
Sensitivity of Nonlinear Network Training to Affine Transformed Inputs

Changhua Yu, Michael T. Manry, Pramod Lakshmi Narasimha
Department of Electrical Engineering

University of Texas at Arlington, TX 76019
changhuayu@uta.edu, manry@uta.edu, lpramod@uta.edu

Abstract

In this paper, the effects of nonsingular affine trans-
forms on various nonlinear network training algorithms
are analyzed. It is shown that gradient related methods,
are quite sensitive to an input affine transform, while
Newton related methods are invariant. These results
give a connection between pre-processing techniques
and weight initialization methods. They also explain
the advantages of Newton related methods over other
algorithms. Numerical results validate the theoretical
analyses.

Introduction
Nonlinear networks, such as multi-layer perceptron (MLP)
and radial basis function (RBF) networks, are popular in
the signal processing and pattern recognition area. The net-
works’ parameters are adjusted to best approximate the un-
derlying relationship between input and output training data
(Vapnik 1995). Neural net training algorithms are time con-
suming, in part due to ill-conditioning problems (Saarinen,
Bramley, & Cybenko 1993). Pre-processing techniques,
such as input feature-decorrelation , whitening transform
(LeCunet al. 1998), (Brause & Rippl 1998) are suggested
to alleviate ill-conditioning and thus accelerate the network
training procedure (̌S. Raudys 2001). Other input trans-
forms, including input re-scaling (Rigler, Irvine, & Vogl
1991), unbiasing and normalization, are also widely used
to equalize the influence of the input features. In addition,
some researchers think of the MLP as a nonlinear adaptive
filter (Haykin 1996). Linear pre-processing techniques, such
as noise cancellation, can improve the performance of this
non-linear filter.

Although widely used, the effects of these linear trans-
forms on MLP training algorithms haven’t been analyzed
in detail. Interesting issues, such as (1)whether these
pre-processing techniques have same effects on different
training algorithms, (2) whether the benefits of these pre-
processing can be duplicated or cancelled out by other strate-
gies, i.e., advanced weight initialization method, still need

∗This work was supported by the Advanced Technology Pro-
gram of the state of Texas, under grant number 003656-0129-2001.
Copyright c© 2005, American Association for Artificial Intelli-
gence (www.aaai.org). All rights reserved.

further research. In a previous paper (Yu, Manry, & Li
2004), the effects of an input orthogonal transform on the
conjugate gradient algorithm was analyzed using the con-
cept of equivalent states. We show that the effect of input
orthogonal transform can be absorbed by proper weight ini-
tialization strategy. Because all linear transforms can be
expressed as an affine transform, in this paper, we analyze
the influence of the more general affine transform on typical
training algorithms.

First, the conventional affine transform is described. Sec-
ond, typical training algorithms are briefly reviewed. Then,
the sensitivity of various training algorithms to input affine
transforms are analyzed. Numerical simulations are pre-
sented to verify the theoretical results.

General Affine Transform
Suggested pre-processing techniques, such as feature de-
correlation, whitening, input unbiasing and normalization
can all be put into the form of nonsingular affine transform:

zT
p = AxT

p + b (1)

wherexp is the originalpth input feature vector,zp is the

affine transformed input, andb = [b1 b2 · · · bN]T .
For example, unbiasing the input features is modelled as

zT
p = xT

p −mT
x (2)

An affine transform of particular interest in this paper can
be expressed as a linear transform by using extended input
vectors as:

ZT
p = AeXT

p (3)

whereZp = [zp1 · · · zpN , 1], Xp = [xp1 · · ·xpN , 1] and

Ae =

a11 · · · a1N b1

...
. . .

...
...

aN1 · · · aNN bN

0 · · · 0 1

 , (4)

Conventional Training Algorithms
Generally, training algorithms for nonlinear networks can
be classified into three categories: gradient descent meth-
ods, conjugate gradient methods, and Newton related meth-
ods (Haykin 1999), (Møller 1997). In the following, we give
a brief review for each method.

�

�

�

������ �
� ��

���� ��

�
�
��

� ��

�
�

�����	���

���

���

��

���

����

����

����

�

Figure 1: Topology of a three-layer MLP

Notation
In this paper, we investigate a three-layer fully connected
MLP, as shown in figure 1. The training data consists ofNv

training patterns{(xp, tp)}, wherexp and thepth desired
output vectortp have dimensionsN andM , respectively.
Thresholds in the hidden and output layers are handled by
lettingxp,(N+1) = 1.

For thejth hidden unit, the net functionnetpj and the
output activationOpj for thepth training pattern are

netpj =
N+1∑
n=1

whi(j, n) · xpn

Opj = f(netpj) 1 ≤ j ≤ Nh

(5)

wherexpn denotes thenth element ofxp, whi(j, n) denotes
the weight connecting thenth input to thejth hidden unit
andNh denotes the number of hidden units. The activation
functionf is sigmoidal

f(netpj) =
1

1 + e−netpj
(6)

Thekth outputypk for thepth training pattern is

ypk =
N+1∑
n=1

woi(k, n) · xpn +
Nh∑

j=1

woh(k, j) ·Opj (7)

k = 1, . . . , M , wherewoi(k, n) denotes the weight connect-
ing thenth input node to thekth output unit. The network’s
training procedure is to minimize the following globalMean
Square Error(MSE):

E =
1

Nv

Nv∑
p=1

M∑
m=1

[tpm−ypm]2 =
1

Nv

Nv∑
p=1

(tp−yp)(tp−yp)T

(8)
wheretpm denotes themth element oftp. Many methods
have been proposed to solve this optimization problem.

Gradient Descent Method
The idea of gradient descent method is to minimize the lin-
ear approximation of MSE in (8):

E(w+∆w) ≈ E(w)+∆wT ∂E

∂w
= E(w)+∆wT g (9)

whereg is the gradient vector ofE(w) evaluated at current
w. The weight updating strategy is:

∆w = −Z · g (10)

where the learning factorZ is usually set to a small
positive constant or determined by an adaptive or opti-
mal method(Magoulas, Vrahatis, & Androulakis 1999).
The back propagation(BP) algorithm is actually a gradi-
ent descent method (Haykin 1999), (Rumelhart, Hiton, &
Williams 1986). When using an optimal learning factor, the
gradient descent method is also known as steepest descent
(Fletcher 1987).

Conjugate Gradient Method
People have looked for some compromise between slow
converging gradient methods and computationally expensive
Newton’s methods (Møller 1997).Conjugate gradient(CG)
is such an intermediate method.

The basic idea of CG is to search the minimum of the
error function in conjugate directions (Fletcher 1987). In
CG, the directionsP(i) for the ith searching iteration and
P(j) for thejth iteration have to be conjugate with respect
to the Hessian matrix:

PT (i)HP(j) = 0 for i 6= j (11)

The conjugate directions can be constructed by (Fletcher
1987):

P(k) = −g(k) + B1P(k − 1) (12)
Here,g(k) represents the gradient ofE with respect to cor-
responding weight and threshold for thekth searching itera-
tion. Initial vectors areg(0) = 0, P(0) = 0. B1 in Eq. (12)
is the ratio of the gradient energies between the current iter-
ation and the previous iteration. The corresponding weight
changes in CG are:

∆w = B2 ·P(k) (13)

whereB2 is an optimal learning factor.

Newton’s Method
The goal in Newton’s method is to minimize the quadratic
approximation of the error functionE(w) around the current
weightsw:

E(w + ∆w) ≈ E(w) + ∆wT g +
1
2
∆wT H∆w (14)

Here, the matrixH is called the Hessian matrix, which is
the second order partial derivatives ofE with respect tow.
Eq. (14) is minimized when

∆w = −H−1g (15)

For Newton’s method to work, the Hessian matrixH has to
be positive definite, which is not guaranteed in most situ-
ations. Many modified Newton algorithms have been de-
veloped to ensure a positive definite Hessian matrix (Battiti
1992).

Sensitivity of Training to Affine Transform
For affine transforms, the requirements to ensure equivalent
states (Yu, Manry, & Li 2004) in the network with original
inputs and the network with transformed inputs are:

whi = uhiAe (16)

woh = uoh, woi = uoiAe (17)
whereu denote the corresponding weights and thresholds in
the transformed network.

Sensitivity of CG to Affine Transform
In CG, for thekth training iteration, the weight updating law
in the transformed network is:

uhi ← uhi + B2 ·Pdhi(k), uoi ← uoi + B2 ·Pdoi(k)
uoh ← uoh + B2 ·Pdoh(k) (18)

The weights and thresholds in the original network are up-
dated in the same way. If the two networks have the same
learning factorsB2, the conjugate directionsP must sat-
isfy following conditions to ensure equivalent states after
weights modification:

Phi = PdhiAe, Poh = Pdoh, Poi = PdoiAe (19)

The gradients in the transformed network can be found:

gdoi = ∂E
∂uoi

=

∂E
∂uoi(1,1) · · · ∂E

∂uoi(1,N+1)

...
...

...
∂E

∂uoi(M,1) · · · ∂E
∂uoi(M,N+1)

= −2
Nv

Nv∑
p=1

edp1

...
edpM

Zp =

−2
Nv

(
Nv∑
p=1

edpXp

)
AT

e

(20)
whereedpm = tpm − ydpm m = 1, · · ·M .

gdhi = ∂E
∂uhi

=

∂E
∂uhi(1,1) · · · ∂E

∂uhi(1,N)

...
...

...
∂E

∂uhi(Nh,1) · · · ∂E
∂uhi(Nh,N)

= −2
Nv

Nv∑
p=1

δdp1

...
δdpNh

Zp =

−2
Nv

(
Nv∑
p=1

δdpXp

)
AT

e

(21)
andgdoh is:

gdoh =
−2
Nv

Nv∑
p=1

edpOdp (22)

In the original network, the matrices are:

goi = −2
Nv

Nv∑
p=1

epXp, ghi =
−2
Nv

Nv∑
p=1

δpXp

goh = −2
Nv

Nv∑
p=1

epOp

(23)

From Eq. (12), after the first training iteration in CG, the
conjugate directions are:

P(1) = −g(1) (24)

Assuming the two networks start from same initial states, for
the first training iteration, we have from (20) that:

Pdoi = −gdoi = −goiAT
e = PoiAT

e (25)

As Ae is not orthogonal, condition (19) can’t be satisfied.
So the training curves in the two networks diverge from the
very beginning.B1 andB2 in the two networks won’t be
the same either. Therefore the CG algorithm is sensitive to
input affine transforms.

Affine Transforms and OWO-BP
In output weight optimization (OWO), which is a compo-
nent of several training algorithms (Chen, Manry, & Chan-
drasekaran 1999), we solve linear equations for MLP output
weights. In the following, we will useWo = [woi woh]
and an augmented input vector:

Ôp = [xp1 · · · xpN 1 Op1 · · · OpNh] (26)

For the three-layer network in figure 1, the output weights
can be found by solving linear equations, which result when
gradients of E with respect to the output weights are set to
zero. Using equation (7) and (8), we find the gradients ofE
with respect to the output weights as

ĝo(m, j) = −2 · 1
Nv

Nv∑
p=1

[
tpm −

L∑

i=1

wo(m, i)Ôpi

]
· Ôpj

= −2

[
C(m, j)−

L∑

i=1

wo(m, i)R(i, j)

]

(27)
where the autocorrelation matrixR has the elements:

R(i, j) =
1

Nv

∑
p

ÔpiÔpj (28)

the cross-correlation matrixC has the elements:

C(m, j) =
1

Nv

∑
p

tpmÔpj (29)

Settingĝo(m, j) to zero, thejth equation in themth set of
equations is

L∑

i=1

wo(m, i)R(i, j) = C(m, j) (30)

So the OWO procedure in the two networks means to solve

WoRx = Cx UoRz = Cz (31)

If before OWO the two networks have equivalent states, we
have

ÔT
dp =

[
Ae 0
0 INh×Nh

]
ÔT

p (32)

And in the original network,

Rx =
1

Nv

Nv∑
p=1

ÔT
p Ôp Cx =

1
Nv

Nv∑
p=1

tT
p Ôp (33)

For the network with transformed inputs, these matrices are:

Rz = 1
Nv

Nv∑
p=1

ÔT
dpÔdp

=
[

Ae 0
0 I

]
Rx

[
AT

e 0
0 I

] (34)

Cz =
1

Nv

Nv∑
p=1

tT
p Ôdp = Cx

[
AT

e 0
0 I

]
(35)

Invariance of OWO to Nonsingular Affine Transform
In the following lemma, we describe the effects of affine
transforms on the OWO procedure.

Lemma 1 For any nonsingular matrixAe, if output weights
satisfy the conditions of Eq. (17), then after the OWO proce-
dure it is still valid.

Proof. As the two networks start from equivalent states,
UoRz = Cz in Eq. (31) can be rewritten as:

Uo

[
Ae 0
0 I

]
Rx

[
AT

e 0
0 I

]
= Cx

[
AT

e 0
0 I

]
(36)

it can be simplified further as:

Uo

[
Ae 0
0 I

]
Rx = Cx (37)

Comparing it withWoRx = Cx, so we have

Wo = Uo

[
Ae 0
0 I

]
(38)

which means condition (17) is still valid.

The Sensitivity of BP to Affine Transform
For BP procedure, in order to keep equivalent states in the
two networks, the gradients must satisfy:

ghi = gdhiAe (39)

As we know, whenB1 in (12) is set to zero, CG degrades
into BP algorithm. Thus the analyses for CG in is also valid
for BP. Condition (39) won’t be satisfied after BP. So BP is
also sensitive to the input affine transforms.

In OWO-BP training (Chen, Manry, & Chandrasekaran
1999), we alternately use OWO to find output weights and
use BP to modify hidden weights. Because of the sensitivity
of BP to affine transform, OWO-BP has a similar sensitivity.

Effects on Newton Related Method
Generally, it is much more difficult to find the hidden
weights in neural networks. Due to its high convergence
rate, Newton’s method is preferred for small scale problems
(Battiti 1992). The proposed hidden weight optimization
(HWO) in (Chen, Manry, & Chandrasekaran 1999) can be
considered as a Newton related method.

To ensure equivalent states in the two networks, the hid-
den weights and thresholds must satisfy (16) and (17), and
correspondingly, the hidden weight changes in the two net-
works must satisfy:

∆whi = ∆uhiAe (40)

Rearrange∆whi in the form of a column vector:

∆W = [∆whi(1, 1) · · · ∆whi(Nh, N + 1)]T (41)

and the corresponding column vector in the transformed net-
work is denoted as∆U. So condition (40) is equivalent to:

∆W = ÃT ∆U (42)

where

Ã =

Ae 0 · · · 0

0 Ae
. . .

...
...

. . .
. . . 0

0 · · · 0 Ae

q×q

(43)

with q = Nh(N + 1). The hidden weights are updated by
the law of (15). The Hessian matrix of the original network
is:
H =

∂2E
∂w2

hi(1,1)
· · · ∂2E

∂whi(1,1)∂whi(Nh,N+1)

...
. ..

...
∂2E

∂whi(Nh,N+1)∂whi(1,1) · · · ∂2E
∂w2

hi(Nh,N+1)

(44)
The gradient vector used in the Newton method is:

g =
[

∂E
∂whi(1,1) · · · ∂E

∂whi(1,N+1) · · · ∂E
∂whi(Nh,N+1)

]T

= −2
Nv

Nv∑
p=1

[
δp1xp1 · · · δp1xp(N+1) · · · δpNh

xp(N+1)

]T

= −2
Nv

Nv∑
p=1

[Xp · δp1 · · · Xp · δpNh]T =
−2
Nv

∑
p

Λxpδ̃p

(45)
whereΛxp = diag{xp1 · · ·xp(N+1) · · ·xp1 · · ·xp(N+1)} is
a q × q matrix, and

δ̃p = [δp1 · · · δp1 · · · δpNh
· · · δpNh]T (46)

is aq × 1 vector. Similarly, in the transformed network,

gd =
[

∂E
∂uhi(1,1) · · · ∂E

∂uhi(Nh,N+1)

]T

= −2
Nv

Nv∑
p=1

[
δdp1zp1 · · · δdpNh

zp(N+1)

]T

= −2
Nv

Nv∑
p=1

[Zp · δdp1 · · · Zp · δdpNh]T

= −2
Nv

∑
p

Λxpδ̃dp =
−2
Nv

Ã
∑

p

Λxpδ̃dp

(47)

with

δ̃dp = [δdp1 · · · δdp1 · · · δdpNh
· · · δdpNh]T

(48)
From Eq. (44) and (45), theq × q Hessian matrix in the
original network is

H =
−2
Nv

∑
p

Λxp

∂δp1
∂whi(1,1) · · · ∂δp1

∂whi(Nh,N+1)

...
...

...
∂δp1

∂whi(1,1) · · · ∂δp1
∂whi(Nh,N+1)

... · · · ...
∂δpNh

∂whi(1,1) · · · ∂δpNh

∂whi(Nh,N+1)

...
...

...
∂δpNh

∂whi(1,1) · · · ∂δpNh

∂whi(Nh,N+1)

(49)

In the rightmost matrix of (49), every(N + 1) rows from
the [(i− 1)(N + 1) + 1]th row to thei · (N + 1)th row are
exactly same, withi = 1, . . . , Nh. The elements

∂δpi

∂whi(j, n)
= −γpijxpn (50)

wherei, j = 1, . . . , Nh, i 6= j, n = 1, . . . , (N + 1), and

γpij =

[
M∑

m=1

woh(m, j)woh(m, i)f ′pjf
′
pi

]
(51)

It is easy to verify thatγpij = γpji. For the casei = j,

∂δpi

∂whi(i, n)
= −γpiixpn (52)

with

γpii =

[
M∑

m=1

w2
oh(m, i)(f ′pi)

2 − [tpm − ypm] woh(m, i)f ′′pi

]

(53)
Here,f ′pi, f ′′pi are shorthand for the first order and second
order derivatives of the sigmoid functionf(netpi). So, we
have

H =
2

Nv

∑
p

ΛxpΨp (54)

where

Ψp =

γp11X · · · γp1Nh
X

... · · · ...
γpNh1X · · · γpNhNh

X

 (55)

where every row in theq× q matrixX is just the vectorXp.
Similarly, for the transformed network, the corresponding
Hessian matrix is:

Hd =
2

Nv
Ã

∑
p

Λxp

γdp11Z · · · γdp1Nh
Z

... · · · ...
γdpNh1Z · · · γdpNhNh

Z

(56)
where every row in theq × q matrixZ is just the vectorZp.
Using the fact that

Z = XAT
e (57)

Eq. (56) becomes

Hd =
2

Nv
Ã

{∑
p

ΛxpΨdp

}
ÃT (58)

with

Ψdp =

γdp11Z · · · γdp1Nh
Z

... · · · ...
γdpNh1Z · · · γdpNhNh

Z

 (59)

Theorem 1 If two networks are initially equivalent, and
their input vectors are related via a nonsingular affine trans-
form, the networks are still equivalent after Newton training.

Proof. When the two networks are in equivalent states, con-
ditions (16) is satisfied and we have:

δ̃p = δ̃dp, Ψp = Ψdp (60)

so the change of the hidden weights and thresholds in the
transformed network are

∆U = −H−1
d gd =

(
ÃT

)−1
{∑

p

ΛxpΨdp

}−1

Ã−1Ã

{∑
p

Λxpδ̃dp

}

=
(
ÃT

)−1
{∑

p

ΛxpΨp

}−1 {∑
p

Λxpδ̃p

}

= −
(
ÃT

)−1

H−1g =
(
ÃT

)−1

∆W

(61)

So the required condition (42) would be satisfied after the
Newton training procedure, which means that the conditions
(16) would be valid again.

Numerical Results
In the experiments, we use the unbiasing procedure as an
example of the affine transform, and verify the theoretical
results for two remote sensing data sets.

Inputs for training data setOh7.traareV V andHH po-
larization atL 30, 40 deg,C 10, 30, 40, 50, 60 deg, andX
30, 40, 50 deg (Oh, Sarabandi, & Ulaby 1992). The cor-
responding desired outputs areΘ = {σ, l,mv}T , whereσ
is the rms surface height;l is the surface correlation length;
mv is the volumetric soil moisture content in g/cm3. There
are 20 inputs, 3 outputs, 10453 training patterns. We use
20 hidden units. Training data setTwod.tracontains sim-
ulated data based on models from backscattering measure-
ments (Dawson, Fung, & Manry 1993). This training file
is used in the task of inverting the surface scattering param-
eters from an inhomogeneous layer above a homogeneous
half space, where both interfaces are randomly rough. The
parameters to be inverted are the effective permittivity of the
surface, the normalized rms height, the normalized surface
correlation length, the optical depth, and single scattering
albedo of an in-homogeneous irregular layer above a homo-
geneous half space from back scattering measurements. The
data set has 8 inputs, 7 outputs, and 1768 patterns. There are
10 hidden units.

0 20 40 60 80 100 120 140 160 180 200
1.7

1.8

1.9

2

2.1

2.2

2.3

2.4

Training iteration

M
S

E

Original data
Unbiased data

0 20 40 60 80 100 120 140 160 180 200
0.285

0.29

0.295

0.3

0.305

0.31

0.315

0.32

0.325

Training iteration

M
S

E

Original data
Unbiased data

(a) oh7.dat (b) twod.tra

Figure 2: The sensitivity of CG to affine transforms

0 20 40 60 80 100 120 140 160 180 200
1.6

1.8

2

2.2

2.4

2.6

2.8

3

Training iteration

M
S

E
Original data
Unbiased data

0 20 40 60 80 100 120 140 160 180 200
0.4

0.42

0.44

0.46

0.48

0.5

0.52

0.54

Training iteration

M
S

E

Original data
Unbiased data

(a) oh7.dat (b) twod.tra

Figure 3: The effect of affine transform on OWO-BP

0 20 40 60 80 100 120 140 160 180 200
1.8

2

2.2

2.4

2.6

2.8

3

Training iteration

M
S

E

Original data
Unbiased data

0 20 40 60 80 100 120 140 160 180 200
0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

0.55

Training iteration

M
S

E

Original data
Unbiased data

(a) oh7.dat (b) twod.tra

Figure 4: The invariance of OWO-HWO to affine transforms

For both data sets, the original and transformed networks
start from equivalent states and are trained for 200 itera-
tions. From fig. 2 and fig. 3, we can see that CG and BP
are quite sensitive to the affine transform. Even though the
two networks start from same initial states, the difference
of their training curves are quite large. For the Newton re-
lated OWO-HWO method, the training curves for the two
networks in fig. 4 are almost the same. The slight differ-
ences are caused by the finite numerical precision problem.

Summary and Discussion
In this paper, we analyze the effects of the affine transform
on different training algorithms. Using input unbiasing as
an example, we show that CG and BP are quite sensitive
to input affine transforms. As a result, the input unbiasing
strategy helps to accelerate the training of these gradient al-
gorithms.

As for Newton methods, the network with original in-
puts and the network with transformed inputs have the same
states during the training procedure as long as they start from
equivalent states. This implies that OWO-HWO is more
powerful than non-Newton algorithms when dealing with
correlated/biased data. That is, in Newton methods, the ben-
efits of feature de-correlation or unbiasing have already been
realized by proper initial weights. This gives a connection
between the pre-processing and the weight initialization pro-
cedure. However, this also indicates a trade-off. Sometimes
the effects of pre-processing may be cancelled out by the
initial weights. Naturally, further investigation can be done
on whether there is a similar connection between the pre-
processing and other techniques, for example, the learning
factor setting. With theoretical analyses on these techniques,
better neural network training strategy can be developed.

References
Battiti, R. 1992. First- and second-order methods for learn-
ing: between steepest descent and newton’s method.Neu-
ral Computation4(2):141–166.
Brause, R. W., and Rippl, M. 1998. Noise suppressing sen-
sor encoding and neural signal orthonormalization.IEEE
Trans. Neural Networks9(4):613–628.
Š. Raudys. 2001.Statistical and Neural Classifiers: An In-
tegrated Approach to Design. Berlin, Germany: Springer-
Verlag.
Chen, H. H.; Manry, M. T.; and Chandrasekaran, H. 1999.
A neural network training algorithm utilizing multiple sets
of linear equations.Neurocomputing25(1-3):55–72.
Dawson, M. S.; Fung, A. K.; and Manry, M. T. 1993.
Surface parameter retrieval using fast learning neural net-
works. Remote Sensing Reviews7(1):1–18.
Fletcher, R. 1987. Practical Methods of Optimization.
Chichester, NY: John Wiley & Sons, second edition.
Haykin, S. 1996. Adaptive Filter Theory. Englewood
Cliffs, NJ: Prentice Hall, third edition.
Haykin, S. 1999. Neural Networks: A Comprehensive
Foundation. Englewood Cliffs, NJ: Prentice Hall, second
edition.
LeCun, Y.; Bottou, L.; Orr, G. B.; and Muller, K. R. 1998.
Efficient backprop. In Orr, G. B., and Muller, K. R., eds.,
Neural Networks: Tricks of the Trade. Berlin, Germany:
Springer-Verlag.
Magoulas, G. D.; Vrahatis, M. N.; and Androulakis, G. S.
1999. Improving the convergence of the backpropagation
algorithm using learning adaptation methods.Neural Com-
putation11(8):1769–1796.
Møller, M. 1997.Efficient Training of Feed-forward Neu-
ral Networks. Ph.D. Dissertation, Aarhus University, Den-
mark.
Oh, Y.; Sarabandi, K.; and Ulaby, F. T. 1992. An empirical
model and an inversion technique for radar scattering from
bare soil surfaces.IEEE Trans. Geosci. Remote Sensing
30:370–381.
Rigler, A. K.; Irvine, J. M.; and Vogl, T. P. 1991. Rescaling
of variables in back propagation learning.Neural Networks
4:225–229.
Rumelhart, D. E.; Hiton, G. E.; and Williams, R. J. 1986.
Learning internal representation by error propagation,
volume 1 ofParallel Distributed Processing. Cambridge,
MA: MIT Press.
Saarinen, S.; Bramley, R.; and Cybenko, G. 1993. Ill-
conditioning in neural network training problems.SIAM
Journal on Scientific Computing14:693–714.
Vapnik, V. N. 1995. The Nature of Statistical Learning
Theory. New York: Springer-Verlag.
Yu, C.; Manry, M. T.; and Li, J. 2004. Invariance of
mlp training to input feature de-correlation. InProceed-
ings of the 17th International Conference of the Florida AI
Research Society, 682–687.

