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Abstract 
Entailment is a logical relationship in which the truth of a 
proposition implies the truth of another proposition.  The 
ability to detect entailment has applications in IR, QA, and 
many other areas.  This study uses the vector space model 
to explore the relationship between cohesion and 
entailment. A Latent Semantic Analysis space is used to 
measure cohesion between propositions using vector 
similarity. We present perhaps the first vector space model 
of entailment. The critical element of the model is the 
orthonormal basis, which we propose is a geometric 
construction for inference. 

Introduction  
Entailment is a logical relationship in which the truth of 
one or more premises implies the truth of some conclusion. 
While there are several such possible logical relationships, 
e.g. the truth of premises guarantees the falsity of a 
conclusion, or the truth-values of premises and conclusion 
have no relationship to each other, entailment has a central 
role in deductive logic. The practical applications for 
textual entailment are enormous, ranging across question 
answering, information retrieval, text summarization – any 
task requiring knowledge representation and inference. 
 Knowledge representation and inference are two 
necessary ingredients for entailment. Consider for example 
the most basic rule of inference, modus ponens, which 
asserts, “If A implies B and A is true, then B is true.” This 
rule has two kinds of elements, the propositions A and B 
and the relationship A implies B. Computationally, one 
may implement such an inference rule using a Post system 
(Salomaa 1985). In a Post system, sentential propositions 
are denoted by a single symbol and rules of inference are 
rewriting rules whereby the premise symbols may be 
rewritten with a valid conclusion symbol. Many present 
day systems implementing entailment have a common 
lineage with Post systems and thus have similar properties. 
 Unfortunately, problems abound when knowledge and 
inference are represented in this way. Just as there are an 
infinite number of sentences in the English language, there 
are an infinite number of propositions about the world, so 
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creating a complete non-generative knowledge 
representation is an impossible task. Even with a 
generative knowledge representation, one must obtain an 
initial core representation, a non trivial task requiring 
many thousands of man hours, as witnessed by the Cyc 
and Wordnet projects (Lenat 1995; Lennat, Miller, and 
Yokoi 1995; Miller 1995).  Finally, symbolization 
introduces a mapping problem between an inherently fuzzy 
natural language expression and a precise formal 
representation, such that some possible interpretations of 
the natural language statement are invariably lost.  
 We argue that an ideal knowledge representation for 
entailment should be generative, use machine learning to 
bootstrap itself, and retain the inherent fuzziness of natural 
language. Latent Semantic Analysis (LSA) is a statistical 
technique for representing world knowledge (Landauer 
and Dumais 1997; Dumais 1993). LSA is generative, in 
that any word may be represented by the dimensions of a 
fixed size vector. Not only does LSA use machine 
learning, but it also has been shown to closely approximate 
vocabulary acquisition and usage in children (Landauer 
and Dumais 1997).  Although no work has used LSA to 
perform entailment per se, LSA has been used to model 
cohesion and coherence, and the two are closely related. 
 Foltz, Kintsch, and Landauer (1998) use cohesion to 
predict comprehension. The relationship between cohesion 
and comprehension centers on inferences required to 
maintain coherence.  The van Dijk & Kintsch model of 
comprehension postulates three levels of text 
representation, the surface code, the text base, and the 
situation model (van Dijk and Kintsch 1983).  Propositions 
in the text base are derived from the surface code of words, 
and these propositions are related to each other via 
semantic coherence and cohesion.  Without semantic 
coherence and cohesion, the reader must draw on her 
situation model of world knowledge and create bridging 
inferences that make the propositions coherent.  Thus, the 
Kintsch model predicts that low coherence and cohesion 
make comprehension more difficult. Foltz, Kintsch, and 
Landauer (1998) found that LSA makes simple bridging 
inferences in addition to detecting lexical cohesion. These 
bridging inferences are a kind of collocational cohesion 
(Halliday and Hassan 1976) whereby words that co-occur 
in similar contexts become highly related in the LSA 
space. 



 The present study builds upon the idea that LSA has 
some inferential properties and explores the relationship 
between cohesion and entailment. Towards this end a LSA 
space representing general world knowledge was created 
to measure cohesion and other vector metrics between 
entailment pairs. Orthonormal bases of LSA vectors are 
introduced as an important source of metrics for 
entailment.  The study suggests that orthonormal bases are 
a sufficient condition for entailment using a vector space 
model. 
  Section 1 introduces LSA as a vector space model, 
Section 2 summarizes the use of orthonormal bases with 
LSA and their relationship to inferencing, Section 3 
presents the method used in this study, Section 4 presents 
the results, Section 5 is the discussion, and Section 6 
concludes. 

The Vector Space Model 
The vector space model is a statistical technique that 
represents the similarity between collections of words as a 
cosine between vectors (Manning and Schutze 2002).  The 
process begins by collecting text into a corpus.  A matrix is 
created from the corpus, having one row for each unique 
word in the corpus and one column for each document or 
paragraph.  The cells of the matrix consist of a simple 
count of the number of times word i appeared in document 
j.  Since many words do not appear in any given document, 
the matrix is often sparse.  Weightings are applied to the 
cells that take into account the frequency of word i in 
document j and the frequency of word i across all 
documents, such that distinctive words that appear 
infrequently are given the most weight. Two collections of 
words of arbitrary size are compared by creating two 
vectors.  Each word is associated with a row vector in the 
matrix, and the vector of a collection is simply the sum of 
all the row vectors of words in that collection.  Vectors are 
compared geometrically by the cosine of the angle between 
them. 
 LSA (Landauer and Dumais 1997; Dumais 1993) is an 
extension of the vector space model that uses singular 
value decomposition (SVD).  SVD is a technique that 
creates an approximation of the original word by document 
matrix.  After SVD, the original matrix is equal to the 
product of three matrices, word by singular value, singular 
value by singular value, and singular value by document.  
The size of each singular value corresponds to the amount 
of variance captured by a particular dimension of the 
matrix.  Because the singular values are ordered in 
decreasing size, it is possible to remove the smaller 
dimensions and still account for most of the variance.  The 
approximation to the original matrix is optimal, in the least 
squares sense, for any number of dimensions one would 
choose.  In addition, the removal of smaller dimensions 
introduces linear dependencies between words that are 
distinct only in dimensions that account for the least 
variance.  Consequently, two words that were distant in the 
original space can be near in the compressed space, 

causing the inductive machine learning and knowledge 
acquisition effects reported in the literature (Landauer and 
Dumais 1997).  

An Orthonormal Basis 
Cohesion can be measured by comparing the cosines of 
two successive sentences or paragraphs (Foltz, Kintsch, 
and Landauer 1998).  However, cohesion is a crude 
measure: repetitions of a single sentence will be highly 
cohesive (cosine of 1) but inadequate since no new 
information is introduced.  A variation of the LSA 
algorithm using orthonormalized vectors provides two new 
measures, informativity and relevance, which can detect 
how much new information is added and how relevant it is 
in a context (Hu et al. 2003).  The essential idea is to 
represent context by an orthonormalized basis of vectors, 
one vector for each utterance.  The basis is a subspace of 
the higher dimensional LSA space, in the same way as a 
plane or line is a subspace of 3D space.  The basis is 
created by projecting each utterance onto the basis of 
previous utterances using a method known as the Gram-
Schmidt process (Anton 2000).  Since each vector in the 
span is orthogonal, the basis represents all linear 
combinations of what has been previously said.  For 
example, in Figure 1, a new utterance creates a new vector 
that can be projected to the basis, forming a triangle.  The 
leg of the triangle that lies along the basis indicates the 
relevance of the recent utterance to the basis; the 
perpendicular leg indicates new information.  Accordingly, 
a repeated utterance would have complete relevance but 
zero new information. 
 

 

Similarly to van Dijk & Kintsch's model of comprehension 
(van Dijk and Kintsch 1983), dialogue can require 
inference to maintain coherence. According to Grice's Co-
operative Principle, utterances lacking semantic coherence 
flout the Maxim of Relevance and license an inference 
(Grice 1975): 
 

VS 1 

VS 2

Informativity

Relevance 

Figure 1.  Projecting a new utterance to the basis 



S1: Do you want to go out dancing tonight? 

S2: I have an exam tomorrow. 
 
The "inference" in the sense of Foltz, Kintsch, and 
Landauer (1998) is modeled by a fair cosine between these 
utterances, even though they don't share any of the same 
words (i.e. the inductive property of LSA).  Since the 
addition of vectors can arbitrarily change the cosine, such 
inferences can be lost with the addition of more words to a 
text unit.  Using a span, each utterance is kept independent, 
so inferencing can extend over both the entire set of 
utterances and the linear combination of any of its subsets.  
Accordingly, when heavy inferencing is required, one 
would expect a span-based method to be better able to 
model semantic coherence and cohesion than a standard 
vector-based method. 

Method 
In this section we present the method used in this study.  
Our first concern was to find a data set for training and 
testing.  A data set has been recently made available via 
the PASCAL Textual Entailment Challenge, a program 
which seeks to provide a common data set for comparing 
applications that perform semantic inference (PASCAL 
2004). Below are two example propositions and their 
corresponding true and false hypothesis: 

Eyeing the huge market potential, currently led by 
Google, Yahoo took over search company Overture 
Services Inc last year. 

Yahoo bought Overture. 

Microsoft's rival Sun Microsystems Inc. bought Star 
Office last month and plans to boost its development 
as a Web-based device running over the Net on 
personal computers and Internet appliances. 

Microsoft bought Star Office. 
 
We collected all proposition-hypothesis pairs from the 
public data sets and randomly assigned these to training 
and testing conditions.  After assignment there were 259 
pairs in the training set and 308 pairs in the testing set. 
Amongst all these pairs, approximately half are true 
entailments and the other half false entailments.  None of 
these pairs were used in the creation of the LSA space, as 
that could potentially contaminate the results.   
 The LSA space was created using the Touchstone 
Applied Science Associates (TASA) corpus used for The 
Educator's Word Frequency Guide (TASA 2004).  TASA 
constructed the corpus using a “degrees of reading power” 
scale (DRP) that scores the difficulty of text encountered 
by students at grades 3, 6, 9, 12, and college.  The TASA 
corpus contains example texts at each of these levels, but 
more importantly, the DRP scale suggests that the text for 
a 9th grade student also contain the text for the lower 
levels.  Thus the TASA corpus represents a developmental 

trajectory in world knowledge, as opposed to WordNet 
glosses (Miller, 1995) or other textual knowledge 
representations like the MIT OpenMind CommonSense 
project (Singh et al., 2002).  It is hypothesized in the 
current study that a developmental corpus will allow better 
bootstrapping of world knowledge than a non-
developmental corpus, an assumption that requires more 
research. 
 The present study used the 12th grade version of the 
TASA corpus.  The corpus contains 28,882 documents and 
76,132 terms.  The corpus was made lower case, and split 
into paragraphs for LSA. The following example 
paragraph is typical of this corpus: 

a circle of seasons   ;  livingston, myra cohn  ;  
holiday house  ;  1982  26pp.   isbn: 0-8234-0452-8  ;  
drp mean: n/a  ;  a cycle of poems about the four 
seasons, illustrated with paintings by leonard everett 
fisher. 

 
No other processing was performed, e.g. tagging.  
However, the LSA space was made without counting the 
standard set of common words, as these are generally 
thought to only add noise.  The space was made with 300 
dimensions using log entropy weighting. 
 Training consisted of calculating various vector space 
metrics on the proposition-hypothesis pairs and using 
logistic regression to fit a classifier to the data. Of 
particular interest are the standard geometric cosine and 
two new metrics associated with the orthonormal basis.  
These two metrics are based on the following procedure. 
First, for each word in the proposition, the associated 
vector was projected onto the basis, and the component of 
the vector perpendicular to the basis was normalized and 
added to the basis. Secondly, the vector representation of 
the hypothesis was projected into the basis, yielding two 
elements, a perpendicular component and a parallel 
component.  Given these two elements, the most sensible 
theoretical metrics are the perpendicular length and cosine 
between the hypothesis and the parallel component.  These 
reflect the weight of new information in the hypothesis and 
the similarity of the hypothesis, respectively.  These 
metrics are logical from the standpoint that we expect a 
hypothesis to be similar to the proposition but at the same 
time add a little bit of new information. Parameters for 
these metrics were fitted to a linear model using binary 
logistic regression, and these models were tested for 
statistical significance. 
 Finally, the regression model created in training was 
evaluated against the unseen testing data. The outcomes of 
training and testing are reviewed in the next section. 

Results 
In training we focused on both cosine and the two basis 
metrics given above.  Using a χ2 test for significance, we 
found that the regression model using cosine is not a 
significant predictor of entailment at p < .05.  However, 



Figure 2.  Receiver Operating Characteristic Curve 

the regression model using both basis metrics is a 
significant predictor of entailment at p < .05.  The error 
confusion matrix for training is given below: 
 

 Observed  
Predicted True False 
True 95 73 
False 40 51 

Table 1. Error confusion matrix for training 

 
While precision, recall, and F-measure (Manning and 
Schutze) could be calculated for this error-confusion 
matrix, these measures are misleading in this context.  
Consider that a model which always predicts TRUE will 
have an F-measure of .67 out of 1.0, because the TRUE 
and FALSE cases have even odds.  In this situation, d-
prime and the associated measures of hit rate and false 
alarm rate are more informative (Swets, Tanner, and 
Birdsall 1961).  For the regression model using the 
orthonormal basis, these are .70, .59, and .31 respectively. 
With respect to a baseline of chance, the d-prime indicates 
that there are .31 normal standard deviates between the 
mean of the non-entailment distribution and the mean of 
the entailment distribution.  The Receiver Operating 
Characteristic Curve in Figure 2 illustrates the relationship 
between hit rate and false alarm rate in the model. 

  
  
 
 Binomial logistic regression produced a model which 
predicts TRUE when the following value is greater than .5: 
 
 
 

 

 
The parameters of this equation are a constant term, -.275 
and two coefficients for the basis metrics, -1.429 and .667. 
The sign of these last two coefficients illuminates their role 
in the model.  The negative sign on the coefficient for 
perpendicular length indicates that perpendicular length is 
inversely correlated with a hypothesis being a valid 
entailment.  Therefore too much new information in a 
hypothesis contraindicates a valid entailment.  On the other 
hand, the positive sign on the parallel cosine indicates that 
a hypothesis should have elements in common with its 
proposition.  Beyond the sign, the exponentials of these 
values indicate how the two basis metrics are weighted. 
For example, when perpendicular length is raised by one 
unit, a FALSE entailment is .24 more times likely.  When 
parallel cosine is raised by one unit, a TRUE entailment is 
1.95 more times likely. 
 Running the trained model over the testing data showed 
that the correct classification was significant, p < .05, 
using a χ2 test for significance.  Performance was 
surprisingly consistent across both training and testing. 
The testing hit rate, false alarm rate, and d-prime are .72, 
.60, and .30, compared to the training values of .70, .59, 
and .31.   This is strong evidence that the model has 
generalized well to the underlying pattern in the data.  The 
error confusion matrix for the test data is given in Table 2. 

 

 Observed  
Predicted True False 
True 106 97 
False 42 63 

Table 2. Error confusion matrix for testing 

Discussion  
Our intuition that the basis method is performing a kind of 
inference is strongly supported by these results. In the 
general case for this data set, inference is required to 
determine whether an entailment relation exists. For if 
simple substitution were enough, the cosine metric would 
be a significant predictor of entailment, and we have found 
that cosine is not a significant predictor. Thus we have 
shown, perhaps for the first time, that it is possible to use a 
vector space model by itself to detect entailments. 
Moreover, we have shown that using the basis method, a 
general knowledge source like TASA can be generative 
enough to make inferences over foreign material. 
 Not only do the results demonstrate that inference is 
required to solve this problem, but also the manner in 
which inference is supplied is consistent with the 
geometric intuition behind the basis model. Recall that 
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since a basis is a subspace of a vector space, an infinite 
number of statements can be represented inside the basis.  
The propositions generated by the basis are a clear 
analogue to implicatures generated by inference. 
According to intuition, an entailment should be largely 
contained within the subspace generated by the basis; 
otherwise it would not be inferable. Likewise in our basis 
model, the greater the cosine between the basis and the 
hypothesis vector, the more likely the hypothesis is to be 
an entailment (1.95 more times likely for every unit 
increase of cosine).  Symmetrically, the greater the weight 
of information outside the basis, as represented by the 
length of the hypothesis component perpendicular to the 
basis, the less likely the hypothesis is to be an entailment 
(.24 times less likely for every unit increase in 
perpendicular length). 
 Equal training and testing performance suggests that the 
model is generalizing well with respect to what it can 
represent. The basis  is a intuitive model for inference, and 
it is possible that low performance speaks more to the 
kinds of information that are currently missing from the 
vector space model than from an inherent weakness in the 
basis method. The orthonormal basis method does quite 
well, especially considering that it stands on the shoulders 
of LSA, which only makes use of collocational 
information in the corpus.  
 Entailment is a notoriously difficult problem, and there 
are a number of factors working against the current 
method. One is that the training and testing set contain 
many terms that are not found in the LSA space. This is 
because these data sets are drawn largely from current 
events and contain many proper nouns, e.g. “Aristide” that 
are not likely to be found in TASA.  In addition, the 
entailment data set makes use of mathematical notation, 
relying on a system’s ability to reason over quantity. This 
is not possible with LSA – a mathematical expression or 
quantity is simply substitutable for another quantity or 
word.  The substitutability issue comes up also with 
antonyms, synonyms, and hyper/hyponyms, all of which 
LSA treats the same (Foltz, Kintsch, and Landauer 1998). 
Consider the following entailment pair taken from the data 
set: 

Crude oil for April delivery traded at $37.80 a barrel, 
down 28 cents 

Crude oil prices rose to $37.80 per barrel 
 
Clearly “down” and “rose” have an antonym flavor to their 
relationship, but the LSA cosine between these two words 
is high because they are substitutable in the same contexts. 
Finally, word order is a problem in LSA. Because addition 
is commutative, i.e. 1+2 = 2+1, word order is lost when 
word vectors are added to create document vectors. 
Therefore “John likes Mary” and “Mary likes John”, which 
do not have an entailment relationship between them, 
would have a cosine of 1. All of these factors are 
challenges for future research. 

 It is important to recognize that the method outlined in 
this paper specifically addresses the verification of 
inferences rather than their generation.  However, within 
the given framework, it is possible to view the orthonormal 
basis as an approximation of all of the valid inferences 
obtainable from a statement.  Clearly this approximation 
over-generates, because it pays no attention to word order, 
negation, or the other phenomena listed above.  While this 
perspective is consistent with the current approach, the 
present study cannot confirm it. 

 Conclusion 
The vector space model uses machine learning, is 
generative, and maintains the fuzziness of natural 
language.  As such, the vector space model is a natural 
candidate to consider for knowledge representation. This 
study has shown that one can capitalize on vector space 
structure to create the capability for inference and 
entailment. The orthonormal basis method is a clean 
extension to the vector space model with a clear analogue 
to inference: the basis represents all linear combinations of 
the words in the hypothesis and as such should largely 
contain the hypothesis. This study is perhaps the first to 
demonstrate entailment using the vector space model. New 
enhancements and extensions await discovery.  
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