
Text Classification Using Graph-Encoded Linguistic Elements 

Kevin R. Gee and Diane J. Cook 
Department of Computer Science and Engineering 

The University of Texas at Arlington 
Arlington, TX  76019 

{geek,cook}@cse.uta.edu   
 
 

Abstract 
Inspired by the goal to more accurately classify text, we 
describe an effort to map tokens and their characteristic 
linguistic elements into a graph and use that expressive 
representation to classify text phrases.  We outperform the 
bag-of-words approach by exploiting word order and the 
semantic and syntactic characteristics within the phases.  In 
this study, we map tagged corpora into a placeholder graph 
structure and classify the phrases within, using the cross-
dimensional linguistic characteristics of each token.  
Finally, we present heuristics for use in applying this 
method to other corpora. 

Introduction 
In the field of natural language processing, there is a need 
to analyze to analyze a language data that surpasses the 
traditional bag-of-words approach, so named for the 
practice of treating each word token as a distinct entity 
whose value depends solely on its presence in the 
selection, with no consideration given to any other inherent 
characteristic or attribute.  The obvious preference is to 
analyze these inherent attributes of each word token, such 
as the part of speech, its semantic relationship to other 
words in the sentence, or its role in projecting meaning.   
 
For instance, the bag-of-words approach would evaluate 
the token “say” the same whether it be used as a verb to 
utter or pronounce (“say it out loud”), a verb to state an 
opinion (“I say we leave now!”), a verb to recite (“say 
grace”), a noun indicating an opportunity to speak (“have 
one’s say”), a discourse maker (“say, that’s a nice car”), or 
even used in a proper noun or title (“Say Say Say”).  While 
this approach works for many tasks based on a simple 
token search, it is inadequate for tasks requiring the use of 
linguistic meaning.   
 
Even when linguistic information is included, it is a fairly 
routine task to identify commonly repeating patterns that 
use a single semantic dimension. For example, a corpus 
might have a relatively high number of sentences that all 
begin with this sequential part-of-speech string that does 
not appear in other corpus types: 
 

Adverb  Comma  Personal Pronoun  Verb 
 

What is more difficult, and interesting, is the identification 
of patterns that cross dimensions.  These dimensions might 
include the specific term itself ("bank"), the semantic tense 
of the term (bank vault, river bank, or an aviation term), 
the word class ("bank" as an institutional building, like a 
church), the part-of-speech or its general type (plural 
personal pronoun versus any general pronoun) or discourse 
markers.  
 
While natural language grammars allow for some 
variability in syntactic ordering, some linguistic tasks, like 
stylometry, depend on the order in which specific tokens 
or general classes of tokens are used. 
 
One common approach to mining information from 
components with multiple dimensions is to generate a set 
of all tuples and mine for common patterns using an a 
priori approach (Agrawal and Srikant 1994, WordSmith 
1996).  In a linguistic approach where words have multiple 
dimensions, the sheer number of permutations makes this 
approach undesirable. 
 
This paper outlines a method by which sequences of words 
can be analyzed for common structural similarities and 
classified based on those similarities, instead of relying 
solely on a bag-of-words approach.  Quantitative results 
are presented both on artificially-generated and naturally-
occurring language data.  The research shows that graphs 
can correctly be discovered that include multiple semantic 
dimensions (parts of speech, word types, specific tokens), 
and several sample graph structures are presented.   

Graph Processing 
The core algorithms to discover and classify the 
frequently-occurring patterns in the language data are 
supplied by the SUBDUE system (SUBDUE 2004), which 
can detect repetitive patterns, or substructures, within 
graphs.  We define a graph as a set of labeled vertices and 
labeled edges between those vertices, where the labels 
need not be distinct.  A substructure of the graph is a 
connected sub-graph. 
 
Note that this paper’s focus is not to validate SUBDUE or 
its approach.  Enough studies have been performed on 
disparate datasets to demonstrate its value (Cook and 
Holder 2000, Coble and Cook 2003), including studies 



involving text processing (Aery and Chakravarthy 2005).  
For this particular research, SUBDUE and its algorithms 
are used as the graph-processing backend; however, any 
graph-based pattern detection algorithm would perform 
equally well. 
 
SUBDUE maintains an ordered set of discovered 
substructures called the parent list; initially, this list simply 
holds a single-vertex substructure for each distinct vertex 
label.  These simple substructures are removed from the 
list; their extensions in the main graph are produced by 
adding either a new vertex and the corresponding edge or 
just an edge, and then inserted into the parent list.  As new 
substructures are generated, a second list maintains the 
best substructures discovered.  After completing this 
process, the substructure with the top utility is reported.  
The graph may then be compressed by replacing each 
instance of the top substructure with a new, unique, vertex 
to represent that larger substructure.   
 
Two common graph evaluation techniques are Minimum 
Description Length (MDL) and Set Cover (Cook and 
Holder 2000).  The MDL heuristic  measures the minimum 
description length (or simply “description length”), which 
is the lowest number of bits needed to encode a piece of 
data; SUBDUE approximates this value for any given 
graph.  Using this heuristic, the best substructure is that 
which minimizes the following value: 
 
 S))|DL(GS)DL(G)/(DL(  G)value(S, +=

 
 
 
where G is the entire graph, S is a particular substructure, 
and DL is the description length in bits, and (G|S) is G 
compressed with S.   
 
When evaluating graphs using a set cover function, the 
value of a substructure S is computed as the number of 
positive examples containing S plus the number of 
negative examples not containing S, this quantity divided 
by the total number of examples (SUBDUE 2004). The 
resulting compression removes all positive examples in the 
graph containing S. 
 
Here is a simple example of how SUBDUE works, given 
the graph shown in Figure 1. 
 
 

 
Figure 1.  Example graph. 

 

The substructure  appears twice.  After 
evaluating all possible substructures, such as  
and  for example, SUBDUE will rank this 
substructure ( ) the best.  Before the next 
iteration, SUBDUE will compress the graph by replacing 
all instances of this substructure with a new vertex.  Like 
other graph-based algorithms, SUBDUE time complexity 
is exponential in the worst case, but can be reduced to 
polynomial time in practice (SUBDUE 2004).   
 
As noted previously, this work does not intend to re-
validate SUBDUE or the concept of processing text via 
graphs.  The approach to detecting linguistic patterns 
should work with any graph processing algorithm. 

Experiments 
We encode text phrases as graphs, encapsulating different 
combinations of linguistic dimensions such as word order, 
part-of-speech syntax, and semantic elements, with the aim 
to more accurately classify the phrases. 
 
We demonstrate these results using two artificial corpora, 
Word Order and Garden Path, and two natural corpora, 
ACES and Physics.  The artificial corpora were selected 
for their ability to demonstrate how the approach is 
working for specific cases.  A basic placeholder graph 
structure is used, and five-fold validation testing is used to 
test each corpus. 

Graph Structure 
This approach models language using a “placeholder” 
graph, where a vertex with a generic label is used to 
represent each word, with edges leading out from the 
placeholder to vertices representing the dimensions (each 
placeholder has the same label).  Figure 2 is an example of 
two words, t1 and t3, encoded with the following 
dimensions: 
 
• Tokens t1 and t3 (the words themselves) 
• The respective parts of speech t2 and t4 
• Their status as either a content or function word 
 
Each dimension appears as a vertex with an edge from the 
placeholder representing the word (the “Plch” vertex at the 
top of the diagram) and with another vertex to the 
placeholder for the succeeding token (the “Plch” vertex in 
the middle and at the bottom of the figure).  Other desired 
characteristics, such as a proper noun or a particular word 
class would also be represented as vertices, with edges 
linking the vertex for the dimension to the preceding and 
succeeding placeholders. 
 
One crucial feature of the graph is the edge that exists 
between each placeholder (see the left-most edge in the 



diagram).  With the edge in place, a sequence of words X, 
Y, and Z can reveal patterns involving only dimensions of 
X and Z, without any regard for any dimension of Y.  
Without the edge, characteristics of Y must be taken into 
account, an unnecessary requirement. 
 
The edge from each dimension to the succeeding 
placeholder is necessary as well, despite effectively 
doubling the number of edges need for the graph (resulting 
in a four-fold increase in processing time in some tests).  
Without these additional edges, it is very difficult, after  
vertices have been compressed, to determine how vertices 
compressed in one iteration link back to other vertices 
compressed in previous iterations.  This is compounded in 
that the edge labels contain essential information to 
analyzing the final data.  Note that the problem of losing 
information through iterative compression is not 
eliminated with these extra edges to the next placeholder 
vertex, but it is greatly reduced in practice. 
 
Succeeding words are chained to the graph by linking 
vertices representing their dimensions to the last 
placeholder, and by adding a final placeholder.  Any study 
that intends to include possible patterns that cross sentence 
or paragraph boundaries should include sufficient end-of-
sentence markers in the chain; punctuation with 
appropriate tags usually suffices.  If inter-sentence patterns 
are not relevant, then it was observed during testing that 
lightly better runtime exists if each distinct semantic unit 
(sentence, phrase, etc.) was broken up into separate chains 
in the same graph. 
 

 
 

Figure 2.  Graph structure of content word t1 and function 
word t3, with tags t2 and t4, respectively, their 

placeholders, and the next placeholder. 

Dimensions Used 
These linguistic dimensions for each word were used in 
graph generation: 
 
• The token (e.g., “Models”). 
• The tag (“NN1” is a singular noun, for instance). 
• The actual tagged token itself (“Models_NN2”). 
• Whether or not the token is a content word, a function 

word (Au-Yeung and Howell 1999), or punctuation. 
• Whether or not the word is a hyphenate (“Event-

Driven”), a technical, scientific, or invented word 
(“eMailSift”), a proper noun or a number. 

• A generic tag, such as “Noun”, since most tagsets 
contain very granular tags that are roughly equivalent 
(for example, NN0, NN1, NN2, and UNC are valid 
tags for nouns in the C5 tagset (Leech 1997)). 

 
Numbers were considered to be content words.  While 
pronouns are commonly classified as function words (Au-
Yeung and Howell 1997), they are considered content 
words for this study, since normally it would not be 
expected to find pronouns in a presentation title. To 
distinguish between tag classes and word classes, the latter 
used capital letters and the former enclosed the label 
between parentheses.  Also, the token “not” (or “n’t”) was 
classified as a function word for the purposes of this study. 
 
It should be noted that any semantic or syntactic element 
could be graphed and used for classification, including 
discourse markers, noun phrases, coreference 
relationships, etc.  Which linguistic dimensions are 
graphed is a feature selection issue and can be altered 
when needed. 

Classification Testing 
Classification testing was performed on all corpora using 
four different types of structures, using the set cover graph 
evaluation method: 
 
• A bag-of-words approach (in the results as “BOW”) 
• A directed graph reflecting the word order of the 

tokens in each sample (“Ordered”) 
• A directed graph encapsulating the tag and the word 

class structures, without using the terms themselves 
(“Structure”) 

• A directed graph with the tokens, their word order the 
tokens, and their syntactic/semantic structure (“O+S”) 

 
Following our methodology above, all reported numbers 
represent averages across five-fold validated runs.   
 
A separate graph was created for each individual subclass, 
where members of that class were marked as positive 



examples and all members of all other classes from that 
corpus were marked as negative examples. 

Corpora 
We demonstrate these results using two artificial corpora, 
Word Order and Garden Path, and two natural corpora, 
ACES and Physics.  The artificial corpora were selected 
for their ability to demonstrate how the approach is 
working for specific cases. 
 
Word Order. This artificial corpus was constructed 
primarily to validate the accuracy of the approach, by 
gauging the effects on a corpus where the tokens in each 
class are identical, both in frequency and distribution.  It 
consists of two classes, the first containing a series of 
sentences generated from all possible permutations of 
these elements: 
 

( ( (a|the) (boy|girl|child) ) | (he|she|they) )  
(bought|purchased|acquired|sold)  
(toys|candy|food|soda)   
(yesterday|today) 

 
The phrases included samples like these: 
 
• a boy bought candy today 
• the girl purchased food yesterday 
• she acquired toys today 
 
The second class consisted of the same sentences but 
reordered into non-canonical word order, using 
permutations of this order: 
 

(yesterday|today)  
( ( (a|the) (boy|girl|child) ) | (he|she|they) )  
(toys|candy|food|soda)    
(bought|purchased|acquired|sold) 

 
The phrases included samples like these: 
 
• today a boy candy bought 
• yesterday the girl food purchased 
• today she toys acquired 
 
A bag-of-words approach would find that the tokens in 
each class are completely identical, and any classification 
for either class would thus accept all examples from both 
classes, yielding an error rate of 50% (since the number of 
true positives would equal the number of false positives).  
Encoding word order into the graph causes the examples to 
be classified correctly, as is shown in the next section. 
 
Garden Path. This artificial corpus was constructed using 
so-called “garden path” parsing problems, where a phrase 
consists of polysemous words, yielding two very different 

meanings depending on how the tokens are tagged when 
parsed (Dougherty et al 2001).  The different meanings for 
each phrases were split into different classes.  Examples of 
these phrases are: 
 
• fruit flies like an orange (flies or like can be the verb) 
• the historian knew some rebel (rebel is a noun or 

verb) 
• the FBI discovered some record (record is a noun or 

verb) 
 
A bag-of-words approach would yield an error rate of 
50%, for the same reason as the Word Order corpus.  
Additionally, a directed graph encoding just the tokens in 
their occurring word order would also yield an error rate of 
50% (with the number of true positives equaling the 
number of false positives), since the word order is identical 
in each class. Encoding the semantic structure into the 
graph causes the examples to be classified correctly, as is 
shown in the next section. 
 
ACES. This corpus is taken from the set of presentation 
titles from the ACES 2004 conference (ACES 2004) and 
has nine classifications corresponding to titles originating 
from different departments.  Each classification has its 
own set of unique terms and the samples within have their 
own particular syntactic style.  The average length of each 
sample was about 13 tokens. 
 
This corpus will illustrate the effects in a multiclass 
environment where the difference in the amount of positive 
and negative examples for each class is pronounced. 
 
Physics. This corpus was constructed from a set of Physics 
paper titles taken from LANL (also used in Zelikovitz 
2004).  This corpus is of interest because the topicality of 
the different classes is very similar in nature, making the 
bag-of-words approach very difficult.  The average length 
of each sample was about 8 tokens. 

Results 
Table 1 contains the error rates from applying each 
approach against each class in each corpus.  ACESE is a 
subset of the ACES corpus that benefited from the 
approach.  The best test results for each corpus are in bold. 
 

corpus BOW Ordered Structure O+S 
W.O. 0.500 0.000 0.000 0.000 
Garden 0.500 0.500 0.000 0.000 
ACES 0.125 0.134 0.169 0.128 
ACESE  0.099 0.088 0.125 0.078 
Physics 0.500 0.448 0.218 0.218 

 
Table 1.  Error rates for each method, for each corpus. 



 
One immediate observation springs out.  For the full ACES 
corpus, as a general rule, the bag-of-words approach 
outperforms the other three.  This is primarily due to two 
factors:  The lexica for some classes were very distinct and 
as such could be classified solely by a BOW approach, and 
with nine classes of roughly equal size, the number of 
negative examples outpaces the positive examples, making 
it harder for structural tests to have an impact.  These 
phenomena, plus results for each class, are discussed in the 
following sections. 

Class Error Rates Per Corpus 
Word Order.  As mentioned previously, implementing a 
directed graph to reflect the order in which the words 
appear in context, classifies correctly a corpus consisting 
of classes in which the terms are identically distributed but 
in a different order (“Ordered”, in Table 2).  Since all 
terms are equally distributed, using a directed graph 
representing the syntactic structure (which would also be 
different in each class) also achieve perfect rates. 
 
One pattern discovered in the course of classification was 
that all instances of the cwo class begin with an article (the 
or a), which under the Set Cover algorithm is sufficient to 
classify all positive and negative samples in this case. 
 

Class BOW Ordered Structure O+S 
cwo 0.500 0.000 0.000 0.000 
ncwo 0.500 0.000 0.000 0.000 

 
Table 2.  Error rates for each class in Word Order. 

 
Garden Path.  The “Ordered” graph performed no better 
than a bag-of-words approach, since the terms are identical 
in each class and appear in the same order.  However, 
introducing syntactic tags in “Structure” and in the 
combined “O+S” graphs correctly classified every sample.  
The set cover patterns discovered consisted precisely of the 
tag differences between each class. 

 
Class BOW Ordered Structure O+S 
v1 0.500 0.500 0.000 0.000 
v2 0.500 0.500 0.000 0.000 

  
Table 3.  Error rates for each class in Garden Path. 

 
ACES.  As discussed, with four of the nine classes in 
ACES did our graphed approach outperform a bag-of-
words approach, and with three other cases, performed 
equally well or within a tenth of a percent (Table 4). 
In almost every case, “Structure” did not fare as well as 
“Ordered”; this is to be expected since the “vocabulary” of 
the “Structured” graphs (consisting of word classes, tags, 
and tag classes) is not as diverse from class to class as the 

“Ordered” graphs, which actually use the lexicon of the 
class.  The exception is the nurs  class, from which a 
highly detailed graph was extracted with very diverse 
semantic elements linked together. 
 

Class BOW Ordered Structure O+S 
biome 0.076 0.076 0.116 0.076 
chem 0.112 0.107 0.191 0.107 
cse 0.204 0.226 0.239 0.214 
ee 0.109 0.109 0.209 0.109 
kine 0.087 0.037 0.037 0.037 
ling 0.102 0.096 0.180 0.096 
nurs 0.087 0.107 0.059 0.059 
phys 0.081 0.106 0.086 0.106 
psych 0.141 0.184 0.230 0.184 

 
Table 4.  Error rates for each class in ACES. 

 
Subsequent analysis of each class yielded these common 
characteristics: 
 
• Our method worked better in classes with a higher 

frequency of function words and punctuation (and 
consequently, a lower frequency of content words) 
than the other classes. 

• Our method worked better in classes with a higher 
frequency of specific word types (like hyphenated 
adjectives) than other classes. 

• The bag-of-words method worked better in classes 
with a higher concentration of unique content words, 
particularly technical terms. 

 
Class BOW Ordered Structure O+S 
chem 0.112 0.107 0.191 0.107 
kine 0.087 0.037 0.037 0.037 
ling 0.102 0.096 0.180 0.096 
nurs 0.087 0.107 0.059 0.059 

 
Table 5.  Error rates for the classes in ACESE. 

  
Physics.  The “Structure” graph, either by itself or 
combined with “Ordered”, produced significantly superior 
results (Table 6). 
 

Class BOW Ordered Structure O+S 
aph 0.505 0.445 0.282 0.282 
cmd 0.495 0.450 0.153 0.153 

 
Table 6.  Error rates for each class in Physics. 

 
Some observations: 
 



• In the aph class, 26% of the tokens in the positive 
examples were unique to that class; in the cmt class, 
about 21% were unique to cmt. 

• There was a relatively high degree of function words 
given the short textual nature of the samples (27% for 
aph and 25.5% for cmt). 

 
Additional Analysis  

 
If the lexical choice is highly specialized from 
classification to classification, then a simple bag-of-words 
approach is very accurate and providing a graph with 
ordered tokens or semantic structure offers no or little 
improvement.  As an example, see the classes from ACES 
that did not benefit from the semantic structure. 
 
If the lexical choice is identical from classification to 
classification, but the structure is drastically different from 
classification to classification (as seen in Word Order or 
Garden Path), then the incorporation of word order and 
semantic structure is a great benefit. 
 
Best results from our semantic additions to the graph 
structure are obtained when: 
 
• Lexical diversity between classes is relatively low (see 

Physics) 
• The terms used appear in small clusters of terms that 

appear in other classifications (but do not comprise an 
entire example) 

• When there are similar semantic structures appearing 
in separate classifications, yet use different terms 
within the structure (e.g., words from a common 
hierarchical class, or plural forms of the same token) 

Conclusions 
This paper outlines a method by which we mapped short 
text samples into a graph structured that encoded their 
work order as well as other syntactic and semantic 
characteristics crossing multiple dimensions.  We were 
then able to classify examples from several corpora, 
outperforming the common bag-of-words approach. 
 
Analysis shows that this method is conducive to corpora 
with a varied distribution of tokens and complex syntactic 
structures; it is not suited for corpora with highly 
specialized lexicons. 
 
Further research will add other features into the graph 
structure to solve specific linguistic problems, as well as 
determine which features provide optimal results to help 
reduce the scope of the graph. 
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