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Abstract
We  have  created  a  logic-based,  first-order,  and  Turing-
complete  set  of  software  tools  for  stochastic  modeling.
Because the inference scheme for this language is based on
a variant of Pearl's loopy belief propagation algorithm, we
call it Loopy Logic.  Traditional  Bayesian belief networks
have limited expressive power, basically constrained to that
of  atomic  elements  as  in  the  propositional  calculus.  Our
language contains variables that can capture general classes
of situations, events, and relationships. A Turing-complete
language is able to reason about potentially infinite classes
and situations,  with  a Dynamic  Bayesian  Network.  Since
the  inference  algorithm  for  Loopy  Logic  is  based  on  a
variant of loopy belief propagation, the language includes
an Expectation  Maximization-type  learning  of  parameters
in the modeling domain. In this paper we briefly present the
theoretical  foundations  for  our  loopy-logic  language  and
then demonstrate several examples of stochastic modeling
and diagnosis.

1. IntroductionC 

We  first  describe  our  logic-based  stochastic  modeling
language, Loopy Logic. We have extended the Bayesian
logic  programming  approach  of  Kersting  and  De Raedt
(2000).  We have specialized the Kersting and De Raedt
formalism by suggesting that product distributions are an
effective combining rule for Horn clause heads. We also
extend  the  Kersting  and  De  Raedt  language  by  adding
learnable distributions.  To implement learning,  we use a
refinement  of  Pearl's  (1998)  loopy  belief  propagation
algorithm for inference. We have built a message passing
and cycling -  thus  the  term loopy -  algorithm based  on
expectation maximization or EM (Dempster et al.,  1977)
for estimating the values of parameters of models built in
our system. We have also added additional utilities to our
logic  language  including  second  order  unification  and
equality predicates.

A  number  of  researchers  have  proposed  logic-based
representations for  stochastic  modeling.  These first-order
extensions  to  Bayesian  Networks  include  probabilistic
logic programs (Ngo and Haddawy, 1997) and relational
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probabilistic models (Koller and Pfeffer, 1998; Getoor et
al.,  1999).  The paper  by  Kersting and  De Raedt  (2000)
contains a survey of these logic-based approaches. Another
approach  to  the  representation  problem  for  stochastic
inference is the  extension of the usual propositional nodes
for  Bayesian  inference  to  the  more  general  language  of
first-order  logic.  Several  researchers  (Kersting  and  De
Raedt,  2000;  Ngo  and  Haddawy,  1997;  Ng  and
Subrahmanian,  1992)  have proposed forms of  first-order
logic for the representation of probabilistic systems.

Kersting and De Raedt (2000)  associate first-order  rules
with  uncertainty  parameters  as  the  basis  for  creating
Bayesian  networks as well  as more  complex  models.  In
their paper “Bayesian Logic Programs”, Kersting and De
Raedt extract  a  kernel  for  developing probabilistic  logic
programs.   They  replace  Horn  clauses  with  conditional
probability formulas.  For example, instead of saying that 
x  is implied by y  and z , that is,  x  <-  y,z  they write
that x  is conditioned on y  and z , or, x|y ,z . They then
annotate these conditional expressions with the appropriate
probability distributions. 

Section  2  describes  our  logic-based  stochastic  modeling
language. In Section 3 we present several applications of
Loopy Logic to diagnostic reasoning. It has been tested in
some standard  domains,  including  traditional  as  well  as
dynamic Bayesian networks  and hidden Markov models.
It has also been tested on failure data from aircraft engines
provided by the US Navy (Chakrabarti  2005).  The Java
version of the tool called DBAYES is available for generic
modeling applications from the authors.

2. The Loopy Logic Language

Our  research  approach  follows  Kersting  and  De  Raedt
(2000) in the basic structure of the language.  A sentence
in the language is of the form 

The size of the conditional probability table (m) at the end
of the sentence is equal to the arity (number of states) of
the head times the product of the arities of the terms in the
body.  The  probabilities  are  naturally  indexed  over  the
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states  of  the  head  and  the  clauses  in  the  body,  but  are
shown  with  a  single  index  for  simplicity.  For  example,
suppose  x  is  a  predicate  that  is  valued  over
{r ed, green ,blue }  and y  is boolean. P(x|y)  is
defined by the sentence

x|y=[[0.1,0.2,0.7],[0.3,0.3,0.4]]

here shown with the structure over the states of  x  and  y .
Terms  (such  as  x  and  y )  can  be  full  predicates  with
structure  and  contain  PROLOG  style  variables.  For
example,  the  sentence  a(X) =[0.5,0.5]  indicates
that a  is (universally) equally likely to have either one of
two values.

If we want a query to be able to unify with more than one
rule head, some form of combining function is required.
Kersting and De Raedt (2000) allow for general combining
functions,  while  the  Loopy Logic  language  restricts  this
combining function to one that is simple, useful, and works
well with the selected inference algorithm.  Our choice for
combining  sentences  is  the  product  distribution.   For
example, suppose there are two simple rules  (facts) about
some Boolean predicate  a , and one says that  a  is  true
with  probability  0.4,  the  other  says  it  is  true  with
probability  0.7.  The  resulting  probability  for  a  is
proportional to the product of the two. Thus,  a  is  true
proportional to 0.4 * 0.7 and a  is false  proportional to
0.6  * 0.3.  Normalizing,  a  is  true  with  probability  of
about  0.61.  Thus  the  overall  distribution  defined  by  a
database in the language is the normalized product of the
distributions defined for all of its sentences. 

One advantage of using this product rule for defining the
resulting distribution is that observations and probabilistic
rules  are  now  handled  uniformly.   An  observation  is
represented by a simple fact with a probability of 1.0 for
the  variable  to  take  the  observed  value.  Thus  a  fact  is
simply  a  Horn  clause  with  no  body  and  a  singular
probability distribution,  that  is,  all the  state probabilities
are zero except for a single state.

Loopy  Logic  also  supports  Boolean  equality  predicates.
These are denoted by angle brackets <> .  For example, if
the predicate  a(n)  is defined over the domain  {red,
green,blue}  then <a(n)=green >  is a variable
over  {true,false }  with  the  obvious  distribution.
That is, the predicate is  true  with the same probability
that a(n) is green  and is  false   otherwise.

The final addition to Loopy Logic is parameter fitting or
learning.   The  representational  form  for  a  statement
indicating a learnable distribution is  a(X) =A .  The “A ”
indicates that  the distribution  for  a(X)  is  to  be  fitted.
The data over which the learning takes place is obtained
from the facts and rules presented in the database itself. To
specify  an  observation,  the  user  adds  a  fact  (or  rule
relation) to the database in which the variable X  is bound.

For example, suppose, for the rule defined above, the set
of five observations   (the  bindings for  X ) are added to
produce the following database:

a(X)=A.

a(d1)=true .  

a(d2)=fals e.  

a(d3)=fals e.  

a(d4)=true .  

a(d5)=true .  

In this case there is a single learnable distribution and five
completely  observed  data  points.   The  resulting
distribution for  a  will be true 60% of the time and false
40% of the time.  In this case the variables at each data
point  are completely determined.   In general,  this is  not
necessarily so, since there may be learnable distributions
for  which  there  are  no  direct  observations.  But  a
distribution can be inferred in the other cases and used to
estimate the value of the adjustable parameter. In essence,
this  provides  the  basis  for  an  expectation  maximization
(EM)  (Mayraz  and  Hinton  2000)  style  algorithm  for
simultaneously inferring distributions and estimating their
learnable  parameters.  Learning  can  also  be  applied  to
conditional  probability  tables,  not  just  to  variables  with
simple prior distributions.  Also learnable distributions can
be  parameterized  with  variables  just  as  any  other  logic
term.  For example, one might have a rule  (rain(X,
City)|season(X,City)=R(City)  indicating
that  the  probability  distribution  for  rain  depends  on  the
season and varies by city. A more complete specification
of the Loopy Logic representation  and  inference  system
may be found in Pless and Luger (2001, 2003).

3. Diagnostic Reasoning with Loopy Logic

We now present  two  examples  of  fault  diagnosis  using
Loopy Logic. These problems are intended to demonstrate
the first-order representation and the expressive power of
the language.  We are currently  addressing two  complex
problems,  the  propulsion  system  of  a  Navy  aircraft,
sponsored  by  Office  of  Naval  Research,  and  a  more
complex and cyclic sequence of digital circuits, pieces of
which have been presented here (Chakrabarti 2005).  

3.1 Example: Diagnosing Digital Circuits

We  next  demonstrate  how  a  first-order  probabilistic
language like Loopy Logic can be used for  diagnosis of
faults  in  a  combinatorial  (acyclic)  digital  circuit.  We
assume there is a database of circuits that are constructed
from  and,  or  and  not  gates  and  that  we  wish  to
model failures within such circuits. We assume that each
component has a mode that describes whether or not it is
working.  The  mode  can  have  one  of  three  values,  it  is
good  or  has  one  of  two  failures,  stuck_at_1  or
stuck_at_0 .  We assume that  the probability  of the



various failure modes is the same for components of the
same type, although this probability may vary across types
of components. 

There  are  two  questions  that  a  probabilistic  model  can
answer.  First,  assume  the  probabilities  of  failure  are
known. Given a circuit that is not working properly, and
one or more test cases (values for inputs and outputs of the
circuit),   it  would be useful  to know the probability for
each  component  mode  in  order  to  diagnose  where  the
problem  might  be.  The  second  question  comes  from
relaxing  the assumption  that  the failure  probabilities  are
known.  If  there  is  a  database  of  circuits  and  tests
performed on those circuits, we may wish to derive from
these tests what the failure probabilities might be.

We  next  provide  code  for  this  model.  We  use  some
conventions for naming variables. We let Cid  be a unique
ID for each circuit, Tid  be an ID for each different test, N
be an  ID for  a  component  of  the  circuit,  T ype  be  the
component type (and,or,not),  and I  be inputs (a
list of  N s) for the component.  The first two lines of the
code are declarations to define which modes a component
can  be  in  as  well  as  indicating  that  everything  else  is
boolean: 

mode  <-  {good,stuck_ at_ 0 ,stu c k_ at _1} .

val,and,or,not  <-  {v0,v1}.

The  mode  and  val  statements provide the basic model
for circuit diagnosis. The first indicates that the probability
distribution for the mode of any component is a learnable
distribution.  One  could  enter  a  fixed  distribution  if  the
failure  probabilities were  known. Using the term  Mode
(Type)  specifies that the probabilities may be different
for different component types, but will be the same across
different circuits. One could indicate that the distributions
were the same for all components by using just Mode  or
that they differed across type and circuit by using  Mode
(Type,Cid).  The  second  statement  of  the  two
specifies  how  the  possibility  of  failure  interacts  with
normal  operation  of  a  component.   The  val  predicate
gives the output of component  N  in circuit  Cid  for test
Tid . See Chakrabarti (2005) for details.

mode(Cid,N):-

comp(Cid,N,Typ e,_) =  Mode(Type).

val(Cid,Tid,N) :- comp(Cid,N,Ty pe ,I )|

mode(Cid,N),Ty pe(C i d,Ti d ,I)=

[[v0,v1],[v0,v 0],[ v 1,v1 ] ,

[[0.5,0.5],[0. 5,0. 5 ]]].

<-  and :-  are part of the Loopy Logic syntax. The
and , or  and not  predicates model the random variables
for  what  the  output  of  a  component  would  be  if  it  is
working  correctly.  The  and  and  or  are  specified
recursively. This allows arbitrary fan-in for both types of

gates.  The  base  case  is  handled  by  assigning  a
deterministic value for the empty list (1  for  and ,  0  for
or ). The recursive case computes the appropriate function
for  the value of the head of  the list of  inputs and then
recurs. The not  acts on a single value, inverting the value
of the input. 

and(_,_,[] )=v 1.

and(Cid,Ti d,[ H|T ]) |val ( Cid, T id,H ) ,  

     and(Cid,Ti d,T )=[ [v 0,v0 ] ,[v0 , v1]] .

or(_,_,[]) =v0 .

or(Cid,Tid ,[H |T] )= val( C id,T i d,H) ,

     or(Cid,Tid ,T) =[[ v0 ,v1] , [v1, v 1]].

not(Cid,Ti d,N )|v al (Cid , Tid, N )=[v 1 ,v 0] .

Figure 1. A sample circuit that implements XOR

The circuit of Figure 1 is described by the following four
lines of code.

comp(1,3,a nd, [1, 2] ).

comp(1,4,n ot, 3).

comp(1,5,o r,[ 1,2 ]) .

comp(1,6,a nd, [4, 5] ).

We now introduce  failure  probabilities into the different
components.  For  the sake of simplicity  we shall  assume
that the failure probabilities are fixed and are the same for
all types of components.

mode=[0.98 9,0 .01 ,0 .001 ]

This  indicates  that  the  component  is  good ,
stuck_at_0 ,  or  stuck_at_1  with  a  fixed
probability distribution of 98.9%, 1% and 0.1%. 

Next, we give the system a set of input values using the
following statements.

val(1,1,1) =v0 .

val(1,1,2) =v1 .  

Now, we query loopy logic about the output at gate 6 using
the following statement from the loopy prompt.

val(1,1,6) ?

We  get  the  following  response  from  the  Loopy  Logic
interpreter.



val(6)

v0:  0.030649439 79

v1:  0.969350560 21    

This output indicates that the output at component 6 is high
with a 97% probability and low with 3% probability. This
is consistent with our expectation.

Next we repeat the same test by introducing a very high
failure rate in our model. We state that the component has
only 50% probability of being good.

mode=[0.5,0.3, 0.2] .

We now query the Loopy Logic interpreter for the output
at component 6 as follows.

val(1,1,1)  =  v0.

val(1,1,2)  =  v1.  

val(1,1,6)  =  ?

The Loopy Logic interpreter gives the following response.

val(6)

v0:  0.59

v1:  0.41

The Loopy Logic interpreter tells us that in this model the
output is more likely to be wrong. This is because we have
introduced a higher (50%) probability of failure.

Now, consider the second problem. We know that a fault
has occurred and we want to find the likely causes for the
fault, i.e., which of the gates in the circuit might be faulty.
We again  consider  the   initial  model  which  had  a  1%
probability of failure. We force the output at component 6
to be wrong.

mode=[0.989,0. 01,0 . 001] .

val(1,1,1)=v0.

val(1,1,2)=v1.  

val(1,1,6)=v0.  

mode(3),mode(4 ),mo d e(5) , mode ( 6) ?

As shown,  we have set  the output  component  to  be  v0
when in  fact  the correct  output  should  be  v1 .  We now
want to find the probability of failure of each component
in the circuit. This is done by the query on the fifth line,
above. We get the following response.

mode(3)

good:  0.95775348 917 1

s0:  0.009684059 546 7 2

s1:  0.032562451 282 6

mode(4)

good:  0.67337516 804 3

stuck_at_0:  0.3259439672 78

stuck_at_1 :  0.0006808646795 1 7

mode(5)

good:  0.6734070812 2

stuck_at_0 :  0.325943967278

stuck_at_1 :  0.0006489515024 1 8

mode(6)

good:  0.6737297624 85

stuck_at_0 :  0.326270237515

stuck_at_1 :  0

This  response  shows  the  failure  probabilities  of  each
component. It tells us that component 3 is  good  with a
95.77% probability. Component 4, 5 and 6 are good  with
67.33% probability. Further, it also tells us that component
4  is  stuck_at_0  with  32.59%  probability.
Mathematical analysis shows that this inference is correct.

Next, we repeat  the diagnostic test where the third input
value, val(1,1,6)=v0,  is incorrect:

val(1,1,1) =v0 .  

val(1,1,2) =v1 .  

val(1,1,6) =v0 .  

mode(3),mo de( 4), mo de(5 ) ,mod e (6)?

We get the following response:

mode(3)

good:  0.4703389830 51

s0:  0.282203389831

s1:  0.247457627119

mode(4)

good:  0.4237288135 59

s0:  0.406779661017

s1:  0.169491525424

mode(5)

good:  0.4406779661 02

s0:  0.406779661017

s1:  0.152542372881

mode(6)

good:  0.4915254237 29

s0:  0.508474576271

s1:  0

Once  again,  we  observe  by  analysis  that  the  results
obtained  from  Loopy  Logic  are  valid.  In  our  research,
similar  diagnostic  tests  on  a  dozen  different  circuits  of
varying  sizes  and  complexity  were  performed.  The
smallest circuit  had 6 components and the largest circuit
had 10,700 components. Some circuits had loops in them
as well. The results provided by Loopy Logic were found
to be accurate in all cases (Chakrabarti 2005). The largest
circuit  converged  in less than 15 minutes  on a standard
linux cluster. Without a powerful stochastic modeling tool,
it is a non-trivial task to design a system that can diagnose
digital  circuit  failures  as  well  as  estimate  failure
probabilities from a data set of test cases. With our system,
the  basic  model  can  be  constructed  using  only  nine



statements.  As the  example shows, the representation  of
circuits and test data is transparent as well. Please refer to
Chakrabarti (2005) for further details.

3.2  Example:  Fault  Detection  in  a  Mechanical
System

In the final example, we predict a future event, namely a
breakdown  of  a  mechanical  system  due  to  a  fault
(Chakrabarti 2005). Data from various analog sensors are
available to us as observations from the time of start of a
test.  The  time  domain  representation  of  the  data  is
unwieldy and intractable for computation. So we deal with
the   data  in  the  frequency  domain  by  computing  the
Fourier  transform  of  the  time-series  data.  Further,  we
smooth the data by averaging the  frequency  domains  of
each set of M consecutive preliminary observations. It is
this domain of converted and smoothed data that makes up
our observation Y t .

Dynamic  Bayesian  Networks  (DBN's)  (Dagum  et  al.,
1992)  can be used as a  tool to model dynamic systems.
More expressive than Hidden Markov Models (HMM) and
Kalman  Filter  Models  (KFM),  they  can  be  used  to
represent  other  stochastic  graphical  models  in  AI  and
machine learning. 

Figure 2. A model of distributions P(U | X = i) as learned
from the training data.

It is reasonable to assume that the observation at current
time slice Y t is  related to the observation at the previous
time  slice, Y t−1 ,  i.e.,  the  observations  are  temporally
correlated.  In  fact  we  use  correlation  as  a  metric  of
distance  between  observations.  A  lack  of  correlation
between  observations  in  consecutive  time  slices  is
probably  an  indication  of  anomalous  behavior.  For
example, when the system changes state from Xt−1=safe
to X t=unsafe we expect  the corresponding  observations
Y t−1 and Y t to  show  lower  levels  of  correlation.  This

understanding of the data leads us to consider the use of
the  AR-HMM (auto-regressive  HMM) (Juang,  1984)  to
model the system. We chose to model the AR-HMM on
three hidden states,  {safe ,unsafe ,faulty } . We
infer the probability distribution of the system state at time
t, P Xt  .

In  the  AR-HMM,  (see  Figure  3)  the  customary  HMM
assumption  that Y t does  not  have  a  direct  causal
relationship  with Y t−1 is  relaxed.  Before  we  apply  the

algorithm  to  real  time  data  we  evaluate  the  probability
distribution P u j∣X  of  expected  frequency  signatures
corresponding  to  the  states  from  a  state-labeled  dataset.
Note  that U=u1 ,u2 , ... ,uk is  the  set  of  observations  that
have  been  recorded  while  training  the  system.  Say  for
example,  if  observation u1 through  observation uk were
recorded when the system gradually went from safe  to
faulty  we  would  expect P u1∣X=safe to  be
significantly higher than P uk∣X=safe .

Figure 3. An Auto-Regressive Hidden Markov Model

From the causality expressed in the AR-HMM we know,

                        (1)                                           
                        

In  our  design,  the
probability  of  an
observation  given

a state is the probability of observing the discrete prior that
is  closest  to  the  current  observation,  penalized  by  the
distance between the current observation and the prior.

                       (2)
Further,  the probability of an observation at time  t given
another particular observation at time t-1 is the  probability
of the most similar transition among the priors penalized
by the distance between the current  observation and the
observation  of  the  previous  time  step.  Note  that y t is  a
continuous variable and potentially infinite in range but we
limit it to a tractable set of finite signatures, U by replacing
it by the u j with which it best correlates.

where ut=argmaxu j
∣corrcoef y t ,u j∣

The  relationship  governing  the  learnable  distributions  is
expressed in Loopy Logic as follows:
x  <-  {safe,unsa fe, faul t y}.

y(s(N))|x( s(N ))= LD 1.

y(s(N))|y( N)) =LD 2.

P Y t=y t∣X t=i ,Y t−1=yt−1=
P Y t=yt∣X t=i∗P Y t=y t∣Y t−1=yt−1

P Y t=yt∣Xt=i=
max ∣corrcoef yt ,u j∣∗P ut∣X t=i

P Y t=yt∣Y t−1=yt−1=∣corrcoef y t , y t−1∣∗
number of ut−1−ut transitions 
number of ut−1observations 



Preprocessing  the  data  and  computing  the  correlation
coefficients off-line,  we tested the above technique on a
large training dataset of several  seeded fault occurrences
taking the system from safe  to faulty . We obtained
a  performance  accuracy  close  to  80% on  this  test  data.
Please refer to Chakrabarti (2005) for details.

4. Conclusions and Further Research

We have created a new first-order Turing-complete logic-
based  stochastic  modeling  language.  A  well-known  and
effective  inference  algorithm,  loopy  belief  propagation,
supports this language. Our combination rule for complex
goal support is the product distribution.  Finally, a form of
EM parameter learning is supported naturally within this
framework. From a larger perspective, each type of logic
(deductive,  abductive,  and  inductive)  can  be  mapped  to
elements of our declarative stochastic logic language: The
ability to represent rules and chains of rules is equivalent
to deductive reasoning. Probabilistic inference, particularly
from symptoms to causes, represents abductive reasoning,
and learning through fitting parameters to known data sets,
is a form of induction. 

A future direction for research is to extend Loopy Logic to
include  continuous  random  variables.  We also  plan   to
extend  learning  from  parameter  fitting  to  full  model
induction.  Getoor  et  al.  (2001)  and  Segal  et  al.  (2001)
consider model induction in the context of more traditional
Bayesian Belief Networks and Angelopoulos and Cussens
(2001) and Cussens (2001) in the area of Constraint Logic
Programming. Finally,  the Inductive Logic Programming
community (Muggleton, 1994) also addressed the learning
of structure with declarative stochastic representations. We
plan on taking a combination of these approaches.
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