the habits of the programmer.

Naturally, we are looking for outliers in our matrix of
comparisons. Taking into account our statistics described
earlier, we conclude that we may only suspect plagiarism
if a fingerprint match is greater than the average plus two
standard deviations. In our controlled domain we saw that
similarities stayed above 90% for very similar programs.
We expect this to be reduced if a plagiarizer works hard at
fooling the examiner, but it will be very hard to reduce the
fingerprint match below the average plus two standard
deviations.

For the first assignment the
threshold is 60%, for the second it is
57%. As the table shows, there is only
one suspicious case at 65% similarity
in assignment 1 (programs 8 & 9), and
three cases in assignment 2 (programs
4 & 9, 4 & 10 and 9 & 10), indicating
three collaborators. These results are
corroborated by MOSS, which finds
the same suspicious cases:
Assignment 1: 8 & 9 are 59% similar;
Assignment 2: 4 & 9 are 78% similar,

4 & 10 are 40% similar, and 9 & 10 are 39% similar. All
other comparisons in MOSS were much lower, most of
them being below 10%. It is interesting to note that when
our system finds a high percent match, so does MOSS, and
on a lower percent match so does MOSS.

Although each system uses a completely different
approach, both came back with the same results. When
examining the files manually, it is apparent that 8 & 9 in
assignment 1 is a case of plagiarism, and so is 9 & 4 in
assignment 2.

The author of program 10 in assignment 2 also
committed plagiarism, but took extensive efforts to change
the name of each and every identifier in the file, hence the
lower match to 4 & 9. Nevertheless, our fingerprint-based
system still identified this case of plagiarism, since many
other features of the source code remained the same,
comprising most of the fingerprint. In all cases discussed
here the order of functions was effectively changed.

It should also be noted that the source codes analyzed
here were not consulted before the development of the
system, and we were unaware of any cases of cheating.
They served the purpose of validation, which is also
evidenced by the fact that one of the three data sets did not
contain cases of plagiarism as reported both by our system
and MOSS.

Discussion and Conclusions
In this work we introduce a novel method for source

code fingerprinting based on frequent pattern discovery
using a graph grammar induction system. This approach is
radically different from others in that we are not looking
for similarities between documents, but similarities
between fingerprints, which are made up of recurring

Description Simple Vertex Relation. Combo AST MOSS
Itself 100.0% 100.0% 100.0% 100.0% 99.9% 99%
Renamed 3 variables 98.4% 99.3% 98.4% 99.4% 99.9% 99%
Renamed 6 variables 97.6% 99.3% 97.7% 99.0% 99.9% 99%
Renamed 9 variables 97.4% 99.3% 97.3% 99.0% 99.9% 99%
Renamed 12 variables 97.1% 99.3% 97.0% 99.0% 99.9% 99%
Renamed 15 variables 95.6% 99.3% 95.4% 99.0% 99.9% 99%
Rearranged 1 time 99.1% 97.7% 99.6% 98.7% 41.76% 99%
Rearranged 2 times 99.1% 99.1% 99.5% 98.3% 41.27% 99%
Rearranged 3 times 98.9% 95.1% 98.7% 98.3% 58.57% 99%
Rearranged 4 times 94.1% 90.8% 93.6% 90.4% 57.80% 97%
Rearranged 5 times 94.7% 90.8% 93.6% 90.4% 68.97% 97%

patterns within the same source code. The advantage to our
approach is that fingerprintsconsist of any part of the text
and has no connection to functionality of the code. Rather
it concentrates on the habits of the coder, which, in most
cases, will be very hard to identify by a plagiarizer, and
almost impossible to remove.

One interesting aspect of the system is that it allows for a
“consensus” among a number of source code documents.
That is, the average fingerprint similarity of a group of
documents will increase if there was a common starting
point, or standard element to the assignment, and decrease
otherwise. For example, if the assignment involves the
implementation of an algorithm given in a textbook, the
fingerprints will be more similar (as in assignment 1: 42%)
and less similar if an algorithm is to be developed
individually (assignment 3: 35%). This in turn allows for
the identification of plagiarizers that obtain the code from
a different source (e.g., the Internet), whose fingerprint
might be much less similar to others in the group.

The choice of using average plus two standard deviations
for outlier detection can be revisited in the future, although
it is a fairly standard way of determining outliers. Simply
picking the extreme outliers and examining them manually
until no plagiarism is found is a natural alternative.

We have proven the system both on a controlled domain,
and in real-world experiments. A great advantage of this
system is that it operates on the text source code, and does
not require the program to be compilable. Also, it is
language independent, with the exception that strings and
comments must be identified by our graph converter.

A natural next step in this line of research is to extend it
to non-source code documents, to general document
fingerprinting.

References
Brin, S., J. Davis, and H. Garcia-Molina. 1995. “Copy

detection mechanisms for digital documents.” In
Proceedings of the ACM SIGMOD Annual Conference,
San Francisco, CA.

Cook, D.J. and L.B. Holder. 1994. Substructure Discovery
Using Minimum Description Length and Background
Knowledge. Journal of Artificial Intelligence Research,
Volume 1, 231-255.

Jonyer, I., L. B. Holder and D. J. Cook. 2004. “MDL-
Based Context-Free Graph Grammar Induction and
Applications,” International Journal of Artificial
Intelligence Tools.

Jonyer, I., L. B. Holder, and D. J. Cook. 2002. “Concept
Formation Using Graph Grammars,” Proceedings of the
KDD Workshop on Multi-Relational Data Mining.

Montes-y-Gómez, M., A. López-López, and A. Gelbukh.
2000. “Information Retrieval with Conceptual Graph
Matching,” Lecture Notes in Computer Science N 1873,
Springer-Verlag,

Rissanen, J. 1989. Stochastic Complexity in Statistical
Inquiry. World Scientific Company.

Shivakumar, N., H. Garcia-Molina. 1995. “SCAM: A
Copy Detection Mechanism for Digital Documents.”
Proceedings of the Second Annual Conference on the
Theory and Practice of Digital Libraries.

Schleimer, S., D. Wilkerson and A. Aiken. 2003.
“Winnowing: Local Algorithms for Document
Fingerprinting.” Proceedings of the ACM SIGMOD
International Conference on Management of Data,
pages 76-85.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
19 19 33 40 45 47 34 36 43 43 25 38 34 29 21 40 40 35 43 25 2
18 31 37 41 42 41 40 41 45 46 39 41 42 42 34 37 38 43 40 39 3
17 32 44 35 39 40 27 36 40 41 42 48 31 38 37 36 38 44 47 33 4
16 35 49 53 45 54 36 50 50 52 41 49 36 42 40 48 44 42 38 52 5
15 33 45 44 44 51 33 43 43 48 43 44 34 42 38 33 45 38 37 31 6
14 48 46 40 41 41 25 45 44 46 48 43 30 50 24 23 40 34 44 32 7
13 51 47 45 47 44 27 50 51 51 55 50 33 33 40 30 32 42 40 33 8
12 18 28 13 25 29 37 25 28 30 31 34 18 42 36 27 69 39 46 27 9
11 24 47 41 45 44 33 43 47 50 34 60 18 49 29 32 60 29 45 31 10
10 49 51 43 44 44 26 46 46 50 46 45 22 41 35 42 41 35 44 44 11
9 34 49 44 52 52 28 48 65 36 46 41 13 46 19 54 42 33 36 54 12
8 35 46 41 57 52 30 48 48 34 41 35 15 46 23 53 41 20 35 50 13
7 37 50 48 51 59 33 42 42 34 45 40 13 49 21 44 43 16 39 46 14
6 27 36 23 36 33 37 35 34 37 50 46 18 49 28 35 48 42 45 42 15
5 27 41 47 44 32 40 34 32 16 35 30 26 33 36 33 31 41 37 35 16
4 30 45 46 41 40 40 39 39 39 41 41 42 41 44 40 41 29 42 40 17
3 34 40 34 27 47 45 47 50 38 45 39 15 44 20 50 42 33 37 49 18
2 28 39 26 41 40 40 39 39 39 41 41 42 41 44 40 41 29 42 40 19

18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1

Table 3 Similarities in two sets of programming assignments

