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Abstract 
This paper describes a geometric algorithm to extract 
deterministic rules from a dynamic cell structure (DCS) 
neural network and the rationale for extracting these rules.  
The DCS is a type of self-organizing map neural network that 
has been used in a real-time adaptive flight control 
application.  The purpose for extracting rules in this instance 
is to determine whether such rules, along with other 
techniques, could be used in the verification and validation 
(V&V) of a neural network serving in a safety-critical role.  
This paper introduces a geometric approach to creating rules 
that mimic an instance of the trained DCS with 100% 
agreement. The paper will explain the intelligent flight control 
application of the DCS, describe the geometric method used 
for rule extraction, provide experimental results of the rule 
extraction techniques, and examine the relevance of the rules 
to the V&V process. 

Introduction  
Neural networks are members of a class of software 
solutions well suited for domains of non-linearity and high 
complexity that are ill defined, unknown, or just too 
complex for standard programming practices. For high 
assurance systems that utilize neural networks such as 
autonomous mission control agents, vehicle health 
monitoring systems, adaptive flight controllers, or nuclear 
engineering applications, proving safety and correct 
operation requires formal and rigorous approaches.  

Testing the neural network with data similar to that 
which is used in training is a common method to verify that 
a network has adequately learned the input domain. In non-
critical applications, such traditional testing techniques may 
constitute a valid approach for determining acceptance of 
the neural network solution. However, in safety- and 
mission-critical systems, this standard approach alone 
cannot accomplish the required formal process for 
certification. 

The V&V challenge is further compounded by 
adaptive neural network systems that modify themselves, 
during operation.  Traditional software assurance methods 
fail to account for systems that change after deployment. 

We have investigated neural network rule extraction to 
determine its utility for the V&V of neural networks in  
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safety- and mission-critical applications. Neural network 
rule extraction is a technique that translates the acquired 
knowledge and decision process of a trained neural 
network into an equivalent decision process represented as 
a set of rules.  The rules are generally a set of if-then 
statements that may be examined by a human.   

Our previous effort (Darrah, Taylor and Skias 2004) in 
developing a rule extraction technique for DCS resulted in 
what we refer to as ‘human understandable’ rules.  These 
rules did not exhibit the high level of agreement with the 
DCS network that was desired nor were they deterministic, 
but their simplicity served to provide insight to a person 
examining the network.  This paper presents our continued 
work in which a second rule extraction algorithm based on 
a geometric approach was developed. This new algorithm 
extracts rules that have 100% agreement with the neural 
network.  The new rules are deterministic, but far more 
complex and better suited for use with other software 
testing tools used for V&V than for human inspection.     

The Dynamic Cell Structure Neural Network 
and Intelligent Flight Control System 

NASA Dryden Flight Research Center (DFRC) is 
conducting experiments in Intelligent Flight Control (IFC) 
with collaboration from the NASA Ames Research Center 
(ARC), Boeing Phantom Works, and the Institute for 
Scientific Research, Inc. (ISR).  The first generation 
(GEN1) of the IFC program identified aircraft stability and 
control characteristics using neural networks, and used this 
information to optimize aircraft performance in nominal 
and simulated failure conditions. 

The DCS neural network, a type of self-organizing 
map, is an online adaptive network used within GEN1 to 
learn and adapt during flight to account for aerodynamic 
changes, such as ones due to actuator failures.  The DCS 
used in the IFC program has a long development history.  It 
was originally developed by (Bruske and Sommer 1994), is 
a derivative of work by (Fritzke 1994) combined with 
competitive Hebbian learning by (Martinez 1993), and was 
chosen for the GEN1 system by NASA ARC (Jorgensen 
1997).   

Designed as a topology-representing neural network, 
the DCS’s role is to learn the topology of the input space 
with perfect preservation.  The DCS accomplishes this by 
learning the function that describes a map of the input 
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space, represented as Voronoi regions1, and storing this 
map as the neural network structure.  The neurons within 
the neural network correspond to the reference vector 
(centroid) for each of the Voronoi regions.  The 
connections between the neurons, cab, are then part of a 
Delaunay triangulation2 connecting neighboring Voronoi 
regions through their reference vectors.   

The output of the IFC DCS is formed from a recall 
function that computes an interpolation between two 
centroids within the network.  Given an input stimulus, v, a 
reference vector is selected from among all centroids as the 
best matching unit (BMU).  The BMU is simply the neuron 
whose weights are closest to v.  Along with the BMU, a 
second best matching unit (SEC) is also found.  The SEC is 
the closest neuron to v in the BMU neighborhood, defined 
as the neurons connected to the BMU through the Delaunay 
triangulation.  The IFC DCS recall function then generates 
an output based upon the BMU and SEC.  

The DCS algorithm consists of two learning rules, 
Hebbian and Kohonen.  Hebbian learning updates cab 
between neurons a and b to reflect the topology 
(triangulation) of the input space:  
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where the connection is a perfect fit of 1, if a and b are the 
BMU and SEC for the current training stimulus. The 
forgetting constant, α, is included to produce a weakening 
between a and b if they are not currently the closest to the 
stimulus, and θ is the edge threshold, a minimum 
acceptable connection strength in order for the connection 
to be considered valid.  Kohonen learning is used to adjust 
the weight vectors, w, of the neurons.  The change in the 
weight vectors is represented by:  

)(
ii BMUiBMUBMU wvw −=∆ ε  

)( iiNBRi wvw −=∆ ε  
where εBMU is the BMU weight adjustment parameter and  
εNBR is the weight adjustment applied to the neighborhood 
of the BMU. 

Along with the two learning rules for DCS, the DCS 
network also has a growing rule that will add new neurons 
into its structure to reduce overall error.  This ability gives 
the DCS neural network the potential to evolve into many 
different configurations.   

The DCS, like other online adaptive systems, is of 
special concern with respect to V&V. Developers must be 

cautious about expanding their use into safety- and 
mission-critical domains.  Our research investigated how 
rule extraction techniques could assist in the V&V of the 
IFC system as well as other such neural network systems.   

The Rule Extraction Technique 
In previous research conducted at the ISR a basic rule 
extraction technique for the DCS neural network was 
developed (Darrah, Taylor, and Skias 2004).  Figure 1 
shows the basic algorithm for extracting human readable 
rules from the DCS. 
 

 
Input: 
Weight vectors of the DCS (centers of Voronoi region) 
Best matching unit for each input 
Output: 
One rule for each Voronoi region center of the DCS 
Procedure: 
Train DCS on data set 
Record BMU for each input used for training 
Collect all inputs with common BMU 
For each weight vector wi (center of Voronoi region and 
BMU) 
   For each independent variable  
 x i, lower = min{xi,j | x has BMU = wi} 
 x i, upper = max{xi,j | x has BMU = wi} 
Build rule by: 
 Independent variable in [x i, lower, x i, upper] 
 Join antecedent statements with AND 
 Dependent variable = category 
  OR 
 Dependent variable in [y lower, y upper] 
 Join conclusion statements with AND 
 

Figure 1 Human Readable Rule Extraction Algorithm 

The rules generated by this algorithm are human 
understandable and of two types depending on the data 
used for training and the function the neural network is 
performing.  The first type of rule format is generated when 
the neural network is performing as a classifier.  The 
independent variables are continuous real valued and the 
dependent variable is categorical.   

 
Type 1:  IF input_variable 1 ∈ interval 1 AND…  

AND input_variable k ∈ interval k 
       THEN output = classj 
 

                                                 The second type of rule is generated in the case where 
both the independent and dependent variables are 
continuous real valued and the neural network is 
performing as a function approximator. 

1 Given a set of n points in the plane, a Voronoi partition is a collection of 
n convex polygons such that each polygon contains exactly one point and 
every point in a given polygon is closer to its central point than any other. 
2 The Delaunay triangulation is a dual graph of a Voronoi diagram that 
connects the centers of the Voronoi regions to their neighbors to form a 
triangulation of the plane (if no two points are cocircular) 

 
 



Type 2:  IF input_variable 1 ∈ interval 1 AND…  

 

AND input_variable k ∈ interval lk 
       THEN output_variable 1 ∈ interval 1 AND… 

AND output_variable j ∈ interval j 
 

This original algorithm was tested on the Iris 
benchmark data (Fisher 1936), available through the 
University of California at Irvine, because it is a common 
data set used by authors of other rule extraction techniques.   
Sample rules generated from the Iris data have the form:   

 
IF    (SL >=5.6 AND <=7.9) AND (SW >=2.2 AND <=3.8) AND  

Figure 2 Original Rule Coverage (PL >=4.8 AND <=6.9) AND (PW >=1.4 AND <=2.5) 
THEN Virginica The new rule extraction algorithm was developed to 

completely capture the polygonal regions of the input space 
that represent the structure of the trained DCS.  Figure 3 
below shows a two-dimensional example of how the new 
rules partition the input space based on the BMU and the 
SEC.  The solid lines, in the figure, indicate the original 
Voronoi regions that divide the plane based on the BMU.  
The dotted lines show how the original regions are 
subdivided to account for the SEC.  The lines that define 
the subregions form the rule antecedent of the rules.  Note 
that the entire input space is covered, with each of the 
subregions representing one rule. 

 
This algorithm was also used to extract rules from the DCS 
trained on the IFC flight data with sample output:  
 
IF      (mach >=0.78799 AND <=0.78945) AND  

(altitude >=19860.484 AND <=19889.6526) AND  
(alpha >=1.7003 AND <=1.8842) AND  
(beta >=-0.029893 AND <=0.015156) 

THEN  (cza >=0.015062 AND <=0.019333) AND  
(czdc >=0.22274 AND <=0.2287) AND  
(czds >=0 AND <=0) 

  
The rules extracted using this process were human 

understandable but did not have the desired accuracy and 
did not give a deterministic output for each input.  Testing 
of the rules against the Iris trained DCS showed an 82% 
agreement. 

 

 

 
Refining the Algorithm 

The objectives for refining the DCS rule extraction 
algorithm are as follows:  
1. Increase agreement with the neural network  
2. Provide deterministic rules that could be input to 

another V&V tool or implemented as a rule based 
system 

3. Maintain human understandability 
Figure 3 Deterministic Rule Coverage It was determined that two separate algorithms would 

be necessary to achieve both human understandability and 
determinism.  A new algorithm was developed to generate 
deterministic rules.  This algorithm utilized the structure of 
the DCS knowledge by capturing the Voronoi regions that 
partition the input space.  

These rules are specifically designed for the DCS 
structure implemented by the IFC project. The rule 
antecedent gives a set of constraints that geometrically 
define a region of the input space based on a specific BMU 
and SEC pair.  The consequent of the rule then gives the 
DCS output based on this region.   The Vornoi regions are convex polygons in two 

dimensions and convex n-dimensional polyhedra in n 
dimensions.  The original rule extraction algorithm did not 
capture the entire polygon or polyhedron region with the 
rules.  In essence, it developed rules that used a box to 
approximate the region. (See Figure 2) 

The new rule format is 
IF input ∈ region 1 (input satisfies a set of constraints)  
THEN output = multivariable linear expression  

 
Below is an example of the new deterministic rules for a 
two-dimensional data set.   

 



IF  (-4x + 2y >= -16) AND 
(-2x + 6y >= 12) AND 
(-6x + 0y >= -48) AND 
(7x + 2y >= 46.5) AND 
(2x + 4y >= 28) AND 
(-2x - 2y >= -32) 

  
THEN  z = 0.2x - 0.1y + 1.7 
 

Figure 4 shows how the rule antecedent partitions the plane 
for a two dimensional input domain.  Each of the lines 
corresponds to one of the inequalities in the antecedent.  
All points in the shaded region below are associated with a 
BMU and SEC pair and therefore have the same output.  If 
the domain is n-dimensional, then the n-dimensional space 
is partitioned by (n-1)-dimensional hyperplanes and the 
rules become much harder to read.   
   

 
Figure 4 Rules Partitioning of the Plane 

The algorithm for the deterministic rule extraction 
technique for the DCS is shown in Figure 5.  Similar 
deterministic rule extraction techniques have been 
developed for feedforward neural networks (Setiono, 
Leow, and Zurada 2002). 

Testing the New Technique 
To test the accuracy of the deterministic rules extracted 
using the new algorithm, first the rules sets were generated.  
Then the rules were implemented and test data was used as 
input for both the neural network and the implemented 
rules.  The two sets of output were compared for 
agreement.  This was done on three different types of data. 

The first test set was a hand-constructed two-
dimensional DCS structure with seven centroids positioned 
as seen in Figure 2.  The centroids were given a fully 
connected adjacency matrix and this description was 
translated into a DCS structure.  Deterministic rules were 
extracted from this DCS structure.  Twenty test cases 
composed of random data were generated, some with as 
many as 50,000 data points in them.  For all test cases, the 
rules output had 100% agreement with the DCS output. 

The next data set used for testing was the Iris data.  
This data set has four continuous variables as input and one 

categorical variable as output.  The DCS was trained on 4/5 
of the data set before applying rule extraction.  The entire 
data set was then used to test the rule output against the 
DCS output.  It should be noted that the DCS was not 
allowed to learn and grow during the testing portion, only 
during the training portion.  This test was run several times 
using different data to train. Again 100% agreement was 
achieved between the rules and the actual DCS output.   

 
 
Inputs: 
W = Weight vectors of the DCS centroid of Voronoi region 
A = Adjacency Matrix 
Output: 
Rules that geometrically describe a partition of the input 
space with associated outputs 
Procedure: 
Let W define a Voronoi diagram that partitions the input 
space. 
Let A determine neighboring regions in the Voronoi 
diagram to find BMU and SEC pairs. 
 
For each w ∈ W (centroid of Voronoi region and BMU) 
  Calculate Voronoi region boundaries.  

For each v ∈ W – {w} such that v is a neighbor 
of w  
(v is the centroid of neighboring region and SEC) 

-Determine boundaries that divide the 
region with centroid w into subregion 
based on v. 
-Determine antecedent based on 
boundaries defined by w and v. 
-Determine consequent equation 
determined by w (BMU) and v (SEC). 
Write rule. 

Figure 5 Deterministic Rule Extraction Algorithm 

The final test of the rule extraction algorithm was done 
on the flight data.  This data was generated using a flight 
simulator (Perhinschi 2002) and the sets exhibited several 
different flight maneuvers.  The data was used to train the 
neural network and then the rules were extracted.  The data 
was applied to the fixed DCS and the rules with 100% 
agreement being achieved in this case as well.     

Using Extracted Rules for V&V of the DCS 
The following scenarios illustrate two examples of how 
extracted rules can be used in the V&V process.  The 
neural network in the scenarios described below is a 
MATLAB implementation of the DCS neural network that 
ISR has developed for testing purposes.  This neural 
network has the same characteristics as the DCS that was 
implemented in the IFC mentioned earlier.     

   



Scenario 1: Human Understandable Rules Led to 
Identification of Coding Error 

The original rule extraction algorithm, which 
generated human understandable rules, is based on how an 
input stimulus is matched to a centroid of the DCS or its 
BMU.  The human understandable rules support 
verification inspection methods.  Each input stimulus 
results in the selection of a BMU internal to the DCS 
network.  The BMU is considered the centroid of a cell and 
each input that related to that BMU is considered to be a 
member of that cell.  The human understandable rules were 
generated to describe each cell.  The minimum and 
maximums of each input variable related to a specific BMU 
are determined to form the interval for the rule antecedents.  
The minimum and maximum of each output variable 
associated with this cell are used to form the interval for the 
rule consequent.  Any BMU that did not have input 
stimulus matched to it did not generate a rule. (See rule 
algorithm Figure 1) 

When the human understandable rule algorithm was 
applied to a DCS network that had been trained on the Iris 
data, a discrepancy was noted between the number of rules 
generated and the number of nodes within the DCS 
network.  There were fewer rules than nodes.  This implied 
that for the set of input data we used to train the neural 
network, a node was established that never matched any of 
the other data, and thus these BMUs did not have 
corresponding rules.  Debugging and execution traces 
pointed to a problem in some of the DCS code that had 
been optimized to run within a MATLAB environment.  
The original IFC DCS code was developed within the C 
programming language.  For optimization purposes, when 
the code was moved into a MATLAB script for 
experimentation, all usage of ‘for’ loops were removed and 
replaced with vectorized math.  One of the lines of code 
used for the optimization searched for BMUs within an 
entire array at once, incorrectly omitting the use of an 
indicator of the current number of centroids and thus 
including entries within the BMU array that had not yet 
been used. At times, these undefined nodes were actually 
better at matching the input than any one of the existing 
nodes; therefore the DCS manipulated these non-assigned 
nodes when it should not have.   

The result was that undefined nodes that had not been 
assigned were modified instead of the real nodes.  These 
non-assigned nodes showed up as having non-zero values 
and appeared to be actual nodes upon visual inspection of 
the DCS structure, but did not actually exist in the structure 
of the neural network.  DCS was losing some potential 
learning within these nodes.  The rules ignored these non-
assigned nodes since they were not able to become BMUs 
and that led to the discrepancy between the rule output and 
the neural network output.   

When the line of code that controlled this was 
identified and modified to ignore non-assigned nodes, then 
DCS output more accurately matched the human 

understandable rules output.  The rules gave insight that 
could not easily be captured by inspection of the neural 
network parameters or through testing. 
 
Scenario 2: Deterministic Rules Led to Identification of 
Two Coding Errors 

The deterministic rules are based on the theoretical 
structure of the DCS and capture the partitioning of the 
input space into Voronoi regions, and thus they are 
designed to have 100% agreement with the output of the 
DCS network.  However, testing of some of the first sets of 
deterministic rules showed that there was a large 
disagreement between the rules and DCS.   

The rules were re-structured so that the antecedents 
were broken into a rule pertaining to each BMU, and then 
under the BMU rules, each neighboring SEC rule was 
present.  This allowed comparison to see if the errors 
between the rules and DCS were based upon BMU 
selection, SEC selection, or within the consequent.   

By comparing the BMU chosen by the DCS with the 
specific rule that corresponded to the input, it was 
discovered that the BMU selection was consistent between 
the rules and the DCS.  However, it was discovered that the 
selection of the SEC was not matching between the two.  
This then led to investigation of the recall function within 
the DCS code. 

In the DCS recall function, two errors within the same 
line of code were discovered.  One was related to 
substitution of the ‘max’ for ‘min’ commands within DCS.  
For the recall function to perform properly, the smallest 
Euclidean distance is always used to identify the closest 
node to a stimulus.  This is true also when selecting the 
SEC from among a BMU’s neighbors.  But the code 
showed that the max function was being used in place of 
the min function.  This would subsequently show up within 
the DCS recall function as the DCS always selected the 
BMU neighboring node furthest away from the stimulus.  

Further, this same line of code contained an incorrect 
reference to the strengths of the BMU neighborhood 
connections rather than the distances of the neighbors from 
the stimulus.  This was quite a significant error, but due to 
the robustness of the DCS network and the small values on 
which the network was learning, the mistake was masked 
much of the time.  Normal testing of the DCS showed that 
it could achieve accuracies above 90%, even with this error 
present.   

The line of code was changed to consider the distances 
rather than the connection strengths and to choose the min 
instead of max.  The rules and DCS were compared again.  
This gave the expected results of 100% agreement.  The 
deterministic rules were deemed a success because they 
had allowed for the discovery of two coding errors, which 
were not readily apparent during inspection of the structure 
or testing.  It should be noted that these errors were only in 
the experimental optimized MATLAB version of the code 
and not in the implementation that was the IFC system. 



Conclusion 
The goal of this research was to demonstrate that rules 
extracted from a neural network could be used to assist in 
the V&V of the neural network in a safety- and mission-
critical application.  The rules are viewed as a descriptive 
representation of the neural network knowledge.  This 
representation of the inner knowledge can be used to help 
the developer or V&V practitioner better understand 
whether the neural network is functioning as expected and 
assist in the process required to certify the neural network 
for high assurance systems. 

A developer or V&V practitioner might use rule 
extraction for different purposes throughout the software 
development life cycle.  There are areas of impact for rule 
extraction in concept, requirements, design, 
implementation, and testing activities.    Rules can also be 
used to incorporate hazard and risk analysis knowledge into 
the neural network (Kurd 2003).  Some of these uses have 
been outlined in a previous paper (Darrah, Taylor, and 
Skias 2004) and in Methods and Procedure for the 
Independent Verification and Validation or Neural 
Networks (Taylor et al. 2004). A comprehensive list of uses 
for rule extraction across the life cycle is included in the 
Practitioner Guidance for the Independent Verification and 
Validation of Neural Networks (Taylor, Darrah, and Pullum 
2005), guidance that complements the IEEE 1012-1998 
Standard for Verification and Validation (IEEE 1998). 

Many tools and techniques have been created to extract 
rules from specific types of neural networks.  The ultimate 
goal is to develop a practical, general rule extraction tool 
for V&V and other purposes.  ProLogic, Inc. and ISR have 
developed the prototype for such a tool under a Phase I 
STTR project funded by NASA ARC.  The tool, called 
NNRules, accepts as input a formal specification of the 
trained neural network and uses neural network rule 
extraction algorithms to translate the neural network into an 
equivalent set of rules.  These rule-based systems, which 
represent the neural network’s knowledge, have a visible 
and potentially human readable, decision logic that 
supports a robust set of verification techniques.  NNRules 
embeds neural network rule extraction technology in a 
usable tool that will dramatically increase the ability to 
V&V high assurance neural network systems.  The team 
will seek Phase II funding to continue development of a 
marketable tool.  
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