
A First-Order Stochastic Modeling Language for Diagnosis

Chayan Chakrabarti, Roshan Rammohan and George F. Luger

 Department of Computer Science
University of New Mexico
Albuquerque, NM 87131

{cc, roshan, luger}@cs.unm.edu

Abstract
We have created a logic-based, first-order, and Turing-
complete set of software tools for stochastic modeling.
Because the inference scheme for this language is based on
a variant of Pearl's loopy belief propagation algorithm, we
call it Loopy Logic. Traditional Bayesian belief networks
have limited expressive power, basically constrained to that
of atomic elements as in the propositional calculus. Our
language contains variables that can capture general classes
of situations, events, and relationships. A Turing-complete
language is able to reason about potentially infinite classes
and situations, with a Dynamic Bayesian Network. Since
the inference algorithm for Loopy Logic is based on a
variant of loopy belief propagation, the language includes
an Expectation Maximization-type learning of parameters
in the modeling domain. In this paper we briefly present the
theoretical foundations for our loopy-logic language and
then demonstrate several examples of stochastic modeling
and diagnosis.

1. IntroductionC

We first describe our logic-based stochastic modeling
language, Loopy Logic. We have extended the Bayesian
logic programming approach of Kersting and De Raedt
(2000). We have specialized the Kersting and De Raedt
formalism by suggesting that product distributions are an
effective combining rule for Horn clause heads. We also
extend the Kersting and De Raedt language by adding
learnable distributions. To implement learning, we use a
refinement of Pearl's (1998) loopy belief propagation
algorithm for inference. We have built a message passing
and cycling - thus the term loopy - algorithm based on
expectation maximization or EM (Dempster et al., 1977)
for estimating the values of parameters of models built in
our system. We have also added additional utilities to our
logic language including second order unification and
equality predicates.

A number of researchers have proposed logic-based
representations for stochastic modeling. These first-order
extensions to Bayesian Networks include probabilistic
logic programs (Ngo and Haddawy, 1997) and relational

Copyright © 2002, American Association for Artificial Intelligence

 (www.aaai.org). All rights reserved.

probabilistic models (Koller and Pfeffer, 1998; Getoor et
al., 1999). The paper by Kersting and De Raedt (2000)
contains a survey of these logic-based approaches. Another
approach to the representation problem for stochastic
inference is the extension of the usual propositional nodes
for Bayesian inference to the more general language of
first-order logic. Several researchers (Kersting and De
Raedt, 2000; Ngo and Haddawy, 1997; Ng and
Subrahmanian, 1992) have proposed forms of first-order
logic for the representation of probabilistic systems.

Kersting and De Raedt (2000) associate first-order rules
with uncertainty parameters as the basis for creating
Bayesian networks as well as more complex models. In
their paper “Bayesian Logic Programs”, Kersting and De
Raedt extract a kernel for developing probabilistic logic
programs. They replace Horn clauses with conditional
probability formulas. For example, instead of saying that
x is implied by y and z , that is, x <- y,z they write
that x is conditioned on y and z , or, x|y ,z . They then
annotate these conditional expressions with the appropriate
probability distributions.

Section 2 describes our logic-based stochastic modeling
language. In Section 3 we present several applications of
Loopy Logic to diagnostic reasoning. It has been tested in
some standard domains, including traditional as well as
dynamic Bayesian networks and hidden Markov models.
It has also been tested on failure data from aircraft engines
provided by the US Navy (Chakrabarti 2005). The Java
version of the tool called DBAYES is available for generic
modeling applications from the authors.

2. The Loopy Logic Language

Our research approach follows Kersting and De Raedt
(2000) in the basic structure of the language. A sentence
in the language is of the form

The size of the conditional probability table (m) at the end
of the sentence is equal to the arity (number of states) of
the head times the product of the arities of the terms in the
body. The probabilities are naturally indexed over the

head∣body
1
,body

2
,...,bodyn=[p

1
,p

2
,...pm]

states of the head and the clauses in the body, but are
shown with a single index for simplicity. For example,
suppose x is a predicate that is valued over
{r ed, green ,blue } and y is boolean. P(x|y) is
defined by the sentence

x|y=[[0.1,0.2,0.7],[0.3,0.3,0.4]]

here shown with the structure over the states of x and y .
Terms (such as x and y) can be full predicates with
structure and contain PROLOG style variables. For
example, the sentence a(X) =[0.5,0.5] indicates
that a is (universally) equally likely to have either one of
two values.

If we want a query to be able to unify with more than one
rule head, some form of combining function is required.
Kersting and De Raedt (2000) allow for general combining
functions, while the Loopy Logic language restricts this
combining function to one that is simple, useful, and works
well with the selected inference algorithm. Our choice for
combining sentences is the product distribution. For
example, suppose there are two simple rules (facts) about
some Boolean predicate a , and one says that a is true
with probability 0.4, the other says it is true with
probability 0.7. The resulting probability for a is
proportional to the product of the two. Thus, a is true
proportional to 0.4 * 0.7 and a is false proportional to
0.6 * 0.3. Normalizing, a is true with probability of
about 0.61. Thus the overall distribution defined by a
database in the language is the normalized product of the
distributions defined for all of its sentences.

One advantage of using this product rule for defining the
resulting distribution is that observations and probabilistic
rules are now handled uniformly. An observation is
represented by a simple fact with a probability of 1.0 for
the variable to take the observed value. Thus a fact is
simply a Horn clause with no body and a singular
probability distribution, that is, all the state probabilities
are zero except for a single state.

Loopy Logic also supports Boolean equality predicates.
These are denoted by angle brackets <> . For example, if
the predicate a(n) is defined over the domain {red,
green,blue} then <a(n)=green > is a variable
over {true,false } with the obvious distribution.
That is, the predicate is true with the same probability
that a(n) is green and is false otherwise.

The final addition to Loopy Logic is parameter fitting or
learning. The representational form for a statement
indicating a learnable distribution is a(X) =A . The “A ”
indicates that the distribution for a(X) is to be fitted.
The data over which the learning takes place is obtained
from the facts and rules presented in the database itself. To
specify an observation, the user adds a fact (or rule
relation) to the database in which the variable X is bound.

For example, suppose, for the rule defined above, the set
of five observations (the bindings for X) are added to
produce the following database:

a(X)=A.

a(d1)=true .

a(d2)=fals e.

a(d3)=fals e.

a(d4)=true .

a(d5)=true .

In this case there is a single learnable distribution and five
completely observed data points. The resulting
distribution for a will be true 60% of the time and false
40% of the time. In this case the variables at each data
point are completely determined. In general, this is not
necessarily so, since there may be learnable distributions
for which there are no direct observations. But a
distribution can be inferred in the other cases and used to
estimate the value of the adjustable parameter. In essence,
this provides the basis for an expectation maximization
(EM) (Mayraz and Hinton 2000) style algorithm for
simultaneously inferring distributions and estimating their
learnable parameters. Learning can also be applied to
conditional probability tables, not just to variables with
simple prior distributions. Also learnable distributions can
be parameterized with variables just as any other logic
term. For example, one might have a rule (rain(X,
City)|season(X,City)=R(City) indicating
that the probability distribution for rain depends on the
season and varies by city. A more complete specification
of the Loopy Logic representation and inference system
may be found in Pless and Luger (2001, 2003).

3. Diagnostic Reasoning with Loopy Logic

We now present two examples of fault diagnosis using
Loopy Logic. These problems are intended to demonstrate
the first-order representation and the expressive power of
the language. We are currently addressing two complex
problems, the propulsion system of a Navy aircraft,
sponsored by Office of Naval Research, and a more
complex and cyclic sequence of digital circuits, pieces of
which have been presented here (Chakrabarti 2005).

3.1 Example: Diagnosing Digital Circuits

We next demonstrate how a first-order probabilistic
language like Loopy Logic can be used for diagnosis of
faults in a combinatorial (acyclic) digital circuit. We
assume there is a database of circuits that are constructed
from and, or and not gates and that we wish to
model failures within such circuits. We assume that each
component has a mode that describes whether or not it is
working. The mode can have one of three values, it is
good or has one of two failures, stuck_at_1 or
stuck_at_0 . We assume that the probability of the

various failure modes is the same for components of the
same type, although this probability may vary across types
of components.

There are two questions that a probabilistic model can
answer. First, assume the probabilities of failure are
known. Given a circuit that is not working properly, and
one or more test cases (values for inputs and outputs of the
circuit), it would be useful to know the probability for
each component mode in order to diagnose where the
problem might be. The second question comes from
relaxing the assumption that the failure probabilities are
known. If there is a database of circuits and tests
performed on those circuits, we may wish to derive from
these tests what the failure probabilities might be.

We next provide code for this model. We use some
conventions for naming variables. We let Cid be a unique
ID for each circuit, Tid be an ID for each different test, N
be an ID for a component of the circuit, T ype be the
component type (and,or,not), and I be inputs (a
list of N s) for the component. The first two lines of the
code are declarations to define which modes a component
can be in as well as indicating that everything else is
boolean:

mode <- {good,stuck_ at_ 0 ,stu c k_ at _1} .

val,and,or,not <- {v0,v1}.

The mode and val statements provide the basic model
for circuit diagnosis. The first indicates that the probability
distribution for the mode of any component is a learnable
distribution. One could enter a fixed distribution if the
failure probabilities were known. Using the term Mode
(Type) specifies that the probabilities may be different
for different component types, but will be the same across
different circuits. One could indicate that the distributions
were the same for all components by using just Mode or
that they differed across type and circuit by using Mode
(Type,Cid). The second statement of the two
specifies how the possibility of failure interacts with
normal operation of a component. The val predicate
gives the output of component N in circuit Cid for test
Tid . See Chakrabarti (2005) for details.

mode(Cid,N):-

comp(Cid,N,Typ e,_) = Mode(Type).

val(Cid,Tid,N) :- comp(Cid,N,Ty pe ,I)|

mode(Cid,N),Ty pe(C i d,Ti d ,I)=

[[v0,v1],[v0,v 0],[v 1,v1] ,

[[0.5,0.5],[0. 5,0. 5]]].

<- and :- are part of the Loopy Logic syntax. The
and , or and not predicates model the random variables
for what the output of a component would be if it is
working correctly. The and and or are specified
recursively. This allows arbitrary fan-in for both types of

gates. The base case is handled by assigning a
deterministic value for the empty list (1 for and , 0 for
or). The recursive case computes the appropriate function
for the value of the head of the list of inputs and then
recurs. The not acts on a single value, inverting the value
of the input.

and(_,_,[])=v 1.

and(Cid,Ti d,[H|T]) |val (Cid, T id,H) ,

 and(Cid,Ti d,T)=[[v 0,v0] ,[v0 , v1]] .

or(_,_,[]) =v0 .

or(Cid,Tid ,[H |T])= val(C id,T i d,H) ,

 or(Cid,Tid ,T) =[[v0 ,v1] , [v1, v 1]].

not(Cid,Ti d,N)|v al (Cid , Tid, N)=[v 1 ,v 0] .

Figure 1. A sample circuit that implements XOR

The circuit of Figure 1 is described by the following four
lines of code.

comp(1,3,a nd, [1, 2]).

comp(1,4,n ot, 3).

comp(1,5,o r,[1,2]) .

comp(1,6,a nd, [4, 5]).

We now introduce failure probabilities into the different
components. For the sake of simplicity we shall assume
that the failure probabilities are fixed and are the same for
all types of components.

mode=[0.98 9,0 .01 ,0 .001]

This indicates that the component is good ,
stuck_at_0 , or stuck_at_1 with a fixed
probability distribution of 98.9%, 1% and 0.1%.

Next, we give the system a set of input values using the
following statements.

val(1,1,1) =v0 .

val(1,1,2) =v1 .

Now, we query loopy logic about the output at gate 6 using
the following statement from the loopy prompt.

val(1,1,6) ?

We get the following response from the Loopy Logic
interpreter.

val(6)

v0: 0.030649439 79

v1: 0.969350560 21

This output indicates that the output at component 6 is high
with a 97% probability and low with 3% probability. This
is consistent with our expectation.

Next we repeat the same test by introducing a very high
failure rate in our model. We state that the component has
only 50% probability of being good.

mode=[0.5,0.3, 0.2] .

We now query the Loopy Logic interpreter for the output
at component 6 as follows.

val(1,1,1) = v0.

val(1,1,2) = v1.

val(1,1,6) = ?

The Loopy Logic interpreter gives the following response.

val(6)

v0: 0.59

v1: 0.41

The Loopy Logic interpreter tells us that in this model the
output is more likely to be wrong. This is because we have
introduced a higher (50%) probability of failure.

Now, consider the second problem. We know that a fault
has occurred and we want to find the likely causes for the
fault, i.e., which of the gates in the circuit might be faulty.
We again consider the initial model which had a 1%
probability of failure. We force the output at component 6
to be wrong.

mode=[0.989,0. 01,0 . 001] .

val(1,1,1)=v0.

val(1,1,2)=v1.

val(1,1,6)=v0.

mode(3),mode(4),mo d e(5) , mode (6) ?

As shown, we have set the output component to be v0
when in fact the correct output should be v1 . We now
want to find the probability of failure of each component
in the circuit. This is done by the query on the fifth line,
above. We get the following response.

mode(3)

good: 0.95775348 917 1

s0: 0.009684059 546 7 2

s1: 0.032562451 282 6

mode(4)

good: 0.67337516 804 3

stuck_at_0: 0.3259439672 78

stuck_at_1 : 0.0006808646795 1 7

mode(5)

good: 0.6734070812 2

stuck_at_0 : 0.325943967278

stuck_at_1 : 0.0006489515024 1 8

mode(6)

good: 0.6737297624 85

stuck_at_0 : 0.326270237515

stuck_at_1 : 0

This response shows the failure probabilities of each
component. It tells us that component 3 is good with a
95.77% probability. Component 4, 5 and 6 are good with
67.33% probability. Further, it also tells us that component
4 is stuck_at_0 with 32.59% probability.
Mathematical analysis shows that this inference is correct.

Next, we repeat the diagnostic test where the third input
value, val(1,1,6)=v0, is incorrect:

val(1,1,1) =v0 .

val(1,1,2) =v1 .

val(1,1,6) =v0 .

mode(3),mo de(4), mo de(5) ,mod e (6)?

We get the following response:

mode(3)

good: 0.4703389830 51

s0: 0.282203389831

s1: 0.247457627119

mode(4)

good: 0.4237288135 59

s0: 0.406779661017

s1: 0.169491525424

mode(5)

good: 0.4406779661 02

s0: 0.406779661017

s1: 0.152542372881

mode(6)

good: 0.4915254237 29

s0: 0.508474576271

s1: 0

Once again, we observe by analysis that the results
obtained from Loopy Logic are valid. In our research,
similar diagnostic tests on a dozen different circuits of
varying sizes and complexity were performed. The
smallest circuit had 6 components and the largest circuit
had 10,700 components. Some circuits had loops in them
as well. The results provided by Loopy Logic were found
to be accurate in all cases (Chakrabarti 2005). The largest
circuit converged in less than 15 minutes on a standard
linux cluster. Without a powerful stochastic modeling tool,
it is a non-trivial task to design a system that can diagnose
digital circuit failures as well as estimate failure
probabilities from a data set of test cases. With our system,
the basic model can be constructed using only nine

statements. As the example shows, the representation of
circuits and test data is transparent as well. Please refer to
Chakrabarti (2005) for further details.

3.2 Example: Fault Detection in a Mechanical
System

In the final example, we predict a future event, namely a
breakdown of a mechanical system due to a fault
(Chakrabarti 2005). Data from various analog sensors are
available to us as observations from the time of start of a
test. The time domain representation of the data is
unwieldy and intractable for computation. So we deal with
the data in the frequency domain by computing the
Fourier transform of the time-series data. Further, we
smooth the data by averaging the frequency domains of
each set of M consecutive preliminary observations. It is
this domain of converted and smoothed data that makes up
our observation Y t .

Dynamic Bayesian Networks (DBN's) (Dagum et al.,
1992) can be used as a tool to model dynamic systems.
More expressive than Hidden Markov Models (HMM) and
Kalman Filter Models (KFM), they can be used to
represent other stochastic graphical models in AI and
machine learning.

Figure 2. A model of distributions P(U | X = i) as learned
from the training data.

It is reasonable to assume that the observation at current
time slice Y t is related to the observation at the previous
time slice, Y t−1 , i.e., the observations are temporally
correlated. In fact we use correlation as a metric of
distance between observations. A lack of correlation
between observations in consecutive time slices is
probably an indication of anomalous behavior. For
example, when the system changes state from Xt−1=safe
to X t=unsafe we expect the corresponding observations
Y t−1 and Y t to show lower levels of correlation. This

understanding of the data leads us to consider the use of
the AR-HMM (auto-regressive HMM) (Juang, 1984) to
model the system. We chose to model the AR-HMM on
three hidden states, {safe ,unsafe ,faulty } . We
infer the probability distribution of the system state at time
t, P Xt  .

In the AR-HMM, (see Figure 3) the customary HMM
assumption that Y t does not have a direct causal
relationship with Y t−1 is relaxed. Before we apply the

algorithm to real time data we evaluate the probability
distribution P u j∣X  of expected frequency signatures
corresponding to the states from a state-labeled dataset.
Note that U=u1 ,u2 , ... ,uk is the set of observations that
have been recorded while training the system. Say for
example, if observation u1 through observation uk were
recorded when the system gradually went from safe to
faulty we would expect P u1∣X=safe to be
significantly higher than P uk∣X=safe .

Figure 3. An Auto-Regressive Hidden Markov Model

From the causality expressed in the AR-HMM we know,

 (1)

In our design, the
probability of an
observation given

a state is the probability of observing the discrete prior that
is closest to the current observation, penalized by the
distance between the current observation and the prior.

 (2)
Further, the probability of an observation at time t given
another particular observation at time t-1 is the probability
of the most similar transition among the priors penalized
by the distance between the current observation and the
observation of the previous time step. Note that y t is a
continuous variable and potentially infinite in range but we
limit it to a tractable set of finite signatures, U by replacing
it by the u j with which it best correlates.

where ut=argmaxu j
∣corrcoef y t ,u j∣

The relationship governing the learnable distributions is
expressed in Loopy Logic as follows:
x <- {safe,unsa fe, faul t y}.

y(s(N))|x(s(N))= LD 1.

y(s(N))|y(N)) =LD 2.

P Y t=y t∣X t=i ,Y t−1=yt−1=
P Y t=yt∣X t=i∗P Y t=y t∣Y t−1=yt−1

P Y t=yt∣Xt=i=
max ∣corrcoef yt ,u j∣∗P ut∣X t=i

P Y t=yt∣Y t−1=yt−1=∣corrcoef y t , y t−1∣∗
number of ut−1−ut transitions 
number of ut−1observations 

Preprocessing the data and computing the correlation
coefficients off-line, we tested the above technique on a
large training dataset of several seeded fault occurrences
taking the system from safe to faulty . We obtained
a performance accuracy close to 80% on this test data.
Please refer to Chakrabarti (2005) for details.

4. Conclusions and Further Research

We have created a new first-order Turing-complete logic-
based stochastic modeling language. A well-known and
effective inference algorithm, loopy belief propagation,
supports this language. Our combination rule for complex
goal support is the product distribution. Finally, a form of
EM parameter learning is supported naturally within this
framework. From a larger perspective, each type of logic
(deductive, abductive, and inductive) can be mapped to
elements of our declarative stochastic logic language: The
ability to represent rules and chains of rules is equivalent
to deductive reasoning. Probabilistic inference, particularly
from symptoms to causes, represents abductive reasoning,
and learning through fitting parameters to known data sets,
is a form of induction.

A future direction for research is to extend Loopy Logic to
include continuous random variables. We also plan to
extend learning from parameter fitting to full model
induction. Getoor et al. (2001) and Segal et al. (2001)
consider model induction in the context of more traditional
Bayesian Belief Networks and Angelopoulos and Cussens
(2001) and Cussens (2001) in the area of Constraint Logic
Programming. Finally, the Inductive Logic Programming
community (Muggleton, 1994) also addressed the learning
of structure with declarative stochastic representations. We
plan on taking a combination of these approaches.

Acknowledgments

This research was supported by NSF (115-9 800929, INT-
9900485), and a NAVAIR STTR (N0421-03-C-0041). The
development of Loopy Logic was based on Dan Pless's
PhD research at the University of New Mexico. (Pless and
Luger 2001, 2003)

References

Angelopoulos, N., and Cussens, J. 2001. Markov Chain
Monte Carlo Using Tree-Based Priors on Model Structure.
In Proceedings of the Seventeenth Conference on
Uncertainty in Artificial Intelligence, San Francisco.:
Morgan Kaufmann.

Chakrabarti, C. 2005. First-Order Stochastic Systems for
Diagnosis and Prognosis, Masters Thesis, Dept. of
Computer Science, University of New Mexico.

Cussens, J. 2001. Parameter Estimation in Stochastic Logic
Programs, Machine Learning 44:245-271.

Dagum, P., Galper, A., and Horowitz, E. 1992. Dynamic
Network Models for Forecasting. In Proceedings of the
Eighth Conference on Uncertainty in Artificial
Intelligence, 41-48. Morgan Kaufmann.

Getoor, L., Friedman, N., Koller, D., and Pfeffer, A. 2001.
Learning Probabilistic Relational Models. Relational Data
Mining, S. Dzeroski and N. Lavorac (eds).: Springer.

Juang, B. 1984. On the Hidden Markov Model and
Dynamic Time Warping for Speech Recognition: a unified
view, Technical Report, vol 63, 1213-1243 AT&T Labs

Kersting, K. and De Raedt, L. 2000. Bayesian Logic
Programs. In AAAI-2000 Workshop on Learning Statistical
Models from Relational Data. Menlo Park, CA.: AAAI
Press.

Koller, D., and Pfeffer, A. 1998. Probabilistic Frame-
Based Systems. In Proceedings of the Fifteenth National
Conference on AI, 580-587. Cambridge, MA.: MIT Press.

Mayraz, G., and Hinton, G. 2000. Recognizing Hand-
Written Digits using Hierarchical Products of Experts.
Advances in Neural Information Processing Systems 13:
953-959, 2000.

Muggleton, S. 1994. Bayesian Inductive Logic
Programming. In Proceedings of the Seventh Annual ACM
Conference on Computational Learning Theory, 3-11.
New York.: ACM Press.

Ng, R. and Subrahmanian, V. 1992. Probabilistic Logic
Programming. Information and Computation: 101-102

Ngo, L., and Haddawy, P. Answering Queries from
Context-Sensitive Knowledge Bases. Theoretical
Computer Science 171:147-177, 1997.

Pearl, P. 1988. Probabilistic Reasoning in Intelligent
Systems: Networks of Plausible Inference. San Francisco
CA.: Morgan Kaufmann.

Pless, D., and Luger, G.F. 2001. Toward General Analysis
of Recursive Probability Models. In Proceedings of the
Seventeenth Conference on Uncertainty in Artificial
Intelligence, San Francisco.: Morgan Kaufmann.

Pless, D., and Luger, G.F. 2003. EM Learning of Product
Distributions in a First-Order stochastic Logic Language.
IASTED Conference, Zurich.: IASTED/ ACTA Press.

Segal, E., Koller, D. and Ormoneit, D. 2001. Probabilistic
Abstraction Hierarchies. Neural Information Processing
Systems, Cambridge, MA.: MIT Press.

