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Abstract

Circular definitions and hypotheses about the possible
implications of counterfactual assertions are common in
natural language. Most logic and ontology systems, however,
do not provide meaningful results on definitions with term
cycles and, because of limitations in the handling of negation,
result in an undefined condition due to counterfactual
assertions. L-space is an adaptation of the Scott lattice to
computationally express the semantic space metaphor of
natural language as described in Langacker’s cognitive
grammar. L-space is here presented in terms of its knowledge
and truth ordering, showing how it, in fulfilling the modeling
requirements of cognitive grammar, provides a solution to the
persistent problems associated with term cycles and negation
in logic based ontologies. @ We show that in L-space
ontologies, fixpoint calculations on definitions that include
the term cycles terminate at the intuitively expected solution.
Beyond dealing with term cycles this feature is shown to be of
importance for term categorization problems that are faced in
representing ontologies for wuse in natural language
processing.  Negation in L-space is presented as a
fundamental alternative to negation by failure and is
compared to classical and strong negation. A method is
introduced for using L-space to reason about conditional and
counterfactual statements in terms of possible and impossible
worlds.

Introduction

A particular advantage of L-space for use in natural
language processing is its use of unrestricted roles. This
feature, however, is dependent on other more basic
capabilities that include the ability to reason intuitively
about definitions that include term cycles and the ability to
represent symmetrical, though non-classical, negation,
which capabilities are the focus of this paper.

The L-space model of cognitive grammar has proven
effective for ontology representation and reasoning in a
major commercial system for information extraction from
clinical medicine reports (Heinze, et al., 2001).

L-space (Heinze, 1994; Davenport, 1994; Heinze, et al.,
1994; Heinze and Davenport 1995) was originally derived
from Scott’s mathematical theory of computation (Scott
Lattices) (Scott, 1970a; Scott, 1970b) in fulfillment of the
modeling requirements of cognitive grammar (Langacker,
1987; Langacker, 1991). Over the intervening decade,
ontologies for use in natural language processing have
continued largely to use description logic representations.
Though useful, logic based ontologies have perennially
struggled with the problems of an inability to deal

elegantly and consistently with the term cycles that are
common in natural language and the inability to achieve a
symmetrical representation with non-classical negation.
Among other things, these limitations make the use of
unrestricted roles impractical. In this paper, we map a path
from description logic to L-space demonstrating the nature
of the noted problems for logic systems and the solution
presented by L-space which by way of reviewing and
updating the treatment of term cycles in L-space lays the
foundation for introducing recent work on handling
negation.  This allows a consistent computation of
symmetric non-classical negation and provides the
intuitively expected fix-point computation of definitions
that contain term cycles. Further, the interpretational
problems due to conditionals and counterfactuals, will be
introduced as representations of possible and impossible
worlds in L-space as grounded in its treatment of negation.

Term Cycles, Ambiguity and Negation
Cycles in logic and description systems come in a variety
of forms. Simple cycles such as “a human is an animal
whose parents are human” are relatively easy to spot and
eliminate if they are not desired in a particular ontological
representation. It is argued that at least some cycles may
be indicative of problems in the model (Horrocks and
Sattler, 2003; Rector, 2002). Cycles, however, may be
difficult to locate, are frequently a part of common sense
definitions and are not necessarily incorrect, per the
example above. It is, therefore, desirable to have a system
in which calculations over term cycles have a natural
termination and a proper interpretation.

Ambiguity is a related problem in defining ontologies.
Medical terminology is fraught with ambiguities that are
resolved by context. For example, in medicine, the
shoulder region is variously considered part of the back
and part of the upper extremity. Further, only part of the
shoulder region is really considered part of the back.
Hence, the ontology should both represent the ambiguity
and provide a principled means for resolution.

Negation, or more generally certainty, is the third
problem area. Medical parlance is highly conditioned:
explicitly so (“possible pneumonia”); with the use of
conditionals (“if the patient has pneumonia”); and with
counterfactuals (“if the patient had not skipped her
medication, she would not have become dizzy.”). This last
area is a rich and relatively little explored problem area,
but it at least suggests the value of a system for negation



that is non-classical in that it does not support the law of
the excluded middle, is stronger than default negation in
that it allows for representable and symmetrical negation
and which can compute the feasibility and distance of
some possible or impossible world as compared to the
currently salient propositions.

Term Cycle and Negation Problems in Logic
Semantic representation schemes such as predicate logic,
default logic, autoepistemic logic, description logic, is-a
hierarchies, semantic nets and production systems have
fundamental similarities that can be abstractly modeled in
terms of lattices. For purposes of investigating the
problems of terminological cycles, (Nebel, 1991) presents
a small terminological formalism 7L\ that is a subset of
the above noted systems. 7LN is sufficiently abstract and
has sufficient coverage to make it useful for analysis and
comparison purposes as a starting point. Note that several
logic-based approaches to the term cycle problem have
been developed (Horrocks and Sattler, 2003) but are, by
nature, workarounds.

TLN is composed of a set R of atomic roles R and a set
A of atomic concepts 4 and B along with the elements
TOP (7), that denotes everything, and BOTTOM (L) that
denotes nothing. Set D consisting of concept descriptions
C and D is defined by the rules:

C, D>A atomic concept |
C&D concept conjunction |
VR: C value restriction |
IR minimum restriction |
IR maximum restriction

A description written in this language is intended to
categorize all objects that fulfill the description. An
interpretation / = <&, [[]]">, where & is the domain and
[[1]" is the interpretation function that maps atomic
concepts to a subset of ¢ and atomic roles to the total
functions from Sto 2°. A terminology 7 is a total function
T: A » D, where T(4) is the concept description defining
the meaning of 4 or, if 4 is primitive in the terminology,
T(A) = A.

An interpretation / is a model of T iff [[A]]" = [[T()]]
VA4 eA.

C is subsumed by D in the terminology 7(C <7 D) iff
[[CT)" < [[D11" for all models I of T.

C is equivalent to D in the terminology 7(C =7 D) iff
[[CT)" = [[D1) for all models I of T.

C is incoherent in terminology 7' iff C =7 L.

As a basis for understanding L-space, note the manner
in which concepts of progressively greater specificity are
formed by means of conjunction and possibly also
restriction. For example, woman and mother-of-daughter
can be defined as:

T(woman) = HUMAN & FEMALE

T(mother-of-daughter) = WOMAN & 3%
CHILD & VCHILD: woman

As concepts become more specific, the movement is from
T towards L.

Given the terminology 7" with fixed A and R, the set of
interpretations that have the same initial partial part f (i.e.
are identical in terms of roles and primitive concepts) are
denoted ¥, T is a function mapping interpretations to
interpretations. A fixed point of ¥, that is an interpretation
1 with the property W(/) = I, is an admissible model of
terminology 7. For such a system, there exists both a least
fixpoint (Ifp) and a greatest fixpoint (gfp) for ¥(/) = L.

Relative to ontology definitions, there are two
particular problems in 7LAN: categorization with
inheritance and definitions with term cycles. The tenacity
of these problems is evident in the variety of logics that
grapple with these problems wusing varieties of
nonmonotonicity and restrictions on cycles.

To enable a comparison to L-space, we recast 7N as a
lattice and will refer to the lattice representation of 7LN as
TLN-space. The term ENTITY is be assigned to L, which
is the root of the hierarchy of all THINGS and
RELATIONS. 1In 7LAN-space, L contains nothing (i.e.
ENTITY is defined by no concepts, ecither atomic or
derived). A set of atomic (i.e. self-defining) concepts is
also necessarily defined else it is otherwise impossible to
build a lattice beyond L = T where L = @.

To illustrate the problem of categorization with
inheritance, add the atomic concept LIVING. Without
being too concerned about the exact semantics, we derive
the concepts 7(plant) = THING & LIVING and T(mineral)
= THING & exists=° LIVING. Add the atomic concept IG
(ingestible) meaning is suitable for eating. If, at this point,
term definitions are to be introduced which use the atomic
concept IG, there is a question of what strategy to use
because only some THINGs, some plants and some
minerals should be marked as IG. Either the entire lattice
can be divided into IG things and those not so marked, or
the introduction of IG can be delayed. With the
introduction of an increasing number of markers, the first
strategy degenerates from categorization to listing. The
second strategy sacrifices the semantic that some THINGs,
some plants and some minerals are 1G. This problem can
be solved wusing restrictions, but this sacrifices
monotonicity (Daelemans, et al., 1992).

A term cycle exists when within some terminology 7,
there is a concept A in which 7(A4) is defined using 4. To
illustrate, consider the 7LN-space definition T(human) =
animal & VPARENT: human. For use in L-space,
computing the 1fp is the most desirable solution because it
corresponds to the partial function that gives results for
terminating  computations and is undefined for
nonterminating computations. However, in the presence of
term cycles, the Ifp is a problem as seen in (Nebel, 1991)
who proves that in such propositions, A4 (e.g. human)
evaluates to lf‘;J_, i.e. nothing, hence 4 and humans are
incoherent definitions, i.e. they do not exist.



Finally, by way of introducing the logic problems to be
addressed, is negation. In partial valuation (or three-
valued) logics “the space {.L, false, true} is given a
knowledge ordering L < false, with x <, y not holding in
any other case.” (Fitting, 2002). This provides the lower
semi-lattice, with L evaluating to undefined, that is neither
true nor false, that is common for many knowledge
representation schemes. In such schemes, negation is
negation by failure (default negation), and the ordering of
concepts is with less specific concepts closer to L and
specificity being built by adding semantic markers (e.g.
roles and concepts) thus moving up the semi-lattice or by
restricting (negating) inheritance. Such constructs are non-
monotonic, and P « not P evaluates to L (neither true nor
false).

Belnap logic (Belnap, 1977) is a four-valued logic in
which the lattice is complete with T being both #7ue and
false. This provides two natural orderings, knowledge
ordering which increases from L as in three-valued logic,
and truth ordering which increases from left (false) to right
(true). The Ilfp of P« not P evaluates to L (neither frue nor
false), and the gfp of P« not P evaluates to 7 (both true
and false).

L-space
As compared to Belnap logic, in L-space the relation
between the knowledge ordering and the means by which
specificity is increased is inverted. For purposes of
convention, L-space maintains the notion of knowledge
(specificity) increasing from L to T but inverts the method
of increasing specificity (from this point the term
specificity will be used) such that in the truth lattice, L is
both true and false, and T is neither true nor false. A
lattice of this nature is described by (Scott, 1970a) and
(Scott, 1970b) as a means of proving a consistent and
correct framework in support of the notion of unrestricted
functions. Five axioms from Scott provide the framework
for constructing L-space. In reviewing the axioms, we
preserve Scott’s use of the term “data-types” as the
correspondence to logic is obvious.

Given x, y € D are two elements of a data type, we say
that y is a better version of what x is trying to approximate.
This is represented as x C y, meaning y is consistent with x
and (possibly) more accurate than x. To avoid confusion,
it can also be stated that the intent is to imply that x and y
are both approximations of the same thing, but y gives
more information about that thing than does x. Consistent
data types should always be represented in this manner.
Further, C is reflexive, transitive and antisymmetric.

Axiom 1: A data type is a partially ordered set.

Given data types D and D’ with partial orderings C and C°,
and f: D - D’ is a reasonable mapping, then for x, y € D
and x C y then flx) C°f{y). Thatis:x Cy=>f{x) C fAy), or
f'is monotonic with respect to partial orderings.

Axiom 2: Mappings between data types are
monotonic.

Given the partiality of the data this has the effect that
functions also become partial and hence the values that
they produce are also. An infinite sequence of
approximations of the formxyCx; C...x, Cx,; C. ..
tends toward a limit, say y = n:g LIx,. As such, the limit is
the least upper bound (/ub). Since the successive terms of
the sequence provide more and more information, the limit
represents a join of the separate contributions. Because the
existence of the /ub implies the existence of the greatest
lower bound (g/b), a complete lattice is formed.

Axiom 3: A data type is a complete lattice under its
partial ordering.

If x, y € D, there exists a lub or join x Uy € D, and all D
has a /ub called T. In this sense, T is an over-determined
element. The /ub of the empty subset of D is the element
1 € D, the most under-determined element. The /ub of the
set of all lower bounds of a subset X c D, is the g/b NX €
D.

X € D is directed if every finite subset {xg, x;, . . . ,
X,+7} < X has an upper bound y € X such that x, U x; ... U
X,+; C y. The limit of the directed set is the ub LLX. For
some specified finite amount of information about LLX, by
directedness, all of it is contained in at least one single
element of X.

Given a monotone function f: D = D’ and limit LLX of a
directed subset X ¢ D, we will say function f{LLX) requests
a finite amount of information about LIX. Since only a
single element x € X is needed, f{x) returns what is needed.
Further, all the information about f{LLY) is the limit of its
finite parts, hence f{LLX) = U{f(x): x € X}. As such, the
mapping preserves the limit, which implies that it is
continuous.

Axiom 4: Mappings between data types are continuous.

A data type D satisfying Axioms 1 and 3 can be regarded
as a topological space. In this space, a basis (say E c D) is
a dense subset of the space in terms of which all the other
elements can be found as limits. To make data types
“physical”, £ must be “known” in the sense that it is at
most countably infinite and enumerable. Given such an E:

Axiom 5: A data type has an effectively given basis.

So then, it is possible to give effectively better and better
approximations to x, which converge to x in the limit.
Although there may be uncountably many elements in D,
there can only be countably many computable elements.

In addition to these axioms, we note from Scott three
important constructs for obtaining new data types from the
given (atomic) ones: (D x D), (D+D"), (D~ D).

The Cartesian product D x D’ has as elements pairs <x,
x> where x € D and x” € D’, and for which <x, x> C <y,
y>iffxCyandx’'Cy’.



The sum D + D’ is defined as a disjoint union D and D’
inwhich L = 1L and T=71".

The function space D - D’ has as elements all the
continuous mappings from D into D’ for which f'C g iff
fx)C’ g(x) Vx e D.

As an example, consider the real number lattice in
Figure 1. L is the interval of all real numbers. It is
maximally under-specified and as such contains no
information. T is the empty interval. It is maximally over-
specified and as such contains too much information.
Moving from L to T one encounters elements with
increasing specificity. A truth lattice so formed
corresponds to the semi-inverted Belnap logic discussed
above.

The axioms and constructs discussed here are sufficient
for the semantics of Langacker’s cognitive linguistics
model ((Langacker, 1987) and (Langacker, 1991)) or see
(Heinze, 1994) for a concise summary).

In cognitive linguistics, instead of atomic markers,
there are basic domains. Each basic domain is a space, and
in L-space, abstract domains are spaces formed either by
the Cartesian product of or by the mapping of one domain
into another. In either case, the original domains may be
basic and the result will always be abstract. 1 is
maximally under-specified and as such is information-free
by maximum entropy. In the real number lattice, L
contains all real numbers. It is, therefore, the maximally
under specified approximation of all real numbers and so
contains no information. Information is introduced as
intervals are created that more closely approximate the real
numbers, which are themselves degenerate intervals.
Increasing specification or narrowing of the intervals, then,
introduces increasing information. The degenerate
intervals, which perfectly approximate the real numbers,
are perfectly specified and contain perfect information.
Continued specification beyond this level results in over-
specification. T is said to be maximally over-specified or,

in other words, there is too much information. The notion
is the same for L-space, except, instead of intervals, the
more general notion of subspaces is employed.

With the lattice in this orientation, computation from L
to T progresses in the direction of increasing conceptual
information. By way of interest, it is noted that in the L-
space, by duality, computation from T is defined as
perceptual. In this regard, the lattice is not isomorphic in
that 1 is now empty and, as such, is perceptually over-
specified whereas T is the space of all perception and is
perceptually under-specified. From this perspective, T is
the perfect carrier signal.

The basic domain lattices of L-space are convex spaces,
and their combination into abstract domains via Cartesian
products or mappings forms convex spaces. This property
of convexity is maintained by IMto the end that the result of
the perception is over-specified as compared to the
objective reality that provides the stimulus. By duality, the
resulting conception(s) formed by this process are under-
specified or more general than the realities they represent.
As concepts are coded into language, the process is in the
direction of L with the result that linguistic events virtually
always under-specify the concepts from which they are
coded. This is exactly Langacker’s claim and is really just
a principled way of saying that language is ambiguous.

In the real number lattice, the basis consists of the
intervals with rational end points plus the element L.
Because L-space is intended as a computer
implementation, it is finite and the space is discrete.
Hence, the basis consists of the subspaces with discrete
end points. Due to finiteness, this implicitly includes L.
(Davenport and Heinze, 1994) and (Davenport, 1994)
present a proof that the discrete representation maintains
the quality of monotonicity and approximates the
continuity of the continuous representation in a way that
preserves its qualities.
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T (too much information — maximum over specification)

(elements with imperfect information)

L (no information — maximum under specification)

Figure 1: The real number Scott lattice




With this lattice, we can define Langacker’s conceptual
relations (Langacker, 1987):

1. Inclusion: [A IN B] or [B INCLUDE A]
2. Separation (noncoincidence): [A OUT B] or [B OUT A]
3. Identity (coincidence): [A ID B] or [B ID A]
4. Association (location within a neighborhood):
[A ASSOC B] or [B ASSOC A]

Given three subspaces [x, ; 1, v, ;] and [z, E ], we can
define:

1. Inclusion: [[x, ;] IN [y, ;]] iff x=y and ;s ;
2. Separation: [[x, X]OUT [y, 1] iff x<v and x > y
3. Identity: [[x, X1ID [y, 1] iff x=v and x= y

4. Association: [[x, X ] ASSOC [z, y 1]

iff [lx X]IN[z z]and [x X]NOTIN[y, y1]

Finally:

1. Sanctioning: [y, ;] sanctions [x, ;]
i ([x, X 1IN [y, yJJor [lx x]ID [ y1)
2. Partial Sanctioning: [y, y ] sanctions [x, X
(< vand(v< X = y)or(w<x> y)and
(x> 1) B

3. Non-sanctioning: [y, ¥ ] does not sanction [x, X ]

iff [[x. xINOTIN [y, y]]

4. Classification: [z, z | is a super-class of [x, ;] and [y, ;]

iff ([lx. x]ASSOC [v, ¥ 1]
or [y, ) ]sanctions [x, X])

and ([[x, x]IN[z z]land [[x. ¥ ]IN[z z]])

5.8alience: if S is a lattice of salience metric 0 or 1 and D
is a lattice, then S x D = E where the salience of any
point with respect to any interval will by 1 if the point is
within the interval an 0 otherwise. (More precisely, S is
a metric from 0 to 1 and the Cartesian product allows for
a metric that indicates the level salience of an
intensional element to the whole concept.)

Term Cycles in L-space

The L-space lattice provides for consistent fixpoint
calculations. This is true even when the lattice contains
term cycles. Fixpoint calculations converge to the correct,
not to mention intuitively obvious, bound. This bound is
the interval that accommodates all aspects of the term
being defined while including no unnecessary information.
The interval or space nature of the lattice representation
directly accomplishes the goals of computing partial
sanctioning, and because the lattice is monotone, fix-point
calculations are direct and principled.

The term cycle example given earlier, T(human) =
animal & YPARENT: human, converges as follows:

1.Insert L in the place of “human” in the right hand side of
the definition.

2. Apply the PARENT restriction: APARENT, 1) = 1 (this
would also be L in TLN, et al.)

3. Take the intersection with animal: animal intersect 1. =
animal (this would, however, again be L in 7LN, et al.)

4. Iterate, inserting animal in the right hand side of the
definition. (at this point, an endless loop begins in TLN,
et al. with L as the solution even if the loop is blocked.)

5. Apply the PARENT restriction: APARENT, animal) =
animal

6. Take the intersection with Auman: human intersect
animal = human

Term Categorization in L-space

To properly understand categorization in L-space, it must
be recognized that whatever intensional elements are
salient in any instantiation will also be salient to some
degree in the extensional parent(s) of that instantiation.
More properly, the intensional definition of any sense is
the normalized sum of the intensional definitions of all the
extensions of that sense. Hence, categorization is not
dependent on conjunction with delayed restriction/negation
of intensional elements, thus introducing non-
monotonicity.  Rather, all extensions are subject to
restriction/negation in a manner that maintains
monotonicity.  Further, by this method, ambiguity is
represented both extensionally and intensionally, as will be
exemplified below.

The interpretation of the L-space lattice in information
terms is thus different from logic constructs, but more
accurate in terms of information theory because L is
information-free due to maximum entropy rather than due
lack of semantic markers. T is also information-free in
that it is the perfect carrier signal. Information exists
between the bounds of L and T to the extent that there is
some degree of entropy with restraints.

Although L-space in some ways reflects the structure of
a semantic net, there are important differences.
Membership of a sense in a class is determined by its
existence as a subspace of the space (schema) defining the
class. This allows for very fuzzy definitions of classes and
class inclusion. In a semantic net, class inclusion is
determined by the presence or absence of a set of features
(markers) constituting the class. A second difference is
that L-space allows partial sanctioning of one sense as
another. This is vitally important to proper cognition of
novel uses in natural language.

Considering the initial example of a term categorization
problem, namely that the shoulder region is ambiguously
defined as part of both the back and upper extremity, L-
space allows for a representation as follows. As with is-a
relations, meronomy is transitive and can also be used as
the extensional axis for ontology, e.g. the regional or
systemic ontology of anatomy. Remember also that in L-
space, any intension of the child/part is an intension of the



parent/whole but at a likely lower salience. As such, the
shoulder region could be instantiated as a part of both the
back and upper extremities and each would have an
intensional definition that included the intensional
definition of the shoulder region.  This would be
acceptable except that the ambiguity in these terms is
deeper. The concept represented by “back™ sometimes
includes the shoulder region and sometimes does not with
the distinction being inferred from the medical condition
for which “back” is the site. So then, both “shoulder” and
“back” are ambiguous such that “shoulder” when spoken
of as part of the “back” is in reality only part of the full
shoulder region, and “back” may or may not include the
intensional elements of the restricted sense of “shoulder”.
This situation is represented in L-space by making
“shoulder” a peer of “back™ and “upper extremity” and
using two spaces for “back”, one of which has the
restricted sense of “back” without “shoulder” as a part and
one of which has the expanded sense of “back” with
“shoulder” as a part. Intensionally, each will be sanctioned
only by the particular medical conditions with which they
are appropriate. The ambiguity problem with only part of
the shoulder region being part of the expanded sense of
“back” is handled similarly. In this way, both the upper
and lower bounds are correct and so computation from
either direction is well behaved. Note also, that in logic
based ontologies the ambiguity inherent in both term
abstraction and polysemy is expressed extensionally but is
not properly captured intensionally.

There are obvious compute space considerations with
the L-space representation; however, there are
implementation shortcuts that stem from the theory and
that provide for computational tractability in practice.

Negation in L-space

Negation by failure is an obvious possibility in L-space in
that a search for a non-instantiated space will evaluate to
T. As such, the certainty of negation by failure in L-space
is higher than is often the case with negation by failure in
logic systems where exhaustive search might not be
employed.

Classical negation (—) is not possible in L-space
because the complement of the set of recursively
enumerable relations is not closed under complementation
(Fitting, 2002).  Further, classical negation satisfies the
law of the excluded middle thus forcing a true or false
decision with no room for uncertainty (Alferes, et al.,
1998). However, on the positive side, classical negation is
symmetrical whereas default negation is not.

Negation in L-space is obviously non-classical, does
not satisfy the law of the excluded middle, but is
symmetrical and, by separation, represents negation in a
strong sense (although the semantics as presented above
are different from “strong negation” (Alferes, et al., 1998)
in terms of the meet and join of true and false.) See also
(Rondogiannis and Wadge, 2002) for another description
of an infinite-valued negation.

Again drawing on a common issue in the parlance of
clinical medicine, we have the issue of degrees of certainty

and the presentation of hypotheses as counterfactuals. The
following brief discussion of this topic illustrates a
conceptualization in terms of L-space negation. It is
presented as an introduction to work in progress.
Counterfactuals are hypotheses that are the inverse of
some actual fact. These types of constructs are common in
natural language in situations where, for example, medical
practitioners hypothesize that if X had not occurred then Y
would not have occurred (when in fact, X and Y did occur).
The result of such possible worlds hypotheses is a
potentially alternative set of pragmatics under which
understanding and reasoning take place across the scope of
the hypothesis. Logic or ontology systems in which (a | b)
is undefined when b = false (which implies (a | b) = (a | ¢)
where b = false and ¢ = false for all b and c) do not yield a
useful possible world semantic. Following is an initial
proposal for handling the situation in L-space.

If X and Y are actual and the hypothesis is “if not X,
then Y, compute the meet of the salient concept spaces in
which X is not evident (this will be some threshold value
on the epistemic value of X) and select the epistemic value
Y’. The resultant space that Y~ defines is the extent of the
effect of the negation of X and can be checked, as a
possible world, for consistency with the observed world.

Given "if not X, then not Y", compute the meet of the
salient concept spaces in which X is not evident and take 1
minus the resultant epistemic value for Y.

If performing an impossible worlds type scenario such
as "if X=not X, then Y = not Y", then compute the meet of
the salient concept spaces in which X is entails Y into S..
Then abstract S, (move it further in the direction of under-
specification, i.e. L) far enough that the epistemic value
of X falls below some threshold 7. Finally, evaluate this
space for the epistemic value of Y (call this E,). The truth-
value (V) of the original statement is:

IfE,>T.then V=1-(E,-T,).
IfE,<T,then V=1

The distance between S, and the space in which E, falls to
T, is an indication of just how much and where the
observed world conception must be modified to make the
statement true. With L taken to be maximally under-
specified, the original statement is true for all X and for all
Y at 1, i.e. in the limit, because X and Y take on all
epistemic values at L. If a greatest lower bound is found
somewhere above 1, it is an indication that the counter-
factual can be accommodated without sacrificing one’s
entire conception of the world.

This method relies on an interpretation of conditionals
consistent with Adams’ (Adams, 1966; Adams 1974,
Bamber, 1994; Bamber, 2000). In prepositional logic, the
statement if 4 then B is expressed using the material
conditional symbol as 4 = B. However, because this
statement is equivalent to 74 Vv B, Adams proposes that it
is not equivalent to the natural language intent of if 4 then
B, which he instead construes as Pr(B | A) is close to one.



This is consistent with the notion in L-space that the
salience, and hence the probability, of any observation or
statement is one only at L and zero only at T. This
definition allows us to compute some interior point even
for a statement such as "if X = not X, then Y = not "
without converging at either L or T.

Conclusion

L-space provides a natural language motivated solution to
several persistent ontology construction problems that are
faced in dealing with definitions that contain cycles and
ambiguity. With regard to negation, L-space possesses the
desirable qualities of both classical and non-classical
negation while overcoming the limitations of each. In this
regard, L-space also holds promise of being useful for
reasoning about hypothetical situations as presented by
several commonly used conditional constructs. Further
investigation in the area of conditional and counterfactual
constructs seems warranted, particularly because this area
has received minimal treatment from the natural language
processing community.
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