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Abstract 

This paper demonstrates the use of Point Graphs (PG) and 
temporal logic for analyzing courses of action (COA) in a 
Timed Influence Net (TIN) that models a dynamic uncertain 
situation. The current practice in courses of action analysis 
looks at the impacts of actions on the likelihood of the desired 
effects over a period of time. The impact of time, however, is 
not studied explicitly. This paper presents an algorithm that 
generates a corresponding Point Graph for a Timed Influence 
Net. This graph-based knowledge representation and 
reasoning formalism is shown to help reveal temporal 
behavior of the modeled system. A temporal language is also 
shown to interact with the graphical representation. An 
analysis on the graph addresses user-defined ‘what-if’ 
scenarios for a better understanding of the temporal 
relationships between certain actions that may result in a 
desired effect at a particular time instant. 

1. Introduction 
Timed Influence Nets (TINs) have been used 
experimentally in the area of Effects-Based Operations 
(EBO) (Wagenhals and Levis 2002, Wagenhals et al. 
2003). They are used as a decision aid for modeling and 
analyzing uncertainties involved in a complex dynamic 
situation. Furthermore, once a Timed Influence Net (TIN) 
is used to model a situation, it allows a system modeler to 
evaluate the performance of different courses of action in 
terms of their impacts on the likelihood of achieving some 
desired effect(s). The TIN formalism originated from a 
general class of probabilistic reasoning framework, known 
as Bayesian Networks (Pearl 1987, Jensen 2001, 
Neapolitan 2003). Bayesian Networks (BNs) were 
originally designed to capture uncertainty in static (time-
independent) situations. During the last decade, much 
effort has been focused on integrating the notions of time 
and uncertainty into a single analytical framework. Most of 
this work can be classified into one of the following two 
categories: (i) adding constructs to the static BN formalism 
to capture temporal dependencies (Hanks et al. 1995, 
Santos and Young 1999) and (ii) developing algorithms 
that can compute the likelihood of variables of interest in a 
reasonable amount of time (Kjaerulff 1992, Boyen and 
Koller 1998). BNs with the additional temporal constructs 
are typically referred to as Time Sliced Bayesian Networks 
(TSBNs). Recently, it is shown (Haider and Zaidi 2004) 
that a transformation exists from a TIN to an equivalent 
TSBN. It should be noted that inference in a general class 

of BNs, even for static situations, is NP-Complete. A lot of 
reported work is, therefore, focused on developing efficient 
techniques for approximate inference that can be helpful 
for modeling real time situations.  

The term temporal logic has been broadly used to 
cover all approaches for the representation of temporal 
information within a logical framework. A temporal logic 
can be defined as a language for encoding temporal 
knowledge about an application system and as a tool for 
reasoning about temporal relations among the system 
entities. (Galton 1999) Many schemes have been suggested 
to represent time in the AI literature for both a qualitative 
and a quantitative treatment of time. Zaidi (Zaidi 1999) 
presented a Point Interval Temporal Logic (PITL) based on 
Allen’s ontology of time (Allen 1983). PITL incorporates 
both qualitative and quantitative temporal aspects 
associated with points and intervals in a system 
specification. The tool, TEMPER (Zaidi and Levis 2001), 
automates the inference mechanism of PITL. It takes input 
in PITL language, interprets it, and transforms the temporal 
statements into an equivalent graphical structure. The 
graph, called Point Graph (PG), not only implements the 
axiomatic system of PITL, but also helps verify system 
integrity before inference making. A temporal inference 
engine answers user-defined queries by exploring 
structural properties of the graph.   

Few efforts have been made for integrating temporal 
logic with the Bayesian approaches or vice versa. The 
work of Santos and Young (1999) focuses on using Allen’s 
interval logic for knowledge elicitation, while Burns and 
Morrison (2003) have proposed a template, based on 
Allen’s interval logic, for structured temporal reasoning. 

 This paper explores the use of PITL for TIN models 
in analyzing the temporal impact of a certain course of 
actions on variables of interest. The inference mechanism 
of PITL is used to find, at a particular time instant, the 
source of a change in the likelihood of a variable of 
interest. The PITL inference engine achieves this task by 
analyzing the relationships that exist between actionable 
events and the variable of interest. The paper also 
demonstrates the use of PITL for performing what-if 
analysis on user-defined input/output scenarios. The 
analysis helps a system modeler in developing a better 
understating of the temporal relationships that must exist, 
at a particular time instant, between certain actions 
required to achieve a desired effect.   

The rest of the paper is organized as follows: Sections 
2 and 3 provide an introduction to TIN and PG, 



respectively. Section 4 presents the algorithm that 
generates a Point Graph (PG) from a TIN. The resultant PG 
is shown to answer temporal queries and to perform what-
if analyses. Finally, Section 5 presents the conclusion and 
proposes some future research directions.  

2. Timed Influence Nets 
The modeling of the causal relationships in TINs is 
accomplished by creating a series of cause and effect 
relationships between some desired effects and the set of 
actions that might impact their occurrence in the form of an 
acyclic graph. The actionable events in a TIN are drawn as 
root nodes (nodes without incoming edges). A desired 
effect, or an objective in which a decision maker is 
interested, is modeled as a leaf node (node without 
outgoing edges). Typically, the root nodes are drawn as 
rectangles while the non-root nodes are drawn as rounded 
rectangles. Figure 1 shows a partially specified TIN. Nodes 
B and E represent the actionable events (root nodes) while 
node C represents the objective node (leaf node). The 
directed edge with an arrowhead between two nodes shows 
the parent node promoting the chances of a child node 
being true, while the roundhead edge shows the parent 
node inhibiting the chances of a child node being true. The 
inscription associated with each arc shows the 
corresponding time delay it takes for a parent node to 
influence a child node. For instance, event B, in Figure 1, 
influences the occurrence of event A after 5 time units. 
 
 
 
 
 
 
 
 
 

Figure 1: An Example Timed Influence Net (TIN) 
 

The purpose of building a TIN is to evaluate and 
compare the performance of alternative courses of actions. 
The impact of a selected course of action on the desired 
effect is analyzed with the help of a probability profile. 
Consider the TIN shown in Figure 1. Suppose the 
following input scenario is decided: actions B and E are 
taken at times 1 and 7, respectively. Because of the 
propagation delay associated with each arc, the influences 
of these actions impact event C over a period of time. As a 
result, the probability of C changes at different time 
instants. A probability profile draws these probabilities 
against the corresponding time line. The probability profile 
of event C is shown in Figure 2. 
The following items characterize a TIN: 
1. A set of random variables that makes up the nodes of a 

TIN. All the variables in the TIN have binary states. 
2. A set of directed links that connect pairs of nodes. 

3. Each link has associated with it a pair of parameters 
that shows the causal strength of the link (usually 
denoted as g and h values). 

4. Each non-root node has an associated baseline 
probability, while a prior probability is associated with 
each root node. 

5. Each link has a corresponding delay d (where d > 0) 
that represents the communication delay.  

6. Each node has a corresponding delay e (where e > 0) 
that represents the information processing delay. 

7. A pair (p, t) for each root node, where p is a list of real 
numbers representing probability values. For each 
probability value, a corresponding time interval is 
defined in t.  In general, (p, t) is defined as  
([p1, p2,…, pn], [[t11, t12], [t21, t22], …., [tn1, tn2]] ), 
    where  ti1 < ti2 and tij > 0 ∀ i = 1, 2, …., n and j = 1, 2 

The last item in the above list is referred to as input 
scenario, or sometimes (informally) as course of action. 
Formally, a TIN is described by the following definition. 

 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 2: Probability Profile for Node C 
 
Definition 1 Timed Influence Net (TIN) 

A TIN is a tuple (V, E, C, B, DE, DV, A) where 
V: set of Nodes,  
E: set of Edges,  
C represents causal strengths:  
 E � { (h, g) such that  -1 < h, g < 1 },  
B represents Baseline / Prior probability: V � [0,1],  
DE represents Delays on Edges: E � Z+  

    (where Z+ represent the set of positive integers),  
DV represents Delays on Nodes: V � Z+, and  
A (input scenario) represents the probabilities 

associated with the state of actions and the time 
associated with them. 

A: R � {([p1, p2,…, pn],[[t11,t12], [t21,t22], ….,[tn1,tn2]] ) 
     such that pi = [0, 1], tij  � Z*  and ti1 < ti2,  
     ∀ i = 1, 2, …., n and j = 1, 2 where R ⊂ V } 
(where Z* represent the set of nonzero positive integers) 
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3. Point Graphs and Temporal Language 
This section presents a graph formalism called Point Graph 
(PG) that is used to represent, both qualitatively and 
quantitatively, temporal information between points and 
intervals in a system. The intervals may represent activities 
and points instantaneous events. Formally, a Point Graph is 
defined as follows. 
Definition 2 Point Graph (PG) 

A Point Graph, PG (V, EA, D, T) is a directed graph 
with: 
V:  Set of vertices with each node or vertex v ∈ V 

representing a point on the real number line. Two 
points pX and pY are represented as a composite 
point [pX;pY] if both are mapped to a single point 
on the line. 

EA: Union of two sets of edges: EA = E ∪ E≤, where 
E (LT edges): Set of edges with each edge e12 ∈  

E, between two vertices v1 and v2, also 
denoted as (v1, v2), representing a relation 
‘<‘ between the two vertices—(v1 < v2); 

E≤ (LE edges): Set of edges with each edge e12 ∈  
E≤, between two vertices v1 and v2, also 
denoted as (v1, v2), representing a relation 
‘≤‘ between the two vertices—(v1 ≤ v2).  

D (Length):  Edge-length function (possibly partial):  
E → ℜ+  

T (Stamp):  Vertex-stamp function (possibly partial):  
V → ℜ  

The following temporal language (Definition 3) can be 
used to describe temporal aspects/requirements of a system 
either already represented as a PG, or to be input to the PG 
representation.  
Definition 3 Temporal Language 
The lexicon consists of the following primitive symbols: 

Points (Event): A point X is represented as [pX, pX] 
or simply [pX]. Several labels p1, p2, …, pn, 
representing a single point are represented as a 
composite point [p1;p2;…;pn]. 
Intervals: An interval X is represented as [sX, eX], 
where ‘sX’ and ‘eX’ are the two end points of the 
interval, denoting the ‘start’ and ‘end’ of the interval, 
s.t. sX < eX.  
Point Relations: These are the relations that can exist 
between two points. The set of relations RP is given as:
 RP  = {Before, Equals, Procedes} 
Functions: Interval length function that assigns a non-
zero positive integer to a system interval, e.g.,  
Length X = d, where X = [sX, eX], d ∈ ℜ+ 

The stamp function assigns an integer number to a 
system point, e.g., Stamp p1 = t, t ∈ ℜ 
A temporal statement in this language either takes the 
form of a function statement, or ‘X Ri Y’ where X and 
Y are points and Ri ∈ RP. 
The temporal relation ‘Before’ corresponds to the ‘<’ 

edge in the PG definition. Similarly, the relation ‘Precedes’ 
corresponds to a ‘≤’ edge, and the temporal relation 
‘Equals’ results in a composite point (vertex) in the PG 
representation. The two functions for the quantitative 

information directly map to the identically named functions 
in the PG definition. Figure 3 shows the correspondence. 
 
 
 
 
 
 
 
 

 
Figure 3:  Point Graph and Corresponding Temporal 

Statements 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 4: Steps in PG Construction 
 
A set of PIL statements can now be represented as a 

set of PGs where each PG corresponds to a single 
statement in the temporal system. A consolidated PG for 
the entire temporal system can be constructed by unifying 
and folding the individual PGs (Zaidi and Wagenhals 
2004). The unification looks at the nodes of a set of PGs 
and merges the nodes with identical node labels or the ones 
with equality relation between them. The folding process, 
on the other hand, looks at the quantitative information on 
nodes, and edges, of a PG and folds the edges based on the 
available information. The process establishes new 
relations among system points, inferred through the 
quantitative analysis of the known relations specified by 
interval lengths and stamps. Figure 4 illustrates the process 
of constructing a PG for a set of PIL statements with the 
help of an example. 
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The presence of inconsistent information in a temporal 
system results in an erroneous PG, which may result in 
erroneous inferences and/or analyses preformed on the PG. 
It is, therefore, imperative to identify and correct the 
inconsistent cases prior to any analysis. Theorem 1 
characterizes the temporal inconsistencies in a Point 
Graph. 
Theorem 1 Temporal Inconsistency (Zaidi and Wagenhals 
2005) 

A Point Graph contains inconsistent information iff 

 (a) for a point (vertex) p1, the system calculates two 
different stamps; or  

(b) for some points pi and pj, ‘p1 < p2’, the system 
can determine two different lengths for the 
interval [pi, pj]. 

A polynomial-time path-consistency algorithm is 
presented in Zaidi and Wagenhals (2004) for identifying 
the erroneous cases in the PG representation.  

4. Temporal Analyses of Timed Influence Nets 
This section explains how the integration of TIN and PG 
formalisms adds new suit of techniques for analyzing 
complex uncertain situations. The proposed techniques aid 
a system modeler in gaining a better insight of the impact 
of a selected course of action on desired effect(s). The PG 
representation of a corresponding TIN answers queries 
regarding certain temporal characteristics of an effect’s 
probability profile. The methodology is explained in 
Section 4.2. Furthermore, the PG aids a system modeler by 
explaining what needs to be done for achieving a certain 
effect at a specific time instant. If the requirements for 
achieving effects at certain time instants are not temporally 
consistent, then the PG helps in understanding the reasons 
for inconsistencies. This approach is presented in Section 
4.3. Both types of temporal analyses (Sections 4.2 and 4.3) 
assume that a corresponding PG has been constructed from 
a TIN. The construction of a PG is the subject of the 
following sub-section. 

4.1 Creating a Point Graph from a Timed 
Influence Net 
The steps involved in generating a PG from a 
corresponding TIN are presented in Table 1. The following 
is the illustration of the conversion approach with the help 
of the sample TIN of Figure 1. For the example case: R = 
{B, E} and F = {C}. 
Step 1: In this step, all the paths from the root nodes to the 
leaf nodes are determined. For instance, there are four 
distinct paths in the TIN of Figure 1: 
(i)   B – A – D – C   (ii)  B – C  
(iii) E – A – D – C   (iv) E – D – C  
 
Step 2: This step transforms each path into a corresponding 
PG. A unique subscript is added to all the nodes in the path 
during this transformation. Thus, path B-A-D becomes B1-

A1-D1; path B becomes A2-D2-C2; and so on. The delays 
attached with each arc in the TIN are transformed to length 
expressions in PG. The corresponding PIL statements are 
given below: 
Length[B1,A1] = 5 Length[A1,D1] = 1 
Length[D1,C1] = 1 Length[E3,A3] = 1 
Length[A3,D3] = 1 Length[D3,C3] = 1 
Length[E4,D4] = 1 Length[D4,C4] = 1 
B2 Equals C2 
It should be noted that the time delay between B and C is 0 
time unit. Thus, both events represent the same temporal 
point. The PGs obtained as a result of Step 2 are shown in 
Figure 5.  

Table 1: A PG Construction from a TIN 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Figure 5: PGs Corresponding to Paths in the TIN 

 
Step 3: This step adds temporal relation ‘Equals’ between 
points that represent a particular root node in the 
corresponding TIN.  Since R = {B, E}, the following 
information is provided to the PIL engine: 
B1 Equals B2  
E3 Equals E4 
 
 

Given a TIN 
       R: Set of Root Nodes (Actionable Events) 
       F: Set of Leaf Nodes (Desired Effects) 
1. For each r ∈ R find all the paths leading to a f ∈ F. 
    Apply this step for all f ∈ F. 
2. Add a unique subscript to each node in an individual 
    path obtained in Step 1. 
3. Represent each path as a PG where a node in the path  
    becomes a vertex and a delay d (d >0) on an arc  
    between two vertices v1, v2 becomes Length(v1,v2)=d 
    in the PG. 
 4. For each set of vertices in PG that represent a root  
     node in TIN, add a temporal equality constraint  
    ‘Equal’ among its elements. 
The following step is executed once an input scenario is 
provided. 
5. Based on the input scenario, assign time stamps to  
    vertices representing root nodes . 
6. Construct an aggregate PG using temporal statements  
     provided in Steps 3-5 after applying the unification 
     and folding operations. 
  

B1 A1 D1 C1 5 1 1 

B2;C2 

E3 A3 D3 C3 
1 1 1 

E4 D4 C4 
1 1 



 
 
 
 
 

Figure 6: Branch Folded PGs 
 
Based on the given information, unification and folding 
operations are applied on the PGs of Figure 5. The 
resulting PGs are shown in Figure 6. 
 
Step 4: Let an input scenario be given: suppose B occurs at 
time 1, while E occurs at 7. This information is added to 
the set of temporal statements described in the earlier steps. 
Thus, the following statements are added:  
Stamp[B1] = 1  
Stamp[E3] = 7  
This last set of information results in further unification 
and folding of the PGs of Figure 6. The final consolidated 
PG is shown in Figure 7. 
 
 
 
 
 
 
 

Figure 7: PG with Input Scenario 

4.2 Temporal Queries 
Once a PG is obtained from a TIN, it can then be used to 
explain certain temporal characteristics of a probability 
profile. Consider the profile shown in Figure 2. Suppose a 
system modeler is interested in knowing what causes a 
change in the probability of event C at time 8. The 
algorithm that answer this and similar queries is presented 
in Table 2 and is explained below, with the help of an 
example. 

Table 2: Answering Temporal Queries using a PG 
 
 
 
 
 
  
 
 
 
 
 
 
 

The algorithm first identifies the subscript(s) of 
the variable of interest for a given time stamp. For 
instance, the subscript of C at time 8 is ‘1’. Starting from 
the root of the PG, the algorithm, in the next step, searches 

the graph for the subscript until it finds the first variable (or 
set of variables if they share the subscript) that matches the 
subscript. For instance, in the PG of Figure 6, the first 
element having subscript ‘1’ is B. The time stamp 
associated with B1 is 1. Thus, a change in the profile of C 
at time 8 is because of action B occurring at time 1. If more 
than one action cause a change in the probability of C at 
time 8, then all of them are reported along with the time of 
their occurrences. Furthermore, if multiple paths exist 
between an action node and a desired effect, in a TIN, the 
algorithm of Table 2 can be used to identify the path 
through which the action has impacted the effect node. For 
the example under consideration, the path through which B 
impacted C at time 8 is: B – A – D – C. 

4.3 What-If Analysis 
The PG obtained in Section 4.1 can also aid in performing 
what-if analyses. Suppose after observing the probability 
profile of Figure 2, the system modeler is interested in 
knowing what needs to be done, in order to combine the 
impacts that reach C at times 8 and 9. The algorithm that 
accomplishes this task is presented in Table 3.  

Table 3: What-If Analysis Using a PG 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
The algorithm assumes that a PG based on an 

input scenario has already been constructed (Figure 7 in the 
current context). As stated above, the modeler is interested 
in combining the impacts that reach node C at time 8 and 
9; thus, list V has elements [C, C], while list T has 
elements [8, 9]. The first four steps of the algorithm are the 
same as the algorithm given in Table 1, and therefore, are 

B1;B2;C2 A1 C1 D1 
5 1 1 

E3;E4 A3;D4 D3;C4 C3 
1 1 1 

Given a PG, a TIN, v: variable of interest, 
           t: time of interest, C: list of Causes 
1. Initialize C to null. 
2. Determine the subscripts of v at time t. Let 
    S = [s1, s2, …, sn] be the list of subscripts. 
3. For each element s in S: 
      (i) Starting from the root of the PG, search the PG 
           until the first variable with the subscript s is  
           identified. Let x be such a variable. 
       (ii) Let m be the time stamp associated with x. 
       (ii) Add (x, m) to C. 
4. Report the list C.  

Given a TIN, a PG G1 
           R: Set of Root Nodes (Actionable Events) 
           F: Set of Leaf Nodes (Desired Effects) 
           V: List of variables of interest 
           T: List of times of interest 
           S: List of variables with equal time stamp   
1. For each r ∈ R find all the paths leading to a f ∈ F. 
    Apply this step for all f ∈ F. 
2. Add a unique subscript to each node in an individual 
    path obtained in Step 1. 
3. Represent each path as a PG where a node in the path  
    becomes a vertex and a delay d (d >0) on an arc  
    between two vertices v1, v2 becomes 
    Length(v1,v2)=d in the PG. 
 4. For each set of vertices in PG that represent a root  
     node in TIN, add a temporal equality constraint  
    ‘Equal’ among its elements. 
5. For each element v in V,  
    (i) Find its subscript at the corresponding time t 
        (t ∈ T) in G1. Let s be the subscript. 
     (ii) Add variable v with subscript s to S. 
6. Add temporal equality constraint ‘Equals’ among the 
    elements of list S. 
7. Construct an aggregate PG G2 using temporal   
    statements provided in Steps 3-6.  
  

B1;B2;C2 A1 
5 1 

1 

D1;E3;E4 

C1;A3;D4 D3;C4 C3 1 

1 
1 6 7 

8 9 10 



not explained below. In Step 5, the subscripts of elements 
in V at corresponding times, described in T, are 
determined. Thus, C at time 8 has subscript ‘1’, while C at 
time 9 has subscript ‘4’. As a result of this step, list S 
consists of [C1, C4]. Step 6 adds the following statement: 
C1 Equals C4 

The PG resulted from the temporal statements 
provided in Steps 2-6 is shown in Figure 8. The PG can 
now be used to answer the query the system modeler is 
interested in. For instance, the length between points 
representing events B and E is 5 time units. Therefore, to 
combine the impacts that affect node C at time 8 and 9, B 
must be executed 5 time units before E. 

The what-if analysis not only identifies the 
temporal relationships that should exist between two 
actionable events for achieving a desired impact at a 
certain time instant, but it also tells a system modeler if the 
given set of requirements are temporally inconsistent. 
 
 
 
 
 
 

Figure 8: PG Used for What-If Analysis 

5. Conclusions 
This paper presents a suite of techniques that further 
enhances the capabilities of TIN based formalism as a 
modeling and analysis tool for dynamic uncertain 
situations. The PG based suite of techniques, when applied 
on a TIN, aids a system modeler in having a better 
understanding of the behavior of a desired effect over a 
period of time. The proposed technique also aids in 
performing ‘what-if’ analysis. The outcome of this analysis 
tells a system modeler what needs to be done for achieving 
a desired effect at a particular time instant, given that there 
are no temporal anomalies among the set of requirements 
provided by the system modeler. If the set of requirements 
are inconsistent, the PG structure would explain the 
reasons that resulted in inconsistencies. 
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