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Abstract

In this paper, we aim at correcting distributions of noisy sam-
ples in order to improve the inference of probabilistic au-
tomata. Rather than definitively removing corrupted exam-
ples before the learning process, we propose a technique,
based on statistical estimates and linear regression, for cor-
recting the probabilistic prefix tree automaton (PPTA). It re-
quires a human expertise to correct only a small sample of
data, selected in order to estimate the noise level. This statisti-
cal information permits us to automatically correct the whole
PPTA and then to infer better models from a generalization
point of view. After a theoretical analysis of the noise impact,
we present a large experimental study on several datasets.
Keywords. probabilistic grammatical inference, noisy data,
distribution correcting

Introduction
Nowadays, machine learning algorithms have to process
huge amount of data. Beyond this algorithmic constraint,
they also have to deal with an important presence of noise,
due to different reasons such as typing, transfer or experi-
mental errors. To tackle these problems, a lot of data re-
duction techniques have been proposed to remove, either
noisy examples (usually called prototype selection (Brod-
ley & Friedl 1996)), or noisy features (called feature selec-
tion (John, Kohavi, & Pfleger 1994)). These approaches re-
quire generally not only positive but also negative instances
of the concept to learn and use a discrimination criterion (en-
tropy measures (Sebban & Nock 2000), classification suc-
cess rate (Brodley & Friedl 1996), etc.) to detect the pres-
ence of noise. In this context, a noisy example is considered
as a positive (resp. negative) instance which should be neg-
atively (resp. positively) labeled in the absence of noise.
Unfortunately, we often do not have access to negative ex-
amples. In natural language processing, for example, it is
hard to enumerate a lot of counter-examples of the language.
Thus, in this context, standard data reduction techniques are
totally unsuitable when only positive examples are available.
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Algorithms that learn only from positive data usually use
statistical information in the learning sample to generate a
model defining a probability distribution on positive data.
Such approaches are usually called stochastic methods. In
this context, a current trend is to consider that a noisy in-
stance is a weakly probable example, not representative of
the underlying distribution. Indeed, if such data (usually
called outliers) would cover a significant part of the prob-
ability density function, they would become a relevant part
of the concept to learn. We can then think that a weakly
probable example is due to the presence of noise, or at least
to a weak relevance for characterizing the target concept.
Then, it would be reasonable to remove it, as it has already
been done efficiently for tree-structured data in (Habrard,
Bernard, & Sebban 2003b). However, as we mentioned be-
fore, stochastic models require the estimation of probabil-
ities and then large learning sets. In such a context, we
think that a distribution correction procedure is more suited
than a data reduction technique aiming at definitively delet-
ing noisy instances. Moreover, noise can not only generate
outliers, but also modify the probability of some examples
that characterize the concept to learn. These consequences
can be dramatic for stochastic learning algorithms, such as
probabilistic grammatical inference algorithms.

Grammatical inference (de la Higuera 2005) is a domain
of machine learning whose goal is to learn language models
from a set of sequences. Probabilistic grammatical infer-
ence aims at learning a probabilistic automaton which de-
fines a distribution on the language recognized by this au-
tomaton. Learning data (only positive) are supposed to have
been generated following a theoretical probability distribu-
tion. The goal is then to learn the target automaton which
has generated the data. We focus here, more specifically,
on algorithms based on state merging techniques (Carrasco
& Oncina 1994; Thollard, Dupont, & de la Higuera 2000).
They generally use the same base principle consisting in
building, during a first step, a specific probabilistic automa-
ton (called the PPTA for Probabilistic Prefix Tree Accep-
tor) recognizing only the learning examples. Then, for al-
lowing generalization performances, the inference process is
achieved by iteratively merging states considered as equiva-
lent from a statistical point of view.

In this article, we focus on learning probabilistic automata
from uniformly noisy data. Few studies have been pre-



sented in this context: (Sebban & Janodet 2003) in reg-
ular inference and (Habrard, Bernard, & Sebban 2003a)
in probabilistic inference by removing noisy tree-structured
data. Our objective is to correct this noise and then to im-
prove the behavior of standard inference algorithms on mod-
ern databases which often contain noisy data. For these
databases, the theoretical target automaton is obviously un-
known, that justifies the use of a statistical method to assess
the level of noise. We aim, here, at correcting the whole
learning set distribution (more precisely a representation of
it under the form of a PPTA), using a small noise-free sam-
ple. The existence of such a sample appears necessary, be-
cause it seems obviously difficult to detect noisy data only
from positive examples. We think that this constraint is not
too difficult to satisfy in domains where an expert evalua-
tion is possible, such as in molecular biology or in natural
language processing, for example. We show now how this
corrected sample can be used to estimate the noise level in
data and then to automatically correct the PPTA. The under-
lying principle of our estimation method is based on a lin-
ear regression technique, looking for a correlation between
frequencies in the PPTA built from the noisy sample and
the one built from the manually corrected sample. Once the
noise level is estimated, we correct noisy frequencies using
confidence intervals which take into account the sizes of the
samples.

This article is organized as follows. We begin with a
brief recap on probabilistic automata and their learning al-
gorithms. Then, we present a theoretical analysis on the im-
pact of a uniformly distributed noise on learning data, before
describing our correcting approach. Finally, we detail our
experimental validation before concluding.

Learning Probabilistic Finite State Automata
Probabilistic Finite State Automata (PFSA) are a probabilis-
tic extension of Finite State Automata and define a probabil-
ity distribution on strings.

Definition 1 A PFSA A is a 6-tuple (Q,Σ, δ, p, q0, F ). Q is
a finite set of states. Σ is the alphabet. δ : Q × Σ → Q
is the transition function, δ′ denotes its transitive closure.
p : Q×Σ→ [0, 1] is the probability of a transition. q0 is the
initial state. F : Q→ [0, 1] is the probability, for a state, to
be final.

We only consider here deterministic PFSA (called PDFA).
That means that, given a state q and a symbol s, the state
reached from the state q by the symbol s is unique if it ex-
ists. In order to define a probability distribution on Σ∗ (the
set of all strings built on Σ), each state of Q has to be able
to generate a string with a strictly positive probability and,
p and F must satisfy the following consistency constraint:
∀q ∈ Q,F (q) +

∑

a∈Σ p(q, a) = 1.
A string s0 . . . sn−1 is accepted by an automaton A iff

there exists a sequence of states e0 . . . en such that: (i)
e0 = q0, (ii) ∀i ∈ [0, l−1], δ(ei, si) = ei+1, (iii) F (en) 6= 0.
Then the automaton assigns to the string the following prob-
ability: PA(s0 . . . sn−1) =

(

Πn−1
i=0 p(ei, si)

)

F (en). For ex-
ample, the automaton in Figure 1, where states are repre-
sented by circles and final states by double circles, recog-

Figure 1: A PDFA with q0 = 0 and its probabilities.

nizes the string baaa with probability 0.75 × 1.0 × 0.2 ×
0.2× 0.6 = 0.018.

A lot of algorithms have been proposed to infer PDFA
(Carrasco & Oncina 1994; Thollard, Dupont, & de la
Higuera 2000; Kermorvant & Dupont 2002; Ron, Singer, &
Tishby 1995). Most of them follow the same scheme based
on state merging, summarized in Algorithm 1. Given a set of
positive examples S+, it first builds the PPTA (Probabilistic
Prefix Tree Acceptor), which is an automaton accepting all
the examples of S+ (see part at the top of Figure 2). It is con-
structed such that the states corresponding to common pre-
fixes are merged and each state and each transition are asso-
ciated with the number of times they are used while parsing
S+. This number is then used to define the probability func-
tion p. If C(q) is the number of times a state q is used while
parsing S+ and C(q, a) is the number of times the transition
(q, a) is used while parsing S+, then p(q, a) = C(q,a)

C(q) . Sim-
ilarly, if Cf (q) is the number of times q is used as final state
in S+ for each state q, we have F (q) =

Cf (q)
C(q) .

Data: S+ training examples, Result: A a PDFA
A← build PPTA(S+)
while (qi, qj)← choose states(A) do

if compatible(qi, qj) then merge(A, qi, qj)

end
return A

Algorithm 1: Generic algorithm for inferring PDFA.

The second step of the algorithm consists in running
through the PPTA (function choose states(A)), and test-
ing whether the considered states are statistically compatible
(function compatible(qi, qj) which compares the probabil-
ities of outgoing transitions). Several consecutive merging
operations are done to keep the automaton structurally de-
terministic. The algorithm stops when no more merging is
possible. For example, the automaton at the bottom part of
Figure 2 represents the merging of the states labeled b and
bab, and the ones labeled ba, baa, baba.

Theoretical Analysis in the Presence of Noise
Let us recall that our goal is to correct the PPTA constructed
from noisy data with the help of a manually corrected sam-
ple. In this section, we study the impact of noise on the
PPTA transition probabilities. We also show that the alpha-
bet size has a direct influence on these probabilities. We
assume that the noise is uniformly distributed on the letters
of the learning sample, which corresponds to a reasonable



Figure 2: PPTA of S+ = {ba, baa, baba, λ} at the top (λ
denotes the empty string). Below the PDFA obtained after
two state merging.

hypothesis in front of the different possible types of errors
(typing errors, experimental errors, etc). We denote by γ the
noise level, corresponding to the percentage of corrupted let-
ters. We assume that each noisy letter is replaced by a differ-
ent one, randomly chosen in Σ. Let us consider a transition
probability labeled by a letter a ∈ Σ from a state q of the
PPTA. We denote this probability by p(q, a) in the absence
of noise and by pγ(q, a) in the presence of noise.

Given a uniformly distributed noise γ, we can easily de-
termine, after corruption, the transition probability of the
PPTA relatively to γ, p(q, a) and |Σ|:

pγ(q, a) = (1− γ)p(q, a)

+(1− F (q)− p(q, a))
γ

(|Σ| − 1)
(1)

= (1− F (q)− |Σ|p(q, a))
γ

|Σ| − 1
+ p(q, a)(2)

=

(

1− |Σ|γ
|Σ| − 1

)

p(q, a) +
(1− F (q))γ

(|Σ| − 1)
(3)

Considering Equation 1, pγ(q, a) is composed of two
terms. The first one represents the weighted proportion of
letters a that are not affected by the noise, while the second
corresponds to the weighted proportion of letters that were
originally different from a before their modification into a
(due to the noise). The main remark that we can state here,
is that pγ(q, a) evolves linearly relatively to p(q, a). This
remark will justify, in the following section, our correction
approach based on linear regression.

Let us now study the behavior of pγ(q, a) in function of γ.
Theorem 1 Considering a uniformly distributed noise,
pγ(q, a) is an increasing function of γ if p(q, a) < 1−F (q)

|Σ|

and a decreasing function of γ otherwise.
Proof. According to Equation 2,
∂pγ(q,a)

∂γ = (1− F (q)− |Σ|p(q, a)) 1
|Σ|−1 .

Thus, ∂pγ(q,a)
∂γ is positive when p(q, a) < 1−F (q)

|Σ| and
negative otherwise. 2

This result shows that when the noise level increases, the
probability of a letter tends to a weighted value of 1−F (q)

|Σ| .
The alphabet size plays, then, an important role on a noisy
distribution.

We show, now, that for a given level of noise, an increase
in the number of letters tends to highly disturb the original
distribution. For this purpose, we study the deviation be-
tween p(q, a) and pγ(q, a).

Theorem 2 ∆Σ(q, a) = p(q, a)− pγ(q, a) is an increasing
function in |Σ|.
Proof. Using Equation 1, we have:

∆Σ(q, a) = p(q, a)− (1− γ)p(q, a)
−(1− F (q)− p(q, a)) γ

(|Σ|−1)

= γp(q, a)− (1− F (q)− p(q, a)) γ
(|Σ|−1)

Thus,
∂∆Σ(q,a)

∂Σ = −−(1−F (q)−p(q,a))γ
(|Σ|−1)2 = (1−F (q)−p(q,a))γ

(|Σ|−1)2 ≥ 0 2

The deviation ∆Σ(q, a) increases with |Σ| and implies
that the probability distribution is highly modified, whatever
the level γ. This result can be easily interpreted in the pres-
ence of noise: given a large alphabet, a part of letters a are
corrupted, and in parallel, only a small proportion of letters,
originally different from a, are changed in a. Thus, whatever
γ, p(q, a) is modified. This important remark shows that a
noise correction procedure must consider both γ and |Σ|.

Correcting Uniformly Noisy Samples
Probabilistic automata learning is based on the frequencies
of transitions and states. The presence of noise can highly
disturb the estimation of some transitions and have a nega-
tive impact on the quality of the inferred automata. To tackle
this drawback, we propose to correct the transition probabil-
ities of the PPTA with the help of a small manually corrected
sample. We already argued about the interest of such an ap-
proach. An important remark can be made here. While the
corrected sample will help us to estimate the noise level, this
sample can not, in any case, be used as a learning sample
to infer a PDFA. Indeed, statistically speaking, this sample
would be too small to estimate accurately the whole set of
transitions, which would represent a too high number of pa-
rameters. The estimation of the single parameter γ is, on
the other hand, more reasonable. In this context, we begin
to show how we exploit the corrected sample to estimate γ,
before presenting how we use it to correct the PPTA.

Noise Estimation by Linear Regression
Let us consider two PPTA: Ab = (Qb,Σ, δb, q

b
0, Fb) built

from the noisy sample, and A
b

= (Q
b
,Σ, δ

b
, q b

0 , F
b
) from

the manually corrected one. Let qb ∈ Qb a state of Ab,
w ∈ Σ∗ such that δb(q

b
0, w) = qb and q

b
∈ Q

b
such that

δ
b
(q b

0 , w) = q
b
. q

b
is the state recognizing the same prefix

as qb. We assume that C(q
b
) = n

b
and C(qb) = nb. We

consider the following set of pairs of transition probabilities:
Einit = {(p

b
(q

b
, a), pb(qb, a))|a ∈ Σ}.

Each pair of reals defines a point in [0; 1]2. According to
Equation 3, there is a linear dependence between the values
of the probabilities of noisy transitions and noise-free ones,
defined by an equation of the form y = C ∗ x + d.
C, the line slope, and d are defined by (Cox 1987): C =
∑

a∈Σ
(pb(qb,a)− 1

|Σ|
)∗(p

b
(q

b
,a)− 1

|Σ|
)

∑

a∈Σ
(p

b
(q

b
,a)− 1

|Σ|
)2

, and d = 1
|Σ| − C ∗ 1

|Σ| .



Using C and Equation 3, we estimate γ such that:

C =

(

1− |Σ|γ
|Σ| − 1

)

⇒ γ =
(|Σ| − 1) ∗ (1− C)

|Σ| (4)

However, probability estimations of A
b

are accurate rel-
atively to the size of the corrected sample. Rather than us-
ing directly these estimations, we propose to compute the
bounds of a confidence interval which takes into account the
size of A

b
. Given an estimation p̂

b
(q

b
, a) of a probability

p
b
(q

b
, a) estimated from n

b
instances, a confidence inter-

val, with a risk α, around p
b
(q

b
, a) is defined by:

[

p̂
b
(q

b
, a)− uα/2

√

p̂
b
(q

b
,a)p̂

b
(q

b
,a))

n
b

;

p̂
b
(q

b
, a) + uα/2

√

p̂
b
(q

b
,a)p̂

b
(q

b
,a)

n
b

]

where p̂
b
(q

b
, a) = 1− p̂

b
(q

b
, a), and uα/2 corresponds to

the (1− α/2) percentile of the normal distribution.
We compute this interval for each couple of transition

probabilities. We obtain two sets, Einf corresponding to
the pairs of transitions of the lower bounds of each interval,
and Esup to the upper ones:
Einf = {(p̂

b
(q

b
, a)−, p̂b(qb, a)−)|a ∈ Σ},

Esup = {(p̂
b
(q

b
, a)+, p̂b(qb, a)+)|a ∈ Σ}.

Where p̂x(qx, a)− = p̂x(qx, a)−uα/2

√

p̂x(qx,a)(1−p̂x(qx,a))
nx

and p̂x(qx, a)+ = p̂x(qx, a) + uα/2

√

p̂x(qx,a)(1−p̂x(qx,a))
nx

.
We use each of the sets of points in order to obtain

two lines of regression y = Csup ∗ x + dsup and y =
Cinf ∗ x + dinf defining the minimal and maximal val-
ues for γ that can be obtained, taking into account the
sizes of both of the noisy and corrected samples. Finally,
we estimate γ, according to Equation 4, with the slope of
the bisecting of these two lines, defined by the equation:

Csup∗x−y+dsup√
C2

sup+1
=

y−Cinf∗x−dinf
√

C2

inf
+1

Let us consider an example to illustrate our approach.
Let Σ = {a, b, c} and γ = 25%. Figure 3(a)
indicates the transition probabilities for the two states
q

b
and qb respectively estimated from 100 and 1000

examples. Then, we compute, using a risk α =
10%, the sets Esup = {(0.1494, 0.2019), (0.48, 0.393),
(0.583, 0.456)} and Einf = {(0.0505, 0.173), (0.319,
0.357), (0.418, 0.149)}. Using these two samples, we com-
pute the two regression lines, respectively Dsup and Dinf ,
and their bisecting line Dbissec. The result is presented on
Figure 3(b). The slope of the bisecting line is 0.652376 and
provides an estimation γ̂ = 23.2%. This estimation is rela-
tively closed to the theoretical value γ, despite the fact that
less than 10% of the examples have been corrected.

Correcting the PPTA
According to Equation 2, a noisy transition probability
evolves linearly with γ. After estimating this level of noise,
we can correct the probability pγ(qb, a) by:

pγ(qb, a) =
(|Σ|−1)pγ(qb,a)−(1−F (qb))γ

(|Σ|−1)−γ|Σ|

l ∈ Σ p̂
b
(q

b
, l) p̂b(qb, l)

a 0.1 0.1875
b 0.4 0.3750
c 0.5 0.4375

(a) Probabilities of q
b

and qb.
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Figure 3: An example of noise estimation.

More precisely, rather than correcting probabilities, we cor-
rect the frequencies:

C(qb, a) =
(|Σ|−1)C(qb,a)−(C(qb)−Cf (qb))γ

(|Σ|−1)−γ|Σ|

Note that a given correction has an effect on the states ac-
cessible from the corrected transitions. We need then to take
into account these changes in the PPTA. We use a breadth
first search of the PPTA to guarantee an efficient correction.
Formally, for each state q that recognizes a string coming
from states directly accessible from qb, the outgoing transi-
tions of q are modified as follows. ∀w ∈ Σ∗, ∀a ∈ Σ such
that ∃q ∈ Qb with δ′(δ(qb, a), w) = q, ∀e ∈ Σ ∪ {#}:
C(δ′(δ(qb, a), w), e) =

(|Σ|−1)∗C(δ′(δ(qb,a),w),e)−γ∗Nw,e

|Σ|−1−γ∗|Σ|

where Nw,e =
∑

c∈Σ C(δ′(δ(qb, c), w), e) represents the
amount of letters e, accessible from the string w, that can
be affected by the correction of qb, and C(q,#) = Cf (q).
We summarize our approach in Algorithm 2.

Name: correct state
Data: Ab a noisy PPTA, A

b
a corrected PPTA, qb a

state of Ab

begin
γ = Estimate of the level of noise in qb using A

b

foreach a ∈ Σ do
C(qb, a) ← (|Σ|−1)∗C(qb,a)−(C(qb)−Cf (qb))∗γ

(|Σ|−1)−γ∗|Σ|

//Correction of C(qb, a)
C(δ(qb, a))← C(qb, a) //Correction step

end
Adapt the frequencies of transitions and states ac-
cessible from qb

foreacha ∈ Σ do correct state(Ab, A
b
, δ(qb, a))

end
Algorithm 2: Algorithm for correcting probabilities.



Experimental Evaluation
In this section, we present a set of experiments allowing us
to evaluate the relevance of our approach in the presence of
noisy data. For this purpose, we use the algorithm Aler-
gia (Carrasco & Oncina 1994), which is one of the best
known state merging algorithms. We compare its perfor-
mance with and without a PPTA correction, according to two
criteria. The first one corresponds to the case where the tar-
get automaton is a priori known. In this case, we measure a
distance between the inferred model and the target to evalu-
ate the learned model quality. The second one corresponds
to the case where the target automaton is unknown. In this
context, we evaluate the inferred models with a perplexity
measure on a test set.
Evaluation Criteria
Probabilistic Distance Lyngsø et al. defined distances
between two Hidden Markov Models introducing the co-
emission probability, as the probability that two inde-
pendent models generate the same string (Lyngsø, Ped-
ersen, & Nielsen 1999). (Carrasco & Rico-Juan 2002)
presents an adaptation of the co-emission to stochas-
tic tree automata. The probability that two probabilis-
tic models A and A′ generate the same strings is de-
fined by: C(A,A′) =

∑

s∈Σ∗ PA(s)PA′(s), where PA(s)
is the probability of s given the model A. This co-
emission probability allows us to define a probabilis-
tic distance Da, which can be interpreted as the mea-
sure of the angle between two vectors representing prob-
abilistic automata in a space where base is the set Σ∗:

Da(A,A′) = arccos

(

C(A,A′)√
C(A,A)C(A′,A′)

)

Perplexity The quality of a probabilistic automaton A on a
set of sequences S, can be evaluated by computing the mean
of the log-likelihood of the elements of S relatively to the
distribution defined by A: LL = ( 1

‖S‖

∑|S|
j=1 log p(sj | A)),

where p(sj | A) is the probability of the jth string of S. A
perfect model can predict each element of the test set with a
probability equal to one, and so LL = 0. In a general way,
we consider the perplexity of the test set which is defined
by PP = 2LL. A minimal perplexity (PP = 1) is reached
when the model can predict each element of the test sample.
Therefore we consider that a model is more predictive than
another if its perplexity is lower.

Experimentations
We carried out two series of experiments: one when the tar-
get is unknown and one when it is a priori known. For the
first series, we used 3 datasets of the UCI Irvine (Blake &
Merz 1998): AGARICUS, TICTACTOE and BADGES contain-
ing respectively 8126, 769 and 530 examples. Each base
is composed of a positive and a negative set, used for clas-
sification tasks. We decided to use the negative sample as
another concept to learn, which allows us to have 3 addi-
tional datasets. We also used a database of world first names
beginning with the letter A (FIRSTNAME). This base has
1045 male first names (M) and 842 female ones (F). For
the series with a known target model, we used three sources.

Base M WN N C U PA

AGARICUS+ Pe 1.6 4.1±2.9 3.3±0.2 4.1±2.9 3.1±0.9
AGARICUS- Pe 1.7 4.1±2.9 2.8±0.1 3.5±1.4 2.9±0.8
BADGES+ Pe 25 29±4.1 28±0.6 31±2.8 28±4.1
BADGES- Pe 26 32±4.3 31±0.1 32±2.9 30±3.9

TICTACTOE+ Pe 2.8 3.6±0.7 3.3±0.2 3.4±0.1 3.7±0.5
TICTACTOE- Pe 3.0 3.6±0.6 3.2±0.1 3.4±0.1 3.6±0.5

FIRSTNAME M Pe 11 15±2.9 11±0.1 16±4.1 13±2.7
FIRSTNAME F Pe 12 17±3.2 11±0.5 14±3.1 14±3.0

ART1 Pe 1.7 2.0±0.3 1.8±0.1 1.7±0.1 2.0±0.3
ART2 Pe 1.3 1.7±0.4 1.3±0.1 1.4±0.1 1.6±0.3

REBER1 Pe 1.6 2.6±1.1 1.8±0.2 2.4±0.8 2.3±0.8
REBER2 Pe 1.6 2.1±0.6 1.8±0.1 1.6±0.1 2.1±0.5
REBER3 Pe 1.6 2.1±0.5 1.9±0.1 1.6±0.1 2.1±0.5
Average Pe 7.0 9.2±1.9 7.9±0.2 8.9±1.4 8.3±1.5

ART1 Da 0.01 0.4±0.3 0.2±0.1 0.8 0.5±0.4
ART2 Da 0.36 0.7±0.3 0.4±0.2 0.8 0.8±0.4

REBER1 Da 0.07 1.0±0.5 0.5±0.2 0.5 0.5±0.4
REBER2 Da 0.01 0.4±0.4 0.2±0.1 0.1 0.3±0.3
REBER3 Da 0.01 0.4±0.4 0.3±0.1 0.1 0.4±0.3
Average Da 0.11 0.6±0.4 0.3±0.1 0.5 0.5±0.4

Table 1: Results obtained on 18 datasets.

The Reber grammar (Reber 1967), from which we generated
three samples: REBER1 with 500 examples, REBER2 with
5000 examples and REBER3 composed of 10000 examples.
We also used two target automata recognizing the languages
ac∗a+bc∗b (ART1) and (aa)∗(bbb)∗ (ART2). We generated
a sample of 10000 instances for ART1 and 2000 for ART2.

Our experimental set up consisted in adding noise to each
learning sample, with different levels, from 1% to 50%. We
then randomly chose a given proportion of examples to con-
struct the sample manually corrected by the expert. This
sample represents 25% of the original one for datasets hav-
ing less than 400 examples, 10% for those having less than
2000 examples and 5% for the others, except for those with
10000 examples where it represents 2.5% of the original
size. We applied our correction method, for each corrupted
file, using a risk of 5% for the computation of confidence
intervals. Finally, for each obtained file (noise-free, noisy,
noisy and corrected), we learned an automaton using the al-
gorithm Alergia. The quality criterion is Da for samples
where the target automaton is known and the perplexity for
the others. For this last measure, we used a 5 fold cross-
validation. Moreover, in order to compare our ability to deal
with noisy data, we compared our approach with the results
obtained by the adaptation of Alergia proposed in (Habrard,
Bernard, & Sebban 2003a) (denoted by PA) on noisy sam-
ples. This adaptation allows one to reduce the impact of
noise using a more restrictive merging rule.

The results are presented in Table 1. The name of the
samples is indicated in column Base and the quality mea-
sure (Da for the distance or Pe for the perplexity) in col-
umn M . The optimal result, the one obtained with a whole
noise-free sample, is indicated in column WN . Column N
describes results obtained from the uncorrected files, col-
umn C those after our automatic correcting method, and
column PA, those obtained with the adaption PA. For these
columns, we indicate the average of the results on all the lev-
els of noise ± the standard deviation. In order to verify that
inferring the automaton only from the small file corrected
by the expert is not sufficient, we present in column U the
results obtained in this context.

For all the databases, automata inferred from samples
corrected with our method (C) are significantly better than



those learned directly from the noisy samples (N ). More-
over, our technique is better, on average, than the approach
PA which confirms its interest and relevance in the con-
text of dealing with noise in probabilistic grammatical infer-
ence. We can also note that the standard deviation is sig-
nificantly smaller, that denotes a good robustness of the ap-
proach. Moreover, our results confirm that the use of the
small manually corrected sample alone (column U ) is not
sufficient to learn a general performing model. Indeed, au-
tomata inferred after our automatic correcting phase are, on
average, better than those learned only from the manually
corrected sample. An important point concerns the size of
the manually corrected sample. On Figure 4, we represent
the perplexity evolution on the base REBER1, relatively to
the corrected sample size, for C and U and a level of noise
of 25%. The automaton, obtained after correction, is better
until a size representing less than 20% of the original sam-
ple, that corresponds to less than 100 examples. Beyond
this point, the manually corrected sample is logically self-
sufficient.
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Figure 4: Impact of the corrected sample size.

Conclusion

In this paper, we proposed a technique allowing us to auto-
matically correct a learning sample containing a uniformly
distributed noise. Our approach is doubly interesting: firstly,
we are able to correct the learning sample given the level of
noise. Secondly, we provide a solution for estimating this
level with the help of a small sample corrected by an expert.
We experimentally showed the interest of our method in the
context of learning probabilistic automaton from noisy data.

We aim at extending our approach to process other kinds
of noise (such as Gaussian noise for example). While the
estimation strategy of γ would not be changed, we have ac-
tually to define another functional relationship between val-
ues of the transition probabilities of the corrupted PPTA and
those of the manually corrected one.

Another remark concerns the size of the corrected sample.
When it is high, the correction is obviously efficient, from
a statistical point of view. However, the correction of too
large a sample, by a human expert, is not reasonable. Then,
we would like to theoretically study the minimal size for an
efficient correction.
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