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Abstract 
In this work we introduce a novel method for source code 
fingerprinting based on frequent pattern discovery using a 
graph grammar induction system, and use it for detecting 
cases of plagiarism. This approach is radically different 
from others in that we are not looking for similarities 
between documents, but similarities between fingerprints, 
which are made up of recurring patterns within the same 
source code. The advantage to our approach is that 
fingerprints consist of any part of the text, and has no 
connection to functionality of the code. Rather, it 
concentrates on the habits of the coder, which, in most 
cases, will be very hard to identify by a plagiarizer, and 
almost impossible to remove. 

Introduction 
The purpose of a document fingerprinting system is to 

identifying common segments of text between documents, 
typically for the purposes of finding citations, references or 
cases of plagiarism. A special type of document is soft-
ware source code, which is easily copied or plagiarized, 
especially that most source code is kept confidential. In 
this work we develop a new technique for source code 
fingerprinting using graph grammar induction, and use it to 
detect plagiarism in academic programming assignments. 

Detecting plagiarism, especially in software source code, 
poses challenges, since the plagiarizing party will most 
often attempt to hide the traces of the activity. This is most 
often done by changing details that do not alter the 
meaning. In an essay, this would mean replacing words 
with synonyms, and rephrasing sentences. In source code, 
this would mean changing comments, changing variable 
names, and rewriting constructs with equivalent ones, like 
replacing a for-loop with a while-loop. 

Various automated techniques have been proposed for 
finding similarities in both source code and text 
documents.  The most successful ones dealing with source 
code examine program structure, realizing that changing 
variable and function names is irrelevant to the program’s 
functionality, but is effective in fooling a human examiner. 

We propose a different technique, in which frequent 
patterns within the same source code are found, composing 
a grammar fingerprint. Grammars generated from different 
source files are then compared to see if the fingerprints in 
both source files are a close match, thus indicating a 
possible plagiarism case.  

The next section examines previous work on the subject. 
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Then, we introduce our algorithm and outline the 
experimental methodology. Finally we present our results, 
and end with conclusions. 

Related Work 
Document copy detection techniques have been proposed 

previously. Some examples include MOSS (Schleimer et 
al, 2003), SCAM (Shivakumar and Garcia-Molina, 1995) 
and COPS (Brin, 1995), among which only MOSS 
(Measure of Software Similarity) addresses the problem of 
source code copying.  

MOSS was developed at Berkeley in 1994 and with 
different programming languages, including C, C++, Java, 
Pascal, etc. It works as follows. First, all significant words 
or phrases are extracted from the source code. All 
uninteresting or noise data are ignored using the follwing 
techniques (Schleimer et al, 2003). Whitespace insensiti-
vity leaves strings unaffected, but it removes whitespace 
characters, capitalization and punctuation. Noise suppressi-
on affects short or common words. Whitespace insensiti-
vity and noise suppression can be defined differently 
depending on various domains or programming languages.  

After the documents are clean of noise, MOSS combines 
all text in the document together and divides them to small 
sub-strings. Then sequences of sub-strings of length k are 
created, all of which are then associated with a sequence 
number, computed using a hash-function. Finally, these 
sequence numbers of the two documents are compared. In 
large documents, we will get a long sequence of indices, 
which can be shortened by removing a certain set of them, 
for instance those which can be divided by 4. 

Source Code Fingerprinting Using GGI 
As mentioned previously, the idea behind our algorithm 

is that recurring patterns can be found in source code, and 
any text-based document as well, that have tell-tale signs 
of the author’s identity via his or her habits. One key 
insight is that capitalization, punctuation and spacing of 
textual units, among other things, are as important in 
identifying an author as the text itself. Some systems 
remove these features and consider them noise, which may 
even be a requirement for the functioning of the system.  

Our approach is to let a data mining system decide what 
is important in the source code and what is not. That is, we 
assume that recurring, repeating patterns are important, 
and comprise the fingerprint, while patterns that occur only 
once can be disregarded. This is slightly counterintuitive, 
since code fragments that occur only once may just as well 
be copied as others. However, we’d like to point out that 



 

our first goal is to identify habits of the code’s author, 
hence developing a fingerprint. We hypothesize that 
comparing fingerprints will lead to an effective plagiarism 
detection system.  

We are also hoping not to have to define what makes a 
good fingerprint, but let the data mining algorithm define it 
for us. If we use a good, general-purpose data miner, we 
should not need to direct the pattern discovery in any way.  

The system will consist of a data mining algorithm 
capable of generating grammars, which we will call the 
fingerprint. A secondary algorithm will have the job of 
computing the similarity of two fingerprints and returning 
a similarity percentage. The details of the system follow, 
starting with the data mining system. 

SubdueGL 
The general-purpose data mining system we are using for 

generating the fingerprints is called SubdueGL (Jonyer et 
al 2002). The name stands for Subdue Grammar Learner, 
and is based on the Subdue system by Cook and Holder 
(2000) for discovering common substructures in graphs. 
SubdueGL takes data sets in graph format as its input. The 
graph representation includes the standard features of 
graphs: labeled vertices and labeled directed or undirected 
edges. When converting data to a graph representation, 
objects and values are mapped to vertices, and relation-
ships and attributes are mapped to edges. We discuss 
specific graph-representation choices in the next section. 

The SubdueGL algorithm follows a bottom-up approach 
to graph grammar learning by performing an iterative 
search on the input graph such that each iteration results in 
a grammar production. When a production is found, the 
right side of the production is abstracted away from the 
input graph by replacing each occurrence of it by the non-
terminal on the left side. SubdueGL iterates until the entire 
input graph is abstracted into a single non-terminal, or a 
user-defined stopping condition is reached.  

In each iteration SubdueGL performs a beam search for 
the best substructure to be used in the next production rule. 
The search starts by finding each uniquely labeled vertex 
and all their instances in the input graph. The subgraph 
definition and all instances are referred to as a substruc-
ture. The ExtendSubstructure search operator is applied to 
each of these single-vertex substructures to produce sub-
structures with two vertices and one edge. This operator 
extends the instances of a substructure by one edge in all 
possible directions to form new instances. Subsets of simi-
lar instances are collected to form new, recursive substruc-
tures, and another operator allows for alternative produc-
tions. Detailed discussions can be found in (Jonyer  2004). 

As all data mining systems, SubdueGL has many options 
that affect its results. Some of the most important ones are 
options to disallow alternative productions, recursive 
productions, productions that contain logical relationships, 
as well as settings for the number of rules a grammar 
should contain, both explicitly, and in terms of the size of 
the input. We discuss these options in a subsequent section 
where we fine tune these settings using a controlled 

domain. A sample grammar containing recursion (S2) and 
alternative productions (S3) is shown in Figure 1. 

 
 
 
 
 
 

 

Figure 1 Sample SubdueGL graph grammar productions 

 Graph Representation of Computer Programs 
There are many different ways a computer program can 

be represented in graph format. Since the specific graph 
representation has an influence on the performance of the 
fingerprint generator, we experimented with a number of 
different approaches, which are shown in Figure 2. 

The two main approaches we looked at were: converting 
the source code directly to graph; and converting the 
abstract syntax-tree (AST) representation of the program to 
graph, which was obtained from the compiler. 

The AST representation was thought to have great 
potential, since it represents the structure of the program. 
To get the AST graph, we compiled the program using a 
compiler switch that outputs the program’s AST, which we 
then converted to SubdueGL’s graph format. Both nodes 
and edges in the original AST are labeled, so there is a 
straightforward conversion to graph format.  

When converting the source code directly to a graph 
representation, we also had a few design choices to make. 
The simplest way to convert source code, or any text for 
that matter, to graph is to break up the text into tokens and 
associate them with vertices. Because of the linear nature 
of text, these tokens are connected via edges. These edges 
may represent relationships between tokens. Without 
analyzing the meaning of tokens, however, the only 
sensible way to label edges is to label them uniformly, 
perhaps with the label ‘next’, as shown in Figure 2. 

Since we can analyze tokens in source code quite easily 
and know the function of each token, we decided to 
experiment with an alternative representation as well, 
where edges are labeled according to the function of the 
previous token. If a token is a function name, it is followed 
by an edge labeled “FUNC”, a variable by “VAR”, etc. 

Alternatively, we tried a representation in which the 
user-defined names (variables, functions, and numbers) are 
all replaced by a generic token, corresponding to the 
function of the token, as shown in Figure 2 under “vertex”. 
For the sake of completeness, we combined these previous 
two representations for a fourth type of graph, shown 
under “combination” in Figure 2. 

In the past we’ve had great success with representing 
linear domains, such as DNA and proteins, using the 
‘backbone’-style graph, also shown in Figure 2. Here, we 
have a generic backbone, from which the specific tokens 
hang off. It normally allows for skipping some tokens 
while including others. 

S2 a 

b S3 

S2 

S3 c d e f 

a 

b S3 



 

Figure 2 Graph representations of computer programs 

Noise Suppression 
We also have to consider noise suppression when 

analyzing source code. In the case of the AST-
representations, there is not much noise to speak of, as the 
compiler already removes all irrelevant information, such 
as comments, white-space characters, string substitutions, 
etc. The closest to noise in this case are the actual names of 
variables, and other user-defined identifiers, which can 
easily be changed. To address this, we have a version of 
AST where user defined names are excluded from the tree.  

When converting source code directly to a graph we do 
have to deal with noise suppression more directly 
ourselves. Generalizing user-defined identifier names was 
one aspect. Others have to do with completely disregarding 
text that is irrelevant in terms of the functionality of the 
code. This would be text that can be easily changed by a 
plagiarizer, such as strings, and comments. Text that is part 
of the functional source code is harder to alter in a way 
that it does not affect the functionality of the code, except 
perhaps replacing variable and function names, which we 
addressed previously. Replacing control constructs and 
assignments is more involved, and most plagiarizers do not 

go that extra mile. Further, changing the order in which 
statements appear in a computer program completely alters 
its meaning, so that is not a possible avenue for cheaters. 

Since comments are easy to modify, insert and delete, we 
do not include any information about them in our graph 
representation. We do include strings, but not verbatim. 
Since strings are easily changed, but not easily removed, 
we decided to include the information that a string is 
present, but not the actual string itself. Therefore, wherever 
a string appears, we insert the token “STRING” in our 
graph representation.  

Experimental Results 
In this section we describe our experimental results, 

starting with a controlled domain to see which graph 
representation and SubdueGL settings are the most 
productive in defining a fingerprint. We have also delayed 
the discussion of fingerprint comparison to this section. 

Controlled Domain 
We selected a C++ program with 720 lines of code, 

which is an instructor-implementation of a programming 
assignment. Then, we posed as plagiarizers, and changed 

function_decl 

“main” 

name 

function_type 

type body 

compound_stm 

integer_cst 

size 
body 

scope_stmt 

main() 
{ 
   float avg = 0; 
   ... 

main ( ) { float avg = 0 ; … 
next next next next next next next next next 

main ( ) { float avg = 0 ; … 
FUNC next next next TYPE VAR next NUM next 

Sample code: Partial AST representation: 

Simple: 

Linear representations: 

Relationship: 

FUNC ( ) { TYPE VAR = NUM ; … 
next next next next next next next next next 

Vertex: 

FUNC ( ) { TYPE VAR = NUM ; … 
FUNC next next next TYPE VAR next NUM next 

Combination: 

token token token token token token token token token … 
next next next next next next next next next 

Backbone: 

main ( ) { float avg = 0 ; 



 

the program to try to fool a grader. We used the two most 
popular techniques: changing identifier names, and 
changing the order in which functions appear in the 
program. Specifically, we changed 3, 6, 9, 12 and 15 
identifiers, as well as rearranged the order of functions 1 to 
5 times. We converted each of these derivative programs 
to graph format, used SubdueGL to generate a fingerprint 
and, finally, compared the fingerprint to the fingerprint of 
the original program to obtain a percentage similarity 
between the two. 

We performed tests for all graph representations, and 
with different settings on SubdueGL, comparing the results 
to MOSS. First, however, let us discuss how the similarity 
percentage is computed. 

To obtain the percentage similarity between two finger-
prints, we compare each rule in the first grammar to each 
rule in the second grammar. Since the right side of each 
production is a graph, the difference between two rules is 
measured by the number of graph transformations needed 
to morph one graph to the other. This is accomplished by a 
graph isomorphism computation. Even though theoretical-
ly this is an NP-complete operation, in practice comparing 
two full grammars with hundreds of rules typically takes 
less than a second. This is because the typical grammar 
rule is small, containing only a handful of vertices.  

For each rule in the first grammar we find the closest 
matching rule in the second grammar. That rule is not 
considered when matching the rest of the first grammar. 
All transformation costs are added together, and converted 
to a percentage, based on the size of the two grammars.  

For example, given two grammars G1 of size 300 (150 
vertices + 150 edges total) and G2 of size 200, it would 
take 300 transformations to morph one graph to the other. 
Therefore, 100% corresponds to 300 transformations. If we 
need 30 transformations to morph one to the other, then we 
say that they are (300 – 30) / 300 = 90% similar. 

Table 1 Controlled domain results: With alternative 
productions and recursion 

 

 
Table 1 shows the results obtained such that SubdueGL 

generated grammars containing alternative and recursive 
productions. As the table shows, the results are not 
impressive. While changing variable names does not seem 
to fool the system, rearranging the order of functions does. 
Interesting to note that, when examining the grammar rules 

produced by SubdueGL, no recursive productions appear 
in any of the grammars. This is expected, since recursive 
rules in a sequential domain only show up if the pattern 
described by the production repeats in sequential order. 
Alternative productions, on the other hand are plentiful.   

As the table shows, the AST representation was not 
sensitive at all to the changing of variable names, which 
was expected. However, it was extremely sensitive to the 
rearrangement of the order of functions, which was 
unexpected. In fact, the AST should have completely 
removed the effects of that rearrangement, since in graph 
format a set of functions form a set of connected graphs, 
which are not linked to one another via edges. What we 
saw, however, was that the complier had different 
information based on which function was defined already, 
and therefore it produced slightly different syntax trees for 
subsequently defined functions. Since information in the 
AST is highly structured (each piece of information is 
contained in additional nodes or subtrees), a small change 
in available information to the complier can result in large 
changes in the AST. Unfortunately, this phenomenon 
defeated the AST-approach as an effective representation. 

Experiments using the backbone structure failed to 
produce meaningful fingerprints. That is, only the 
backbone structure itself appeared in rules, and not the 
code tokens. Results from these runs are hence not shown. 

Results in Table 2 were generated using settings for 
SubdueGL that disallow alternative and recursive 
productions. As we can see, these results are much better. 
We can see that only the AST representation proved to be 
too sensitive to the rearrangement of functions, while the 
others show good results for both variable renaming and 
function rearrangements. Since all percentages seem 
reasonable, we have to make a choice on which 
representation to use based on the subtle differences 
between them.  

The simple representation actually performed better than 
we expected, since renaming and rearranging did not 
change the similarity very much. In fact, one might argue 
that it includes more information than the combo format 

and MOSS, since the actual similarity 
between the files is less than reported 
by combo and MOSS. Namely, when 
changing a variable, the similarity to 
the original document decreases, a 
fact not reflected in our combination 
representation, and in MOSS. The 
similarity numbers were most 
proportional to the actual similarity 
between the file using the simple 
representation.  

On the other hand, one might argue 
that, for the purposes of plagiarism detection, we are not 
interested in the actual similarity of the programs, but the 
rather, in the likelihood that one code was copied from the 
other. In our view this is a matter of personal preference. 
For instance, when MOSS reports 97%, we expect to see 
nearly identical codes, which may not be the case at all. A 

Description Simple Vertex Relation. Combo AST MOSS 
Itself 100.0% 100.0% 100.0% 100.0% 100.0% 99% 
Renamed 3 variables 99.3% 99.6% 98.9% 99.5% 100.0% 99% 
Renamed 6 variables 97.5% 99.0% 97.9% 99.0% 100.0% 99% 
Renamed 9 variables 98.0% 99.0% 97.4% 99.0% 100.0% 99% 
Renamed 12 variables 97.6% 99.0% 97.3% 99.0% 100.0% 99% 
Renamed 15 variables 96.7% 99.0% 96.3% 99.0% 100.0% 99% 
Rearranged 1 time 44.4% 45.4% 59.4% 56.0% 16.7% 99% 
Rearranged 2 times 37.2% 60.9% 60.0% 46.8% 19.2% 99% 
Rearranged 3 times 40.6% 48.2% 59.4% 43.4% 17.1% 99% 
Rearranged 4 times 47.2% 33.2% 61.2% 39.5% 17.0% 97% 
Rearranged 5 times 43.1% 33.2% 63.2% 40.6% 17.3% 97% 



 

human examiner often has to look very closely to see the 
similarities. On the other hand, identical programs have 
also been reported to be only 97% similar in MOSS. In a 
third argument one might say that the actual number is 
irrelevant (e.g., 90% vs 97%), since such high numbers 
almost certainly indicate a case of plagiarism.  

Unfortunately, fingerprints produced by SubdueGL 
contain about 80 production rules for this problem, which 
is prohibitively large for inclusion in this paper.  

 Table 2 Controlled domain results: No alternative or 
recursive productions 

 

Real-World Experiments 
Based on our experience with our controlled domain, we 

have decided to use both the simple and combo 
representations in a real-world scenario, in which we 
compared students’ programming assignments from three 
different assignments from two different classes. In each 
case 19 programming assignments were analyzed, which 
were written in the C or C++ programming languages. 

Table 3 summarizes the results of comparing each 
program pair-wise. The upper left triangle shows the first 
assignment while the lower right shows the second 
assignment. The third assignment we analyzed did not 
produce any suspicion of plagiarism, and to save space, is 
not shown. 

We performed the comparison using both the simple and 
combo representations, but there were no significant 
differences between the two approaches, and results shown 
are those using the simple graph format. Most comparisons 
yielded a similarity between 25 to 45%. The average 
similarity in assignment 1 was 43%, with a standard 
deviation of 8.6%. Assignment 2 had an average of 38% 
and standard deviation of 9.5%. Assignment 3 was also in 
line with these numbers (35% and 10.6%). These 
similarities may be a bit higher than one would expect, 
especially for the purposes of plagiarism detection. 
However, we must realize that the fingerprints produced 
may contain a number of similar or even identical 
components (grammar rules) between fingerprints, which 
may not point to a case of plagiarism. For instance, almost 
all code is certain to contain a few for-loops with i as the 
iterator: “for(i=0;i<”. Or even smaller rules, like “[i]” 
and “) {“. Some of these patterns identified by SubdueGL 

are very common, and are the result of the structure of the 
programming language, not the habits of the programmer.  

Naturally, we are looking for outliers in our matrix of 
comparisons. Taking into account our statistics described 
earlier, we conclude that we may only suspect plagiarism 
if a fingerprint match is greater than the average plus two 
standard deviations. In our controlled domain we saw that 
similarities stayed above 90% for very similar programs. 
We expect this to be reduced if a plagiarizer works hard at 
fooling the examiner, but it will be very hard to reduce the 
fingerprint match below the average plus two standard 
deviations.  

For the first assignment the 
threshold is 60%, for the second it is 
57%. As the table shows, there is only 
one suspicious case at 65% similarity 
in assignment 1 (programs 8 & 9), and 
three cases in assignment 2 (programs 
4 & 9, 4 & 10 and 9 & 10), indicating 
three collaborators. These results are 
corroborated by MOSS, which finds 
the same suspicious cases: 
Assignment 1: 8 & 9 are 59% similar; 
Assignment 2: 4 & 9 are 78% similar, 

4 & 10 are 40% similar, and 9 & 10 are 39% similar. All 
other comparisons in MOSS were much lower, most of 
them being below 10%. It is interesting to note that when 
our system finds a high percent match, so does MOSS, and 
on a lower percent match so does MOSS. 

Although each system uses a completely different 
approach, both came back with the same results. When 
examining the files manually, it is apparent that 8 & 9 in 
assignment 1 is a case of plagiarism, and so is 9 & 4 in 
assignment 2.  

The author of program 10 in assignment 2 also 
committed plagiarism, but took extensive efforts to change 
the name of each and every identifier in the file, hence the 
lower match to 4 & 9. Nevertheless, our fingerprint-based 
system still identified this case of plagiarism, since many 
other features of the source code remained the same, 
comprising most of the fingerprint. In all cases discussed 
here the order of functions was effectively changed. 

It should also be noted that the source codes analyzed 
here were not consulted before the development of the 
system, and we were unaware of any cases of cheating. 
They served the purpose of validation, which is also 
evidenced by the fact that one of the three data sets did not 
contain cases of plagiarism as reported both by our system 
and MOSS.  

Discussion and Conclusions 
In this work we introduce a novel method for source 

code fingerprinting based on frequent pattern discovery 
using a graph grammar induction system. This approach is 
radically different from others in that we are not looking 
for similarities between documents, but similarities 
between fingerprints, which are made up of recurring  
 

Description Simple Vertex Relation. Combo AST MOSS 
Itself 100.0% 100.0% 100.0% 100.0% 99.9% 99% 
Renamed 3 variables 98.4% 99.3% 98.4% 99.4% 99.9% 99% 
Renamed 6 variables 97.6% 99.3% 97.7% 99.0% 99.9% 99% 
Renamed 9 variables 97.4% 99.3% 97.3% 99.0% 99.9% 99% 
Renamed 12 variables 97.1% 99.3% 97.0% 99.0% 99.9% 99% 
Renamed 15 variables 95.6% 99.3% 95.4% 99.0% 99.9% 99% 
Rearranged 1 time 99.1% 97.7% 99.6% 98.7% 41.76% 99% 
Rearranged 2 times 99.1% 99.1% 99.5% 98.3% 41.27% 99% 
Rearranged 3 times 98.9% 95.1% 98.7% 98.3% 58.57% 99% 
Rearranged 4 times 94.1% 90.8% 93.6% 90.4% 57.80% 97% 
Rearranged 5 times 94.7% 90.8% 93.6% 90.4% 68.97% 97% 



 

patterns within the same source code. The advantage to our 
approach is that fingerprintsconsist of any part of the text 
and has no connection to functionality of the code. Rather 
it concentrates on the habits of the coder, which, in most 
cases, will be very hard to identify by a plagiarizer, and 
almost impossible to remove. 

One interesting aspect of the system is that it allows for a 
“consensus” among a number of source code documents. 
That is, the average fingerprint similarity of a group of 
documents will increase if there was a common starting 
point, or standard element to the assignment, and decrease 
otherwise. For example, if the assignment involves the 
implementation of an algorithm given in a textbook, the 
fingerprints will be more similar (as in assignment 1: 42%) 
and less similar if an algorithm is to be developed 
individually (assignment 3: 35%). This in turn allows for 
the identification of plagiarizers that obtain the code from 
a different source (e.g., the Internet), whose fingerprint 
might be much less similar to others in the group. 

The choice of using average plus two standard deviations 
for outlier detection can be revisited in the future, although 
it is a fairly standard way of determining outliers. Simply 
picking the extreme outliers and examining them manually 
until no plagiarism is found is a natural alternative. 

We have proven the system both on a controlled domain, 
and in real-world experiments. A great advantage of this 
system is that it operates on the text source code, and does 
not require the program to be compilable. Also, it is 
language independent, with the exception that strings and 
comments must be identified by our graph converter. 

A natural next step in this line of research is to extend it 
to non-source code documents, to general document 
fingerprinting. 
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