
A Geometric Rule Extraction Approach Used for Verification and Validation of a
Safety Critical Application

Marjorie Darrah1, Brian Taylor1, Michael Webb2, Rhett Livingston3

1Institute for Scientific Research, Inc., 2Lockheed Martin Technology Services, 3ProLogic, Inc., Fairmont, WV 26554

mdarrah@isr.us, btaylor@isr.us, michael.webb@lcmo.com,rhett@prologic-inc.com

Abstract
This paper describes a geometric algorithm to extract
deterministic rules from a dynamic cell structure (DCS)
neural network and the rationale for extracting these rules.
The DCS is a type of self-organizing map neural network that
has been used in a real-time adaptive flight control
application. The purpose for extracting rules in this instance
is to determine whether such rules, along with other
techniques, could be used in the verification and validation
(V&V) of a neural network serving in a safety-critical role.
This paper introduces a geometric approach to creating rules
that mimic an instance of the trained DCS with 100%
agreement. The paper will explain the intelligent flight control
application of the DCS, describe the geometric method used
for rule extraction, provide experimental results of the rule
extraction techniques, and examine the relevance of the rules
to the V&V process.

Introduction
Neural networks are members of a class of software
solutions well suited for domains of non-linearity and high
complexity that are ill defined, unknown, or just too
complex for standard programming practices. For high
assurance systems that utilize neural networks such as
autonomous mission control agents, vehicle health
monitoring systems, adaptive flight controllers, or nuclear
engineering applications, proving safety and correct
operation requires formal and rigorous approaches.

Testing the neural network with data similar to that
which is used in training is a common method to verify that
a network has adequately learned the input domain. In non-
critical applications, such traditional testing techniques may
constitute a valid approach for determining acceptance of
the neural network solution. However, in safety- and
mission-critical systems, this standard approach alone
cannot accomplish the required formal process for
certification.

The V&V challenge is further compounded by
adaptive neural network systems that modify themselves,
during operation. Traditional software assurance methods
fail to account for systems that change after deployment.

We have investigated neural network rule extraction to
determine its utility for the V&V of neural networks in

 Copyright ©, American Association for Artificial Intelligence
(www.aaii.org). All rights reserved.

safety- and mission-critical applications. Neural network
rule extraction is a technique that translates the acquired
knowledge and decision process of a trained neural
network into an equivalent decision process represented as
a set of rules. The rules are generally a set of if-then
statements that may be examined by a human.

Our previous effort (Darrah, Taylor and Skias 2004) in
developing a rule extraction technique for DCS resulted in
what we refer to as ‘human understandable’ rules. These
rules did not exhibit the high level of agreement with the
DCS network that was desired nor were they deterministic,
but their simplicity served to provide insight to a person
examining the network. This paper presents our continued
work in which a second rule extraction algorithm based on
a geometric approach was developed. This new algorithm
extracts rules that have 100% agreement with the neural
network. The new rules are deterministic, but far more
complex and better suited for use with other software
testing tools used for V&V than for human inspection.

The Dynamic Cell Structure Neural Network
and Intelligent Flight Control System

NASA Dryden Flight Research Center (DFRC) is
conducting experiments in Intelligent Flight Control (IFC)
with collaboration from the NASA Ames Research Center
(ARC), Boeing Phantom Works, and the Institute for
Scientific Research, Inc. (ISR). The first generation
(GEN1) of the IFC program identified aircraft stability and
control characteristics using neural networks, and used this
information to optimize aircraft performance in nominal
and simulated failure conditions.

The DCS neural network, a type of self-organizing
map, is an online adaptive network used within GEN1 to
learn and adapt during flight to account for aerodynamic
changes, such as ones due to actuator failures. The DCS
used in the IFC program has a long development history. It
was originally developed by (Bruske and Sommer 1994), is
a derivative of work by (Fritzke 1994) combined with
competitive Hebbian learning by (Martinez 1993), and was
chosen for the GEN1 system by NASA ARC (Jorgensen
1997).

Designed as a topology-representing neural network,
the DCS’s role is to learn the topology of the input space
with perfect preservation. The DCS accomplishes this by
learning the function that describes a map of the input

mailto:mdarrah@isr.us
mailto:btaylor@isr.us
mailto:michael.webb@lcmo.com
mailto:rhett@prologic-inc.com
http://www.aaii.org/

space, represented as Voronoi regions1, and storing this
map as the neural network structure. The neurons within
the neural network correspond to the reference vector
(centroid) for each of the Voronoi regions. The
connections between the neurons, cab, are then part of a
Delaunay triangulation2 connecting neighboring Voronoi
regions through their reference vectors.

The output of the IFC DCS is formed from a recall
function that computes an interpolation between two
centroids within the network. Given an input stimulus, v, a
reference vector is selected from among all centroids as the
best matching unit (BMU). The BMU is simply the neuron
whose weights are closest to v. Along with the BMU, a
second best matching unit (SEC) is also found. The SEC is
the closest neuron to v in the BMU neighborhood, defined
as the neurons connected to the BMU through the Delaunay
triangulation. The IFC DCS recall function then generates
an output based upon the BMU and SEC.

The DCS algorithm consists of two learning rules,
Hebbian and Kohonen. Hebbian learning updates cab
between neurons a and b to reflect the topology
(triangulation) of the input space:

[] []











=
<⋅
>⋅
∈∧∈

⋅
=

ba
c
c

SECBMUbSECBMUa
c

c
ab

abab
ab θα

θαα
,,

0
0

1

&

where the connection is a perfect fit of 1, if a and b are the
BMU and SEC for the current training stimulus. The
forgetting constant, α, is included to produce a weakening
between a and b if they are not currently the closest to the
stimulus, and θ is the edge threshold, a minimum
acceptable connection strength in order for the connection
to be considered valid. Kohonen learning is used to adjust
the weight vectors, w, of the neurons. The change in the
weight vectors is represented by:

)(
ii BMUiBMUBMU wvw −=∆ ε

)(iiNBRi wvw −=∆ ε
where εBMU is the BMU weight adjustment parameter and
εNBR is the weight adjustment applied to the neighborhood
of the BMU.

Along with the two learning rules for DCS, the DCS
network also has a growing rule that will add new neurons
into its structure to reduce overall error. This ability gives
the DCS neural network the potential to evolve into many
different configurations.

The DCS, like other online adaptive systems, is of
special concern with respect to V&V. Developers must be

cautious about expanding their use into safety- and
mission-critical domains. Our research investigated how
rule extraction techniques could assist in the V&V of the
IFC system as well as other such neural network systems.

The Rule Extraction Technique
In previous research conducted at the ISR a basic rule
extraction technique for the DCS neural network was
developed (Darrah, Taylor, and Skias 2004). Figure 1
shows the basic algorithm for extracting human readable
rules from the DCS.

Input:
Weight vectors of the DCS (centers of Voronoi region)
Best matching unit for each input
Output:
One rule for each Voronoi region center of the DCS
Procedure:
Train DCS on data set
Record BMU for each input used for training
Collect all inputs with common BMU
For each weight vector wi (center of Voronoi region and
BMU)
 For each independent variable
 x i, lower = min{xi,j | x has BMU = wi}
 x i, upper = max{xi,j | x has BMU = wi}
Build rule by:
 Independent variable in [x i, lower, x i, upper]
 Join antecedent statements with AND
 Dependent variable = category
 OR
 Dependent variable in [y lower, y upper]
 Join conclusion statements with AND

Figure 1 Human Readable Rule Extraction Algorithm

The rules generated by this algorithm are human
understandable and of two types depending on the data
used for training and the function the neural network is
performing. The first type of rule format is generated when
the neural network is performing as a classifier. The
independent variables are continuous real valued and the
dependent variable is categorical.

Type 1: IF input_variable 1 ∈ interval 1 AND…

AND input_variable k ∈ interval k
 THEN output = classj

 The second type of rule is generated in the case where
both the independent and dependent variables are
continuous real valued and the neural network is
performing as a function approximator.

1 Given a set of n points in the plane, a Voronoi partition is a collection of
n convex polygons such that each polygon contains exactly one point and
every point in a given polygon is closer to its central point than any other.
2 The Delaunay triangulation is a dual graph of a Voronoi diagram that
connects the centers of the Voronoi regions to their neighbors to form a
triangulation of the plane (if no two points are cocircular)

Type 2: IF input_variable 1 ∈ interval 1 AND…

AND input_variable k ∈ interval lk
 THEN output_variable 1 ∈ interval 1 AND…

AND output_variable j ∈ interval j

This original algorithm was tested on the Iris
benchmark data (Fisher 1936), available through the
University of California at Irvine, because it is a common
data set used by authors of other rule extraction techniques.
Sample rules generated from the Iris data have the form:

IF (SL >=5.6 AND <=7.9) AND (SW >=2.2 AND <=3.8) AND

Figure 2 Original Rule Coverage (PL >=4.8 AND <=6.9) AND (PW >=1.4 AND <=2.5)
THEN Virginica The new rule extraction algorithm was developed to

completely capture the polygonal regions of the input space
that represent the structure of the trained DCS. Figure 3
below shows a two-dimensional example of how the new
rules partition the input space based on the BMU and the
SEC. The solid lines, in the figure, indicate the original
Voronoi regions that divide the plane based on the BMU.
The dotted lines show how the original regions are
subdivided to account for the SEC. The lines that define
the subregions form the rule antecedent of the rules. Note
that the entire input space is covered, with each of the
subregions representing one rule.

This algorithm was also used to extract rules from the DCS
trained on the IFC flight data with sample output:

IF (mach >=0.78799 AND <=0.78945) AND

(altitude >=19860.484 AND <=19889.6526) AND
(alpha >=1.7003 AND <=1.8842) AND
(beta >=-0.029893 AND <=0.015156)

THEN (cza >=0.015062 AND <=0.019333) AND
(czdc >=0.22274 AND <=0.2287) AND
(czds >=0 AND <=0)

The rules extracted using this process were human

understandable but did not have the desired accuracy and
did not give a deterministic output for each input. Testing
of the rules against the Iris trained DCS showed an 82%
agreement.

Refining the Algorithm

The objectives for refining the DCS rule extraction
algorithm are as follows:
1. Increase agreement with the neural network
2. Provide deterministic rules that could be input to

another V&V tool or implemented as a rule based
system

3. Maintain human understandability
Figure 3 Deterministic Rule Coverage It was determined that two separate algorithms would

be necessary to achieve both human understandability and
determinism. A new algorithm was developed to generate
deterministic rules. This algorithm utilized the structure of
the DCS knowledge by capturing the Voronoi regions that
partition the input space.

These rules are specifically designed for the DCS
structure implemented by the IFC project. The rule
antecedent gives a set of constraints that geometrically
define a region of the input space based on a specific BMU
and SEC pair. The consequent of the rule then gives the
DCS output based on this region. The Vornoi regions are convex polygons in two

dimensions and convex n-dimensional polyhedra in n
dimensions. The original rule extraction algorithm did not
capture the entire polygon or polyhedron region with the
rules. In essence, it developed rules that used a box to
approximate the region. (See Figure 2)

The new rule format is
IF input ∈ region 1 (input satisfies a set of constraints)
THEN output = multivariable linear expression

Below is an example of the new deterministic rules for a
two-dimensional data set.

IF (-4x + 2y >= -16) AND
(-2x + 6y >= 12) AND
(-6x + 0y >= -48) AND
(7x + 2y >= 46.5) AND
(2x + 4y >= 28) AND
(-2x - 2y >= -32)

THEN z = 0.2x - 0.1y + 1.7

Figure 4 shows how the rule antecedent partitions the plane
for a two dimensional input domain. Each of the lines
corresponds to one of the inequalities in the antecedent.
All points in the shaded region below are associated with a
BMU and SEC pair and therefore have the same output. If
the domain is n-dimensional, then the n-dimensional space
is partitioned by (n-1)-dimensional hyperplanes and the
rules become much harder to read.

Figure 4 Rules Partitioning of the Plane

The algorithm for the deterministic rule extraction
technique for the DCS is shown in Figure 5. Similar
deterministic rule extraction techniques have been
developed for feedforward neural networks (Setiono,
Leow, and Zurada 2002).

Testing the New Technique
To test the accuracy of the deterministic rules extracted
using the new algorithm, first the rules sets were generated.
Then the rules were implemented and test data was used as
input for both the neural network and the implemented
rules. The two sets of output were compared for
agreement. This was done on three different types of data.

The first test set was a hand-constructed two-
dimensional DCS structure with seven centroids positioned
as seen in Figure 2. The centroids were given a fully
connected adjacency matrix and this description was
translated into a DCS structure. Deterministic rules were
extracted from this DCS structure. Twenty test cases
composed of random data were generated, some with as
many as 50,000 data points in them. For all test cases, the
rules output had 100% agreement with the DCS output.

The next data set used for testing was the Iris data.
This data set has four continuous variables as input and one

categorical variable as output. The DCS was trained on 4/5
of the data set before applying rule extraction. The entire
data set was then used to test the rule output against the
DCS output. It should be noted that the DCS was not
allowed to learn and grow during the testing portion, only
during the training portion. This test was run several times
using different data to train. Again 100% agreement was
achieved between the rules and the actual DCS output.

Inputs:
W = Weight vectors of the DCS centroid of Voronoi region
A = Adjacency Matrix
Output:
Rules that geometrically describe a partition of the input
space with associated outputs
Procedure:
Let W define a Voronoi diagram that partitions the input
space.
Let A determine neighboring regions in the Voronoi
diagram to find BMU and SEC pairs.

For each w ∈ W (centroid of Voronoi region and BMU)
 Calculate Voronoi region boundaries.

For each v ∈ W – {w} such that v is a neighbor
of w
(v is the centroid of neighboring region and SEC)

-Determine boundaries that divide the
region with centroid w into subregion
based on v.
-Determine antecedent based on
boundaries defined by w and v.
-Determine consequent equation
determined by w (BMU) and v (SEC).
Write rule.

Figure 5 Deterministic Rule Extraction Algorithm

The final test of the rule extraction algorithm was done
on the flight data. This data was generated using a flight
simulator (Perhinschi 2002) and the sets exhibited several
different flight maneuvers. The data was used to train the
neural network and then the rules were extracted. The data
was applied to the fixed DCS and the rules with 100%
agreement being achieved in this case as well.

Using Extracted Rules for V&V of the DCS
The following scenarios illustrate two examples of how
extracted rules can be used in the V&V process. The
neural network in the scenarios described below is a
MATLAB implementation of the DCS neural network that
ISR has developed for testing purposes. This neural
network has the same characteristics as the DCS that was
implemented in the IFC mentioned earlier.

Scenario 1: Human Understandable Rules Led to
Identification of Coding Error

The original rule extraction algorithm, which
generated human understandable rules, is based on how an
input stimulus is matched to a centroid of the DCS or its
BMU. The human understandable rules support
verification inspection methods. Each input stimulus
results in the selection of a BMU internal to the DCS
network. The BMU is considered the centroid of a cell and
each input that related to that BMU is considered to be a
member of that cell. The human understandable rules were
generated to describe each cell. The minimum and
maximums of each input variable related to a specific BMU
are determined to form the interval for the rule antecedents.
The minimum and maximum of each output variable
associated with this cell are used to form the interval for the
rule consequent. Any BMU that did not have input
stimulus matched to it did not generate a rule. (See rule
algorithm Figure 1)

When the human understandable rule algorithm was
applied to a DCS network that had been trained on the Iris
data, a discrepancy was noted between the number of rules
generated and the number of nodes within the DCS
network. There were fewer rules than nodes. This implied
that for the set of input data we used to train the neural
network, a node was established that never matched any of
the other data, and thus these BMUs did not have
corresponding rules. Debugging and execution traces
pointed to a problem in some of the DCS code that had
been optimized to run within a MATLAB environment.
The original IFC DCS code was developed within the C
programming language. For optimization purposes, when
the code was moved into a MATLAB script for
experimentation, all usage of ‘for’ loops were removed and
replaced with vectorized math. One of the lines of code
used for the optimization searched for BMUs within an
entire array at once, incorrectly omitting the use of an
indicator of the current number of centroids and thus
including entries within the BMU array that had not yet
been used. At times, these undefined nodes were actually
better at matching the input than any one of the existing
nodes; therefore the DCS manipulated these non-assigned
nodes when it should not have.

The result was that undefined nodes that had not been
assigned were modified instead of the real nodes. These
non-assigned nodes showed up as having non-zero values
and appeared to be actual nodes upon visual inspection of
the DCS structure, but did not actually exist in the structure
of the neural network. DCS was losing some potential
learning within these nodes. The rules ignored these non-
assigned nodes since they were not able to become BMUs
and that led to the discrepancy between the rule output and
the neural network output.

When the line of code that controlled this was
identified and modified to ignore non-assigned nodes, then
DCS output more accurately matched the human

understandable rules output. The rules gave insight that
could not easily be captured by inspection of the neural
network parameters or through testing.

Scenario 2: Deterministic Rules Led to Identification of
Two Coding Errors

The deterministic rules are based on the theoretical
structure of the DCS and capture the partitioning of the
input space into Voronoi regions, and thus they are
designed to have 100% agreement with the output of the
DCS network. However, testing of some of the first sets of
deterministic rules showed that there was a large
disagreement between the rules and DCS.

The rules were re-structured so that the antecedents
were broken into a rule pertaining to each BMU, and then
under the BMU rules, each neighboring SEC rule was
present. This allowed comparison to see if the errors
between the rules and DCS were based upon BMU
selection, SEC selection, or within the consequent.

By comparing the BMU chosen by the DCS with the
specific rule that corresponded to the input, it was
discovered that the BMU selection was consistent between
the rules and the DCS. However, it was discovered that the
selection of the SEC was not matching between the two.
This then led to investigation of the recall function within
the DCS code.

In the DCS recall function, two errors within the same
line of code were discovered. One was related to
substitution of the ‘max’ for ‘min’ commands within DCS.
For the recall function to perform properly, the smallest
Euclidean distance is always used to identify the closest
node to a stimulus. This is true also when selecting the
SEC from among a BMU’s neighbors. But the code
showed that the max function was being used in place of
the min function. This would subsequently show up within
the DCS recall function as the DCS always selected the
BMU neighboring node furthest away from the stimulus.

Further, this same line of code contained an incorrect
reference to the strengths of the BMU neighborhood
connections rather than the distances of the neighbors from
the stimulus. This was quite a significant error, but due to
the robustness of the DCS network and the small values on
which the network was learning, the mistake was masked
much of the time. Normal testing of the DCS showed that
it could achieve accuracies above 90%, even with this error
present.

The line of code was changed to consider the distances
rather than the connection strengths and to choose the min
instead of max. The rules and DCS were compared again.
This gave the expected results of 100% agreement. The
deterministic rules were deemed a success because they
had allowed for the discovery of two coding errors, which
were not readily apparent during inspection of the structure
or testing. It should be noted that these errors were only in
the experimental optimized MATLAB version of the code
and not in the implementation that was the IFC system.

Conclusion
The goal of this research was to demonstrate that rules
extracted from a neural network could be used to assist in
the V&V of the neural network in a safety- and mission-
critical application. The rules are viewed as a descriptive
representation of the neural network knowledge. This
representation of the inner knowledge can be used to help
the developer or V&V practitioner better understand
whether the neural network is functioning as expected and
assist in the process required to certify the neural network
for high assurance systems.

A developer or V&V practitioner might use rule
extraction for different purposes throughout the software
development life cycle. There are areas of impact for rule
extraction in concept, requirements, design,
implementation, and testing activities. Rules can also be
used to incorporate hazard and risk analysis knowledge into
the neural network (Kurd 2003). Some of these uses have
been outlined in a previous paper (Darrah, Taylor, and
Skias 2004) and in Methods and Procedure for the
Independent Verification and Validation or Neural
Networks (Taylor et al. 2004). A comprehensive list of uses
for rule extraction across the life cycle is included in the
Practitioner Guidance for the Independent Verification and
Validation of Neural Networks (Taylor, Darrah, and Pullum
2005), guidance that complements the IEEE 1012-1998
Standard for Verification and Validation (IEEE 1998).

Many tools and techniques have been created to extract
rules from specific types of neural networks. The ultimate
goal is to develop a practical, general rule extraction tool
for V&V and other purposes. ProLogic, Inc. and ISR have
developed the prototype for such a tool under a Phase I
STTR project funded by NASA ARC. The tool, called
NNRules, accepts as input a formal specification of the
trained neural network and uses neural network rule
extraction algorithms to translate the neural network into an
equivalent set of rules. These rule-based systems, which
represent the neural network’s knowledge, have a visible
and potentially human readable, decision logic that
supports a robust set of verification techniques. NNRules
embeds neural network rule extraction technology in a
usable tool that will dramatically increase the ability to
V&V high assurance neural network systems. The team
will seek Phase II funding to continue development of a
marketable tool.

Acknowledgements
This research was sponsored by NASA Goddard Research
Center through the NASA Independent Verification &
Validation Facility, under Research Grant NAG5-12069
and NASA Ames Research Center through a subcontract to
ProLogic, Inc. under contract number NNA04AA20C.
Special acknowledgments go to Dan McCaugherty.

References
Darrah, Marjorie, Brian Taylor and Spiro Skias. 2004. Rule
Extraction From Dynamic Cell Structure Neural Network
Used in a Safety Critical Application. In Proceeding of
Florida Artificial Intelligence Research Society
Conference, Miami FL, May 17-19, 2004.
Bruske, Jorg and Gerald Sommer. 1994. Dynamic Cell
Structures. In Proceedings of Neural Information
Processing Systems (NIPS), 497-504.
Fritzke, B. 1994. Growing Cell-Structures – a Self-
Organizing Network for Unsupervised and Supervised
Learning, Neural Networks, 7(9): 1441-1460.
Martinetz, T. M. 1993. Competitive Hebbian Learning Rule
Forms Perfectly Topology Preserving Maps. In
Proceedings of International Conference on Artificial
Neural Networks (ICANN) 427-434. Amsterdam: Springer.
Jorgensen, Charles C. 1997. Direct Adaptive Aircraft
Control Using Dynamic Cell Structure Neural Networks.
NASA Technical Memorandum 112198, NASA Ames
Research Center.
Setiono R., W. K. Leow, and J. M. Zurada. 2002.
Extraction of rules from artificial neural networks for
nonlinear regression. IEEE Transactions on Neural
Networks 13(3): 564-577
Fisher, A. 1936. Annals of Eugenics 7:179-188.
Perhinschi, M. G., G. Campa, M. R. Napolitano, M. Lando,
L. Massotti, and M.L. Fravolini. 2002. A Simulation Tool
for On-line Real-Time Parameter Identification. AIAA
Guidance Navigation and Control Conference, Aug 8-10
Monterey, CA.
Kurd, Zeshan, and Tim Kelley. 2003. Safety Lifecycle for
Developing Safety Critical Artificial Neural Networks. In
Proceedings of 22nd International Conference on Computer
Safety, Reliability, and Security (SAFECOMP’03) 23-26
September 2003.
Taylor, Brian J., Marjorie Darrah, Laura Pullum, James T.
Smith, Leon Luxemburg, Spiro Skias, and Bojan Cukic.
2004. Methods and Procedures for the Independent
Verification and Validation of Neural Networks. Technical
Report prepared by Institute for Scientific Research, Inc.
(ISR) for NASA Independent Verification and Validation
Facility under grant NAG5-12069.
Taylor, Brian J., Marjorie Darrah, Laura Pullum, 2005.
Practitioner Guidance for the Independent Verification and
Validation of Neural Networks. Technical Report prepared
by Institute for Scientific Research, Inc. (ISR) for NASA
Independent Verification and Validation Facility under
grant NAG5-12069. Forthcoming
Institute of Electrical and Electronics Engineering, Inc
(IEEE), Software Engineering Standards Committee. 1998.
IEEE Standard for Software Verification and Validation
(IEEE 1012-1998). New York, NY.

