
Acquiring and Using World Knowledge Using a Restricted Subset of English
Peter Clark, Phil Harrison, Tom Jenkins, John Thompson, Rick Wojcik

Mathematics and Computing Technology
Boeing Phantom Works

P.O. Box 3707, Seattle, WA 98124
{peter.e.clark,philip.harrison,thomas.l.jenkins2,john.a.thompson,richard.h.wojcik}@boeing.com

Abstract
Many AI applications require a base of world knowledge to
support reasoning. However, construction of such inference-
capable knowledge bases, even if constrained in coverage, re-
mains one of the major challenges of AI. Authoring knowl-
edge in formal logic is too complex a task for many users,
while knowledge authored in unconstrained natural language
is generally too difficult for computers to understand. How-
ever, there is an intermediate position, which we are pursuing,
namely authoring knowledge in a restricted subset of natu-
ral language. Our claim is that this approach hits a “sweet
spot” between the former two extremes, being both usable
by humans and understandable by machines. We have de-
veloped such a language (called CPL, Computer-Processable
Language), an interpreter, and a reasoner, and have used them
to encode approximately 1000 “commonsense” rules (a mix-
ture of general and domain-specific). The knowledge base
is being used experimentally for semantic retrieval of video
clips based on their captions, also expressed in CPL. In this
paper, we describe CPL, its interpretation, and its use for rea-
soning, and discuss the strengths and weaknesses of restricted
natural language as a the basis for knowledge representation.

Introduction
Despite many recent advances, knowledge acquisition re-
mains a major bottleneck in AI. While automated meth-
ods are effective for some classes of knowledge, manual
methods are still needed when applications require deeper,
axiom-based representations for the tasks they perform.
However, authoring knowledge in formal logic is too com-
plex a task for many users, while knowledge authored in
unconstrained natural language is generally too difficult for
computers to understand. Nevertheless, there is an inter-
mediate position, which we are pursuing, namely authoring
knowledge in a restricted subset of natural language. We
have developed such a language (called CPL, Computer-
Processable Language), an interpreter, and a reasoner, and
have used it to encode approximately 1000 “commonsense”
rules. In this paper, we describe CPL, its interpretation, and
its use for reasoning, and discuss the strengths and weak-
nesses of restricted natural language as a the basis for knowl-
edge acquisition and representation.

While there has been a substantial amount of prior work
on Controlled Language (CL) processing, the majority of
it has been devoted to making text easier for people to un-
derstand, e.g., (Hoard, Wojcik, & Holzhauser 1992; Mita-
muraet al. 2003), rather than, as is our goal here, to make

Copyright c© 2005, American Association for Artificial Intelli-
gence (www.aaai.org). All rights reserved.

text easier for computers to understand (we will refer to this
as a “computer-processable” rather than “controlled” lan-
guage). Despite this, there are several ongoing projects with
computer-processable languages that have demonstrated the
viability of the approach, e.g., (Fuchs, Schwertel, & Schwit-
ter 1998; Schwitter & Tilbrook 2004), and the commercial
success of some controlled languages, e.g., AECMA simpli-
fied English, suggests that people can indeed learn to work
with restricted English. This has inspired us to pursue this
avenue, extending the expressiveness and inference capabil-
ities of these earlier systems.

Using restricted English offers several advantages:
1. It seems to be easier and faster than encoding knowledge

in a formal KR language directly, although (as we discuss
later) we consider it more restricted

2. It is more comprehensible and accessible to typical users
3. It is ontologically less commital: If a design decision

concerning the target ontology is changed, the original in-
put sentences can be automatically reprocessed using the
modified language interpreter.

4. It is a step towards richer language processing
Despite this, there are several significant challenges in us-
ing a computer-processable language, in particular it still re-
quires some skill to harness the language effectively. We
first describe our language CPL, and then discuss these is-
sues in detail.

CPL: A Computer-Processable Language
The CPL Language
A basic CPL sentence has the structure:

subject + verb + complements + adjuncts
where complements are obligatory elements required to
complete the sentence, and adjuncts are optional modifiers.
Within this structure, the CPL grammar currently includes
handling of prepositional phrases, compound nouns, ordinal
modifiers, proper nouns, adjectives, passive and gerundive
forms, relative clauses, and limited handling of conjunctive
coordination. Pronouns are not allowed; instead, the user
must use definite reference. Basic sentences can be con-
joined together using the keyword “AND”. Figure 1 shows
some example CPL sentences and rules.

As we describe shortly, basic sentences are interpreted
as ground “facts” about the world, i.e., objects are consid-
ered existentially quantified. To enter rules of inference,
i.e., statements involving universal quantification, CPL uses
seven rule templates, whose elements are basic CPL sen-
tences. One such template is:

(1) “A man picks up a large box from a table”
(2) “The man carries the box across the room”
(3) “The man is sweeping the powder with a broom”
(4) “Two vehicles drive past the factory’s hangar doors”
(5) “The narrator is walking past racks of equipment”
(6) “The narrator is standing beside a railing beside a
stormwater outfall”

(7) “IF a person is carrying an entity that is inside a
room THEN (almost) always the person is in the room.”
(8) “IF a person is picking an object up THEN (almost)
always the person is holding the object.”
(9) “IF an entity is near a 2nd entity AND the 2nd entity
contains a 3rd entity THEN usually the 1st entity is near
the 3rd entity.”
(10) “ABOUT boxes: usually a box has a lid.”
(11) “BEFORE a person gives an object, (almost) always
the person possesses the object.”
(12) “AFTER a person closes a barrier, (almost) always
the barrier is shut.”

Figure 1: Example sentences (1)-(6) and rules (7)-(12) ex-
pressed in CPL.

If sentence1thentypically sentence2

where sentence1and sentence2are basic CPL sentences,
andtypically is a qualitative degree of reliability. The Web-
based interface for entering rules is shown in Figure 2. We
describe the rule templates and their interpretation later, af-
ter first describing the basic processing of a CPL sentence.

The Target KR Language
The goal of CPL interpretation is to translate the original En-
glish sentences into a formal knowledge representation (KR)
with well-defined semantics, which can then be used in rea-
soning and question-answering. The target KR language we
are using is called KM, the Knowledge Machine (Clark &
Porter 1999). KM is a mature, advanced, frame-based lan-
guage with well-defined semantics, used previously in sev-
eral major KR projects.

Interpreting CPL
We now describe the technical details of how basic CPL sen-
tences are interpreted. Following this, we discuss how sen-
tences involving universal quantification are processed.

CPL sentences are translated to logic in three main
steps, namely parsing, generation of an intermediate “log-
ical form” (LF), and conversion of the LF to statements in
the KM knowledge representation language. Each step ex-
ploits semantic information to guide the interpretation.

Parsing Parsing is performed using SAPIR, a mature,
bottom-up, broad coverage chart parser, also used commer-
cially (Harrison & Maxwell 1986). As an additional guide
to structural disambiguation, the parser includes preference
for common word attachment patterns (“tuples”) stored in
a small database, constructed manually. Techniques such as
(Schubert 2002) suggest ways such a database might be built
automatically in future.

Figure 2: Rules are entered by writing CPL sentences in rule
templates.

Logical Form (LF) Generation During parsing, the sys-
tem also generates a “logical form” (LF). The LF is a simpli-
fied and normalized tree structure with logic-type elements,
generated by rules parallel to the grammar rules, and con-
tains variables for noun phrases and additional expressions
for other sentence constituents. Some disambiguation de-
cisions are performed at this stage (e.g., structural, part of
speech), while others are deferred (e.g., word senses, seman-
tic relationships), and there is no explicit quantifier scoping.
Some examples of LFs are shown below:

;;; LF for “the cat sat on the kitchen mat”
((VAR ?X1 "the" "cat")

(VAR ?X2 "the" "mat" (NN "kitchen" "mat"))
(S ?X1 "sit" (PP "on" ?x2))

;;; LF for “an aircraft is transporting objects through the air”
((VAR ?X1 "an" "aircraft")

(VAR ?X2 NIL (PLUR "object"))
(VAR ?X3 "the" "air")
(S ?X1 "transport" ?X2 (PP "through" ?X3)))

Generation of KM Sentences Finally, the LF is used to
generate ground KM assertions. First, a set of simple, syn-
tactic rewrite rules is applied recursively to the LF to trans-
form it into a set of ground, binary clauses of the form
r(x, y)1, where each syntactic relation and preposition be-
comes a binary predicate. For example, the initial KM for
“The cat sat on the kitchen mat” looks as follows:

subject(_Sit1, _Cat1)
"on"(_Sit1, _Mat1)
mod(_Mat1, _Kitchen1)

1In KM this would be expressed as a triple(x r y) , but for
this paper we will use the standard logical notationr(x, y)

Items beginning with a “” are Skolem constants, each de-
noting an existentially quantified individual. In this case,
there is an instance of a sitting (Sit1), a cat (Cat1), a
kitchen (Kitchen1), and a mat (Mat1), related gram-
matically as shown. Then, interactively, word senses are as-
signed to those objects, and syntactic relations are replaced
with semantic relations. Finally, other structural reorgani-
zations are performed, including coreference identification
and handling coordination.

For word sense disambiguation (WSD), we are currently
using WordNet as the target ontology. The word sense dis-
ambiguation task is to find a most likely assignment of con-
cepts (i.e., WordNet synsets) to the Skolem constants in the
KM, based on the words they correspond to in the original
sentence. The system makes a “best guess” of word sense
assignments using prior probabilities of single word sense
and pairwise word sense assignments for all words/word
pairs in the sentence. (The prior probabilities are computed
from a tagged corpus). The best assignment is then pre-
sented to the user for verification/correction. This approach
seems adequate for our purposes, as we allow interactivity;
we do not make any strong claims of its accuracy compared
with other state-of-the-art WSD systems.

As a special case for WSD, for nominalizations (e.g., “-
ing” and “-ion” nouns such as “the falling”, “the construc-
tion”), the system picks from the verbal rather than noun
senses, using the root verb of the nominalization. This al-
lows coreference between verbs and nominalizations to be
recognized, and removes the duplication of concepts (verb,
verb nominalization) in WordNet from our system.

For semantic relations, the task is to replace syntactic re-
lations in the original KM (verbal subject and object; prepo-
sitions; noun-noun relations) with semantically meaningful
relations. For our vocabulary of semantic relations, we are
using the “slot dictionary” from the University of Texas at
Austin2, a set of about 100 semantic relations. This contains
traditional case-role-like noun-verb relations (e.g., agent,
patient, instrument), noun-noun modifier relations (e.g., has-
part, content, location, material), and event-event relations
(e.g., causes, enables). The system picks semantic relations
by looking at assignments made in earlier, similar sentences,
and hence the system learns relations over time, using a tech-
nique similar to (Barker & Szpakowicz 1998).

For example in “travel to a zoo”, the initial KM may
include the clause"to"(Travel01, Zoo01) , where
Travel01 and Zoo01 are (after WSD) Skolem in-

stances of the classes (synsets)travel v1 3 andzoo v1
respectively, and the task is to replace the syntactic rela-
tion "to" with the appropriate semantic relation. First the
system looks for other, previously processed cases of"to"
being used betweentravel v1 and zoo n1 , and picks
the (most common) semantic relation used in those previ-
ous cases (here,destination would be the desired pick).
If none are found, it generalizes the concepts (using Word-
Net’s ontology) and looks for previous cases of"to" be-

2www.cs.utexas.edu/users/mfkb/RKF/tree/
3For legibility we have renamed the wordnet synset numbers,

e.g., 201441983, with more friendly names, e.g.,travel v1

tweengo v1 andfacility n1 , etc., iteratively general-
izing until some previous cases are found. Again, the user
is asked to verify/correct the system’s choices. Noun-noun
and adjective-noun modifiers are similarly replaced with se-
mantic relations using the same algorithm.

For intrasentence coreference, by default multiple uses of
the same word within a sentence are assumed coreferential.
To override this, the user includes explicit ordinality markers
(“first”, “second”, etc.), e.g., “A man saw a second man”,
and in rule (9) in Figure 1.

Finally, structural re-organizations are performed:
1. The verbs “be” and “have” are transformed from

event instances to relations, e.g., the clauses
subject(Be1, Rose2),object(Be1, Red3)
become "be"(Rose2, Red2) , and subsequently
the syntactic relation “be” is replaced with a semantic
relation (herecolor) using the earlier technique.

2. Certain other verbs, with senses flagged in the lexicon
as “relational verbs”, are similarly transformed into a
semantic relation, as specified in the lexicon. Exam-
ples include (particular senses of) “weighs”, “neighbors”,
and “holds”, which transform to the semantic relations
weight , neighbor , andsupports respectively.

3. Certain nouns, with senses flagged in the lexicon as
“relational nouns”, are transformed into a semantic re-
lation, as specified in the lexicon. For example, the
phrase “the part of a car” generates an initial KM clause
"of"(Part01, Car01) , but will be transformed
into the clausepart-of(Thing01, Car01) if the
user picks the sensepart n1 (“something which is a part
of something else”).

4. One special semantic relation is that of equality, a com-
mon meaning for the syntactic relation"be" , e.g., in “the
color is red”. If this relation is chosen, KM will unify
(assert as equal) the two equalized objects, e.g., given
equal(Color1, Red1) , this clause will be deleted
and all occurrences ofColor1 be replaced withRed1
in the other KM clauses.
After completing the interpretation, the system shows its

final interpretation to the user to verify, either displaying the
final KM clauses directly or as (rather crudely) paraphrased
English, as the user desires. The user can then either accept
the interpretation, or modify the original sentence and/or
word sense and relation choices and reprocess.

Entering Inference Rules
Basic CPL sentences translate to a set of ground logical as-
sertions between Skolem individuals. To enter universally
quantified statements, the user uses one of the seven “rule
templates” listed in Figure 3, using the editor shown in Fig-
ure 2. The first three of these templates create standard
logical implications, and the remaining four describe pre-
conditions and effects of actions, represented using KM’s
STRIPS-like situation calculus representation of precondi-
tion/add/delete lists. As an example of the first template,
consider rule (7) from Figure 1:

(7) “IF a person is carrying an entity that is inside a
room THEN (almost) always the person is in the room.”

Template Interpretation
If s1thentypically s2 ∀ x, y s1(x, y)→ ∃ z s2(y, z)
Aboutn: typically s2 ∀ i isa(i,N)→ ∃ z s2(i, z)
n/v is typically np/vp ∀ i isa(i,N)↔ ∃ z npvp(i, z)
Befores1, typically s2 ∀ e, x, y s1(e, x, y)→ precondition(e,∃ z s2(y, z))
Befores1, it is typicallynot true thats2 ∀ e, x, y s1(e, x, y)→ precondition(e,¬ ∃ z s2(y, z))
After s1, typically s2 ∀ e, x, y s1(e, x, y)→ add-list(e,∃ z s2(y, z))
After s1, it is typicallynot true thats2 ∀ e, x, y s1(e, x, y)→ delete-list(e,∃ z s2(y, z))

Figure 3: The seven rule templates, and their interpretation in logic.n/v/np/vp/s denotes noun/verb/noun-phase/verb-
phrase/sentence respectively.s1() ands2() denote thesetof clauses produced from sentencess1 ands2 respectively. Quan-
tification is as in Prolog: All variables in the rule’s condition are universally quantified, all remaining variables are existentially
quantified. Above,x denotes thesetof variables which occur only in (the logical clauses produced from) sentences1, y denotes
the set of variables which occur in boths1 ands2, andz the variables ins2 only. N is the class (word sense) selected forn/v,
ande denotes the main event (the head verb) in (the logical clauses produced from)s1. typically is one of “(almost) always”,
“usually”, “sometimes”, and “never”. Currently it is stored but not used for inferencing.

Before adding quantifiers, the KM clauses which are gener-
ated from this (after disambiguation) look:

isa(_Person1, person_n1)
isa(_Room2, room_n1)
isa(_Entity3, entity_n1)
isa(_Carry4, carry_v1)
object(_Carry4, _Entity3)
agent(_Carry4, _Person1)
is-inside(_Entity3, _Room2)

->
is-inside(_Person1, _Room2)

As this is entered as a rule, however, the interpreter modifies
its interpretation so that all Skolems in the rule’s condition
are treated as universally quantified variables (and any re-
mainder in the rule’s action as existentially quantified). As
in Prolog, this quantification is not explicitly added syntac-
tically, but instead is assumed by the rule interpreter.

Questions
CPL also accepts “wh-” question sentences, such as “What
is the man carrying?” and “Who is carrying the red box?”.
The LF for these sentences contains a “wh-” question vari-
able, denoting the target of the question, e.g.,

;;; “Who is carrying the red box?”
((var _x1 "who" nil)

(var _x2 "the" "box" (an "red" "box"))
(s (present prog) _x1 "carry" _x2))

Questions are handled by transforming them into (the
logic for) a definite noun phrase, referring to the answer.
After this, the task for the reasoner is to compute the iden-
tity of that referent. For example “Who is carrying the red
box?” generates (the logic for) “The thing carrying the red
box”, and “What is the location of the man?” generates
“The location of the man”. The inference engine then looks
up/computes the identity of the referent, using standard rea-
soning methods of backward chaining and automatic clas-
sification. In the above example, the interpreter generates
clauses (omittingisa clauses):

;;; “Who is carrying the red box?”
agent(_Carry2, _Who2)
object(_Carry2, _Box2)
color(_Box2, _Red3)

which is then converted to the query:
Find ?Who where agent(_Carry2,?Who), ob-
ject(_Carry2,_Box2), color(_Box2,_Red3)

Applying the Knowledge Base
In our current system, reasoning with the NL-entered knowl-
edge occurs in the context of ascenario. A scenario is a
particular situation in the world, denoted by a set of ground
assertions in the knowledge base. Scenarios are specified
using one or more sentences in CPL, for example, the sen-
tences (1)-(6) shown earlier, and it is against this initial sce-
nario that the inference rules are applied. Rules can be
applied in forward-chaining mode, to elaborate an initial
scenario with new facts implied but not explicitly stated in
the original sentences; or they can be applied in backward-
chaining mode, to compute the answer to a specific question
posed to the system.

Scene Completion and Semantic Search
One of the applications we are developing is for “semantic
search” of a database of video captions. Typically, a caption
only explicitly describes a few of the facts about the scene.
Many other facts, although “obvious” to a person, are not
explicit. For example, consider caption (1):

(1) “A man picks up a large box from a table”

From this caption, a person would also realize that, most
likely, the man is holding the box; the box was probably
on the table; the man is near the table; the man is lifting
the box with his hands; the box is now above the table; the
man is standing; etc. In other words, the original caption
only gives a partial description of the full scene, and it is our
commonsense and domain-specific knowledge of the world
that allows us to imagine the “bigger picture”. In this ap-
plication, we are replicating this process by having the in-
ference engine apply rules to the initial (interpreted) caption
in a depth-limited, forward-chaining fashion. The result is
a much richer caption description, against which search can
be performed. For example, a query for “A person holding
something” would match the above caption (1), even though
there are no words in common, because the enriched caption

description includes the fact that the man is holding the box
(inferred from a general rule that picking up something im-
plies (almost always) holding it), and the system also knows
a man is a person, and a table is a thing.

Dialog and Simulation
As well as entering a single sentence to describe a scene, our
system allows a sequence of sentences to be entered, to de-
scribe a “story”. As before, each CPL sentence is interpreted
interactively. To represent and reason with a sequence of
events, CPL uses a standard, STRIPS-like situation calcu-
lus mechanism, in which add-lists and delete-lists (entered
using the rule templates shown earlier) express the effects
of actions on the world, and update the clauses represent-
ing the current “situation”. During a “story”, the initial CPL
sentence creates an initial situation. If the next sentence is
stative (e.g., “the box is red”), the new facts are added to that
situation. If the next sentence is an action though (e.g., “The
man moves the box to the floor”), then the STRIPS-like rule
for the action (here, “move”) is applied to update the situa-
tion, reflecting the changes that the action has on the world.
In this way, the system tracks the dynamic changes to the
world during a story-like dialog. The user can then ask (in
CPL) questions of the representation at any time.

Discussion
Our goal is to be able to enter knowledge in a way that is
simple, natural, and accessible, and our hypothesis is that
a restricted English language, like CPL, reasonably meets
this goal. On the positive side, our experience is that CPL
is easy to use, and the approach appears to be viable. We
currently have a knowledge-base of over 1000 rules and a
caption database with over 100 captions, all entered in CPL.
The knowledge is inference-capable and easy to inspect and
organize, and the system can be easily incrementally devel-
oped by gradually expanding the range of language covered.

There are also several challenges presented by this ap-
proach. Most significantly, it still takes some skill to use
CPL. Simply because the user is authoring in (restricted)
English does not mean that he/she no longer needs to care
about the underlying processing or semantics. In addition,
given that no language interpreter will be 100% perfect, the
user needs to learn to “control the beast” to ensure that what
the system understands is what he/she intended, and modify
the input and/or processing if not. It may take several at-
tempts to enter a rule into the system until it is understood
correctly (users familiar with CPL and the interpreter are
significantly more efficient).

This control comes in several forms. First, the user needs
to reformulate his/her intended rule within the grammatical
scope of CPL. In some cases this reformulation task is sim-
ple, but in many cases it is non-trivial and requires more
than just grammatical conversion. In particular, a “natural”
statement of a rule often leaves much knowledge implicit,
which needs to be made explicit to produce a meaningful
and useful rule in CPL. For example, consider the follow-
ing glossary definitions taken from WordNet (WN), and an
approximate re-expression of them in CPL:
(WN) “attack: intense adverse criticism”

(CPL) “If a person launches an attack against a 2nd person
then (almost) always the 1st person criticizes the 2nd per-
son.”

(WN) “axis: the center around which something rotates.”
(CPL) ”If an object is rotating then (almost) always the ob-

ject is turning around the object’s axis.”
The point here is that the reformulation task is often more
than just rephrasing; it requires making the “natural” lan-
guage more precise, which in turn requires thinking in a KR-
oriented way about the subject matter being described. This
itself requires a certain amount of skill and training.

Second, by the nature of natural language, the CPL input
is ambiguous in many ways (parse structure, prepositional
phase attachment, word senses, semantic relations, bracket-
ing, etc.). The goal of the CPL interpreter is to resolve that
ambiguity correctly, but sometimes it makes mistakes, e.g.,
mis-attaches a prepositional phrase. To handle this, two crit-
ical functions need to be supported: First, the user needs to
be able to spot the mistake easily, and second, he/she needs
to know how to modify the input to correct it. In our cur-
rent system, the system paraphrases its interpretation back
to the user, allowing the user to spot misinterpretations. To
correct misinterpretations, the user needs to know a “bag of
tricks” for rephrasing the input to avoid specific mistakes.
For example, CPL may misinterpret

”the man ate the sandwich on the plate”

as meaning the eating (rather than the sandwich) is on the
plate, i.e., misattach the prepositional phrase. A trick to cor-
rect this is to rephase using a relative clause:

”the man ate the sandwich that was on the plate”

but the user needs to be aware of such tricks and skilled in
their use. A challenge for languages like CPL is to devise
methods so that these corrective strategies are taught to the
user at just the right time, e.g., through the use of good sys-
tem feedback and problem-specific on-line help.

A third issue, closely related to the reformulation task
mentioned earlier, is that CPL has limited expressivity com-
pared with the (rich) expressive power of the underlying
KR language, KM. While one might think that, intuitively,
natural-language-based knowledge is more expressive than
traditional KR, we believe the opposite is true: one must dis-
tinguish between human expressivity and computational ex-
pressivity, and it is computational expressivity – the amount
the computer understands, i.e., is able to use to draw sensi-
ble conclusions from – that matters. With no computational
ability to manipulate “represented” knowledge, the repre-
sentation really has no more status than a comment (oth-
erwise, one could argue that the Web has already “solved”
KR). From our perspective, there are numerous represen-
tational phenomena that can be directly expressed and rea-
soned with in the underlying logical formalism KM, but
which are currently outside the scope of CPL and its inter-
preter. These include constraints, defaults, other quantifica-
tion patterns, and mathematical expressions.

A fourth, interesting issue concerns the adequacy
of linguistically motivated representations. In a non-
linguistically-motivated knowledge base (KB), one some-

times finds concepts and theories without any obvious, di-
rect linguistic counterpart, introduced to achieve particular
inferential goals, but these will be largely absent from a
language-generated KB. Do we pay a price for this absence?
For example, a CPL-generated representation of “walked for
10 miles” would look:

distance(_Walk1,_Mile1)
count(_Mile1,10)

whereas conventional KR wisdom would suggest distin-
guishing the physical quantity from its magnitude on a mea-
suring scale, e.g., representing this as:

distance(_Walk1, _Distance1)
value(_Distance1, 10, mile)

The latter representation makes a subtle but critical dis-
tinction, enabling the computer to easily compare distances
measured in different units, describe the same distance us-
ing multiple, different units, perform unit conversion, etc. In
the CPL representation, however, these tasks would be more
difficult to perform because the representation confuses this
distinction. Because the grammatical structure of the lan-
guage does not point to this distinction, it is lost. Of course,
the CPL author could write a somewhat artificial-sounding
CPL sentence to make that distinction, but then the author
would need to be a knowledge engineer to realize it needed
to be made in the first place, which would be self-defeating.

Finally, and closely related, is the issue ofcanonicaliza-
tion. In English, typically there are several ways of saying
the (approximately) same thing (e.g., “conducting a test of
an entity” and “testing an entity”), while in a hand-designed
ontology typically there is one prescribed way of express-
ing that knowledge. If a natural-language-based KR system
naively translates each English variant to a different sym-
bolic variant, then the proliferation of variants will persist,
and without knowledge of their equivalence the computer
may miss conclusions that it should otherwise draw. In prin-
ciple, one could add rules to explicitly state these equiva-
lences (e.g.: “IF an agent is conducting a test of an en-
tity THEN the agent is testing the entity.”), but in practice
this is probably infeasible due to the large number of such
rules required. Rather, what is required is some normal-
ization of the input, by the interpreter itself (e.g., automat-
ically converting “conducting an X of Y” to “Xing Y”), by
restricting the vocabulary and grammatical forms allowed
(e.g., don’t allow the verb “conduct”), and by harnessing
expectations from the knowledge base to guide interpreta-
tion. In our existing work with CPL we have directly ex-
perienced this problem (CPL is perhaps too permissive at
the moment), and we are pursuing all these ways to deal
with it. In particular, we consider harnessing prior onto-
logical expectations as particularly important for addressing
many of the former issues. Given a pre-defined a ontol-
ogy, the system can check its CPL interpretation against it
and if it does not “make sense”, can look at modified inter-
pretations. In this way, a pre-defined ontology can channel
the interpretation into a canonical and well-principled form,
a task closely related to handling metonymy (Fass 1991;
Fan & Porter 2004), and one we consider critical for future
evolution of this technology.

Conclusion
We have presented CPL, a restricted English language for
expressing world knowledge, and have described how CPL
is interpreted and used for reasoning. Restricted English
is an exciting way forward, both as a means for widening
the “knowledge acquisition bottleneck” and making inroads
into the long-term goal of understanding unrestricted text.
Most importantly, we believe it breaks a passage through
the seemingly impassable extremes of hand-coding directly
in logic, and understanding unrestricted English.

Despite this, as we have discussed, there is no “free lunch”
by using a natural-language-based approach to KR. Issues of
semantics and representation need to be addressed either by
the knowledge author him/herself or by the machinery inter-
preting the language input. Nevertheless, we have found that
with some training and experience, the approach is viable.
We have successfully constructed an extensive, inference-
capable knowledge base of over 1000 rules using this tech-
nology, which is being used in an experimental application
for semantic search of video captions. Given the growing
demand for semantically meaningful annotations from the
Semantic Web and information retrieval community, and the
long-standing need for more accessible knowledge acquisi-
tion technologies in AI, we believe that processing restricted
language has significant future potential for the field.

References
Barker, K., and Szpakowicz, S. 1998. Semi-automatic
recognition of noun modifier relationships. InProc.
COLING-ACL’98, 96–102.
Clark, P., and Porter, B. 1999. KM – the knowledge ma-
chine: Users manual. Tech report, Univ Texas at Austin.
Fan, J., and Porter, B. 2004. Interpreting loosely encoded
questions. InAAAI’04.
Fass, D. 1991. met*: A method for discriminating
metonymy and metaphor by computer.Computational Lin-
guistics1(17):49–90.
Fuchs, N. E.; Schwertel, U.; and Schwitter, R. 1998. At-
tempto controlled english - not just another logic specifica-
tion language. In Proc. LOPSTR’98.
Harrison, P., and Maxwell, M. 1986. A new implementa-
tion of GPSG. InProc. 6th Canadian Conf on AI, 78–83.
Hoard, J.; Wojcik, R.; and Holzhauser, K. 1992. An auto-
mated grammar and style checker for writers of Simplified
English. In Holt, P., and Williams, N., eds.,Computers and
Writing: State of the Art, 278–296. UK: Intellect.
Mitamura, T.; Baker, K.; Nyberg, E.; and Svoboda, D.
2003. Diagnostics for interactive controlled language
checking. InProc. Controlled Language Application Work-
shop (CLAW’03).
Schubert, L. 2002. Can we derive general world knowledge
from texts? InProc. HLT-02, 84–87.
Schwitter, R., and Tilbrook, M. 2004. PENG: Process-
able ENGlish. Technical report, Macquarie Univ, Aus-
tralia. http://www.ics.mq.edu.au/∼rolfs/peng/.

