
On Temporal Analysis of Timed Influence Nets Using Point Graphs

Sajjad Haider Abbas K. Zaidi Alexander H. Levis

System Architectures Lab
George Mason University, Fairfax, VA
{shaider1, szaidi2, alevis}@gmu.edu

Abstract

This paper demonstrates the use of Point Graphs (PG) and
temporal logic for analyzing courses of action (COA) in a
Timed Influence Net (TIN) that models a dynamic uncertain
situation. The current practice in courses of action analysis
looks at the impacts of actions on the likelihood of the desired
effects over a period of time. The impact of time, however, is
not studied explicitly. This paper presents an algorithm that
generates a corresponding Point Graph for a Timed Influence
Net. This graph-based knowledge representation and
reasoning formalism is shown to help reveal temporal
behavior of the modeled system. A temporal language is also
shown to interact with the graphical representation. An
analysis on the graph addresses user-defined ‘what-if’
scenarios for a better understanding of the temporal
relationships between certain actions that may result in a
desired effect at a particular time instant.

1. Introduction
Timed Influence Nets (TINs) have been used
experimentally in the area of Effects-Based Operations
(EBO) (Wagenhals and Levis 2002, Wagenhals et al.
2003). They are used as a decision aid for modeling and
analyzing uncertainties involved in a complex dynamic
situation. Furthermore, once a Timed Influence Net (TIN)
is used to model a situation, it allows a system modeler to
evaluate the performance of different courses of action in
terms of their impacts on the likelihood of achieving some
desired effect(s). The TIN formalism originated from a
general class of probabilistic reasoning framework, known
as Bayesian Networks (Pearl 1987, Jensen 2001,
Neapolitan 2003). Bayesian Networks (BNs) were
originally designed to capture uncertainty in static (time-
independent) situations. During the last decade, much
effort has been focused on integrating the notions of time
and uncertainty into a single analytical framework. Most of
this work can be classified into one of the following two
categories: (i) adding constructs to the static BN formalism
to capture temporal dependencies (Hanks et al. 1995,
Santos and Young 1999) and (ii) developing algorithms
that can compute the likelihood of variables of interest in a
reasonable amount of time (Kjaerulff 1992, Boyen and
Koller 1998). BNs with the additional temporal constructs
are typically referred to as Time Sliced Bayesian Networks
(TSBNs). Recently, it is shown (Haider and Zaidi 2004)
that a transformation exists from a TIN to an equivalent
TSBN. It should be noted that inference in a general class

of BNs, even for static situations, is NP-Complete. A lot of
reported work is, therefore, focused on developing efficient
techniques for approximate inference that can be helpful
for modeling real time situations.

The term temporal logic has been broadly used to
cover all approaches for the representation of temporal
information within a logical framework. A temporal logic
can be defined as a language for encoding temporal
knowledge about an application system and as a tool for
reasoning about temporal relations among the system
entities. (Galton 1999) Many schemes have been suggested
to represent time in the AI literature for both a qualitative
and a quantitative treatment of time. Zaidi (Zaidi 1999)
presented a Point Interval Temporal Logic (PITL) based on
Allen’s ontology of time (Allen 1983). PITL incorporates
both qualitative and quantitative temporal aspects
associated with points and intervals in a system
specification. The tool, TEMPER (Zaidi and Levis 2001),
automates the inference mechanism of PITL. It takes input
in PITL language, interprets it, and transforms the temporal
statements into an equivalent graphical structure. The
graph, called Point Graph (PG), not only implements the
axiomatic system of PITL, but also helps verify system
integrity before inference making. A temporal inference
engine answers user-defined queries by exploring
structural properties of the graph.

Few efforts have been made for integrating temporal
logic with the Bayesian approaches or vice versa. The
work of Santos and Young (1999) focuses on using Allen’s
interval logic for knowledge elicitation, while Burns and
Morrison (2003) have proposed a template, based on
Allen’s interval logic, for structured temporal reasoning.

 This paper explores the use of PITL for TIN models
in analyzing the temporal impact of a certain course of
actions on variables of interest. The inference mechanism
of PITL is used to find, at a particular time instant, the
source of a change in the likelihood of a variable of
interest. The PITL inference engine achieves this task by
analyzing the relationships that exist between actionable
events and the variable of interest. The paper also
demonstrates the use of PITL for performing what-if
analysis on user-defined input/output scenarios. The
analysis helps a system modeler in developing a better
understating of the temporal relationships that must exist,
at a particular time instant, between certain actions
required to achieve a desired effect.

The rest of the paper is organized as follows: Sections
2 and 3 provide an introduction to TIN and PG,

respectively. Section 4 presents the algorithm that
generates a Point Graph (PG) from a TIN. The resultant PG
is shown to answer temporal queries and to perform what-
if analyses. Finally, Section 5 presents the conclusion and
proposes some future research directions.

2. Timed Influence Nets
The modeling of the causal relationships in TINs is
accomplished by creating a series of cause and effect
relationships between some desired effects and the set of
actions that might impact their occurrence in the form of an
acyclic graph. The actionable events in a TIN are drawn as
root nodes (nodes without incoming edges). A desired
effect, or an objective in which a decision maker is
interested, is modeled as a leaf node (node without
outgoing edges). Typically, the root nodes are drawn as
rectangles while the non-root nodes are drawn as rounded
rectangles. Figure 1 shows a partially specified TIN. Nodes
B and E represent the actionable events (root nodes) while
node C represents the objective node (leaf node). The
directed edge with an arrowhead between two nodes shows
the parent node promoting the chances of a child node
being true, while the roundhead edge shows the parent
node inhibiting the chances of a child node being true. The
inscription associated with each arc shows the
corresponding time delay it takes for a parent node to
influence a child node. For instance, event B, in Figure 1,
influences the occurrence of event A after 5 time units.

Figure 1: An Example Timed Influence Net (TIN)

The purpose of building a TIN is to evaluate and
compare the performance of alternative courses of actions.
The impact of a selected course of action on the desired
effect is analyzed with the help of a probability profile.
Consider the TIN shown in Figure 1. Suppose the
following input scenario is decided: actions B and E are
taken at times 1 and 7, respectively. Because of the
propagation delay associated with each arc, the influences
of these actions impact event C over a period of time. As a
result, the probability of C changes at different time
instants. A probability profile draws these probabilities
against the corresponding time line. The probability profile
of event C is shown in Figure 2.
The following items characterize a TIN:
1. A set of random variables that makes up the nodes of a

TIN. All the variables in the TIN have binary states.
2. A set of directed links that connect pairs of nodes.

3. Each link has associated with it a pair of parameters
that shows the causal strength of the link (usually
denoted as g and h values).

4. Each non-root node has an associated baseline
probability, while a prior probability is associated with
each root node.

5. Each link has a corresponding delay d (where d > 0)
that represents the communication delay.

6. Each node has a corresponding delay e (where e > 0)
that represents the information processing delay.

7. A pair (p, t) for each root node, where p is a list of real
numbers representing probability values. For each
probability value, a corresponding time interval is
defined in t. In general, (p, t) is defined as
([p1, p2,…, pn], [[t11, t12], [t21, t22], …., [tn1, tn2]]),
 where ti1 < ti2 and tij > 0 ∀ i = 1, 2, …., n and j = 1, 2

The last item in the above list is referred to as input
scenario, or sometimes (informally) as course of action.
Formally, a TIN is described by the following definition.

Figure 2: Probability Profile for Node C

Definition 1 Timed Influence Net (TIN)

A TIN is a tuple (V, E, C, B, DE, DV, A) where
V: set of Nodes,
E: set of Edges,
C represents causal strengths:
 E � { (h, g) such that -1 < h, g < 1 },
B represents Baseline / Prior probability: V � [0,1],
DE represents Delays on Edges: E � Z+

 (where Z+ represent the set of positive integers),
DV represents Delays on Nodes: V � Z+, and
A (input scenario) represents the probabilities

associated with the state of actions and the time
associated with them.

A: R � {([p1, p2,…, pn],[[t11,t12], [t21,t22], ….,[tn1,tn2]])
 such that pi = [0, 1], tij � Z* and ti1 < ti2,
 ∀ i = 1, 2, …., n and j = 1, 2 where R ⊂ V }
(where Z* represent the set of nonzero positive integers)

B A

C

D

1 1

1
5

0 1

E
0

0.2

0.4

0.6

0.8

1

0 5 10 15

Time

P
ro

b
ab

ili
ty

3. Point Graphs and Temporal Language
This section presents a graph formalism called Point Graph
(PG) that is used to represent, both qualitatively and
quantitatively, temporal information between points and
intervals in a system. The intervals may represent activities
and points instantaneous events. Formally, a Point Graph is
defined as follows.
Definition 2 Point Graph (PG)

A Point Graph, PG (V, EA, D, T) is a directed graph
with:
V: Set of vertices with each node or vertex v ∈ V

representing a point on the real number line. Two
points pX and pY are represented as a composite
point [pX;pY] if both are mapped to a single point
on the line.

EA: Union of two sets of edges: EA = E ∪ E≤, where
E (LT edges): Set of edges with each edge e12 ∈

E, between two vertices v1 and v2, also
denoted as (v1, v2), representing a relation
‘<‘ between the two vertices—(v1 < v2);

E≤ (LE edges): Set of edges with each edge e12 ∈
E≤, between two vertices v1 and v2, also
denoted as (v1, v2), representing a relation
‘≤‘ between the two vertices—(v1 ≤ v2).

D (Length): Edge-length function (possibly partial):
E → ℜ+

T (Stamp): Vertex-stamp function (possibly partial):
V → ℜ

The following temporal language (Definition 3) can be
used to describe temporal aspects/requirements of a system
either already represented as a PG, or to be input to the PG
representation.
Definition 3 Temporal Language
The lexicon consists of the following primitive symbols:

Points (Event): A point X is represented as [pX, pX]
or simply [pX]. Several labels p1, p2, …, pn,
representing a single point are represented as a
composite point [p1;p2;…;pn].
Intervals: An interval X is represented as [sX, eX],
where ‘sX’ and ‘eX’ are the two end points of the
interval, denoting the ‘start’ and ‘end’ of the interval,
s.t. sX < eX.
Point Relations: These are the relations that can exist
between two points. The set of relations RP is given as:
 RP = {Before, Equals, Procedes}
Functions: Interval length function that assigns a non-
zero positive integer to a system interval, e.g.,
Length X = d, where X = [sX, eX], d ∈ ℜ+

The stamp function assigns an integer number to a
system point, e.g., Stamp p1 = t, t ∈ ℜ
A temporal statement in this language either takes the
form of a function statement, or ‘X Ri Y’ where X and
Y are points and Ri ∈ RP.
The temporal relation ‘Before’ corresponds to the ‘<’

edge in the PG definition. Similarly, the relation ‘Precedes’
corresponds to a ‘≤’ edge, and the temporal relation
‘Equals’ results in a composite point (vertex) in the PG
representation. The two functions for the quantitative

information directly map to the identically named functions
in the PG definition. Figure 3 shows the correspondence.

Figure 3: Point Graph and Corresponding Temporal

Statements

Figure 4: Steps in PG Construction

A set of PIL statements can now be represented as a

set of PGs where each PG corresponds to a single
statement in the temporal system. A consolidated PG for
the entire temporal system can be constructed by unifying
and folding the individual PGs (Zaidi and Wagenhals
2004). The unification looks at the nodes of a set of PGs
and merges the nodes with identical node labels or the ones
with equality relation between them. The folding process,
on the other hand, looks at the quantitative information on
nodes, and edges, of a PG and folds the edges based on the
available information. The process establishes new
relations among system points, inferred through the
quantitative analysis of the known relations specified by
interval lengths and stamps. Figure 4 illustrates the process
of constructing a PG for a set of PIL statements with the
help of an example.

p1 p2

4500

100

LT Edge

p1 Before p2
p2 Precedes p3
Stamp p1 = 4500
Length[p1, p2] = 100

 p3

 LE Edge
4600

 (a) Set of PIL Statements (b) Construction of Point Graph

A, B, C, D, E, F Points

 B Before D

 Length [A, C] = 10

 Length [C, B] = 8

 F Before D

 Length [E, C] = 5

 Length [C, F] = 8

(c) Unification and Resulting PG

 (d) Branch Folding

 (e) Join Folding

D B
10

C A
10

8
B C

8

D F
5

C E
5

8
F C

8

D
B

C
A

F E

10 8

5 8

C

A

E

5
5

D B;F C

8
A

E

10

5

D

8

B;F

The presence of inconsistent information in a temporal
system results in an erroneous PG, which may result in
erroneous inferences and/or analyses preformed on the PG.
It is, therefore, imperative to identify and correct the
inconsistent cases prior to any analysis. Theorem 1
characterizes the temporal inconsistencies in a Point
Graph.
Theorem 1 Temporal Inconsistency (Zaidi and Wagenhals
2005)

A Point Graph contains inconsistent information iff

 (a) for a point (vertex) p1, the system calculates two
different stamps; or

(b) for some points pi and pj, ‘p1 < p2’, the system
can determine two different lengths for the
interval [pi, pj].

A polynomial-time path-consistency algorithm is
presented in Zaidi and Wagenhals (2004) for identifying
the erroneous cases in the PG representation.

4. Temporal Analyses of Timed Influence Nets
This section explains how the integration of TIN and PG
formalisms adds new suit of techniques for analyzing
complex uncertain situations. The proposed techniques aid
a system modeler in gaining a better insight of the impact
of a selected course of action on desired effect(s). The PG
representation of a corresponding TIN answers queries
regarding certain temporal characteristics of an effect’s
probability profile. The methodology is explained in
Section 4.2. Furthermore, the PG aids a system modeler by
explaining what needs to be done for achieving a certain
effect at a specific time instant. If the requirements for
achieving effects at certain time instants are not temporally
consistent, then the PG helps in understanding the reasons
for inconsistencies. This approach is presented in Section
4.3. Both types of temporal analyses (Sections 4.2 and 4.3)
assume that a corresponding PG has been constructed from
a TIN. The construction of a PG is the subject of the
following sub-section.

4.1 Creating a Point Graph from a Timed
Influence Net
The steps involved in generating a PG from a
corresponding TIN are presented in Table 1. The following
is the illustration of the conversion approach with the help
of the sample TIN of Figure 1. For the example case: R =
{B, E} and F = {C}.
Step 1: In this step, all the paths from the root nodes to the
leaf nodes are determined. For instance, there are four
distinct paths in the TIN of Figure 1:
(i) B – A – D – C (ii) B – C
(iii) E – A – D – C (iv) E – D – C

Step 2: This step transforms each path into a corresponding
PG. A unique subscript is added to all the nodes in the path
during this transformation. Thus, path B-A-D becomes B1-

A1-D1; path B becomes A2-D2-C2; and so on. The delays
attached with each arc in the TIN are transformed to length
expressions in PG. The corresponding PIL statements are
given below:
Length[B1,A1] = 5 Length[A1,D1] = 1
Length[D1,C1] = 1 Length[E3,A3] = 1
Length[A3,D3] = 1 Length[D3,C3] = 1
Length[E4,D4] = 1 Length[D4,C4] = 1
B2 Equals C2
It should be noted that the time delay between B and C is 0
time unit. Thus, both events represent the same temporal
point. The PGs obtained as a result of Step 2 are shown in
Figure 5.

Table 1: A PG Construction from a TIN

Figure 5: PGs Corresponding to Paths in the TIN

Step 3: This step adds temporal relation ‘Equals’ between
points that represent a particular root node in the
corresponding TIN. Since R = {B, E}, the following
information is provided to the PIL engine:
B1 Equals B2
E3 Equals E4

Given a TIN
 R: Set of Root Nodes (Actionable Events)
 F: Set of Leaf Nodes (Desired Effects)
1. For each r ∈ R find all the paths leading to a f ∈ F.
 Apply this step for all f ∈ F.
2. Add a unique subscript to each node in an individual
 path obtained in Step 1.
3. Represent each path as a PG where a node in the path
 becomes a vertex and a delay d (d >0) on an arc
 between two vertices v1, v2 becomes Length(v1,v2)=d
 in the PG.
 4. For each set of vertices in PG that represent a root
 node in TIN, add a temporal equality constraint
 ‘Equal’ among its elements.
The following step is executed once an input scenario is
provided.
5. Based on the input scenario, assign time stamps to
 vertices representing root nodes .
6. Construct an aggregate PG using temporal statements
 provided in Steps 3-5 after applying the unification
 and folding operations.

B1 A1 D1 C1 5 1 1

B2;C2

E3 A3 D3 C3
1 1 1

E4 D4 C4
1 1

Figure 6: Branch Folded PGs

Based on the given information, unification and folding
operations are applied on the PGs of Figure 5. The
resulting PGs are shown in Figure 6.

Step 4: Let an input scenario be given: suppose B occurs at
time 1, while E occurs at 7. This information is added to
the set of temporal statements described in the earlier steps.
Thus, the following statements are added:
Stamp[B1] = 1
Stamp[E3] = 7
This last set of information results in further unification
and folding of the PGs of Figure 6. The final consolidated
PG is shown in Figure 7.

Figure 7: PG with Input Scenario

4.2 Temporal Queries
Once a PG is obtained from a TIN, it can then be used to
explain certain temporal characteristics of a probability
profile. Consider the profile shown in Figure 2. Suppose a
system modeler is interested in knowing what causes a
change in the probability of event C at time 8. The
algorithm that answer this and similar queries is presented
in Table 2 and is explained below, with the help of an
example.

Table 2: Answering Temporal Queries using a PG

The algorithm first identifies the subscript(s) of
the variable of interest for a given time stamp. For
instance, the subscript of C at time 8 is ‘1’. Starting from
the root of the PG, the algorithm, in the next step, searches

the graph for the subscript until it finds the first variable (or
set of variables if they share the subscript) that matches the
subscript. For instance, in the PG of Figure 6, the first
element having subscript ‘1’ is B. The time stamp
associated with B1 is 1. Thus, a change in the profile of C
at time 8 is because of action B occurring at time 1. If more
than one action cause a change in the probability of C at
time 8, then all of them are reported along with the time of
their occurrences. Furthermore, if multiple paths exist
between an action node and a desired effect, in a TIN, the
algorithm of Table 2 can be used to identify the path
through which the action has impacted the effect node. For
the example under consideration, the path through which B
impacted C at time 8 is: B – A – D – C.

4.3 What-If Analysis
The PG obtained in Section 4.1 can also aid in performing
what-if analyses. Suppose after observing the probability
profile of Figure 2, the system modeler is interested in
knowing what needs to be done, in order to combine the
impacts that reach C at times 8 and 9. The algorithm that
accomplishes this task is presented in Table 3.

Table 3: What-If Analysis Using a PG

The algorithm assumes that a PG based on an

input scenario has already been constructed (Figure 7 in the
current context). As stated above, the modeler is interested
in combining the impacts that reach node C at time 8 and
9; thus, list V has elements [C, C], while list T has
elements [8, 9]. The first four steps of the algorithm are the
same as the algorithm given in Table 1, and therefore, are

B1;B2;C2 A1 C1 D1
5 1 1

E3;E4 A3;D4 D3;C4 C3
1 1 1

Given a PG, a TIN, v: variable of interest,
 t: time of interest, C: list of Causes
1. Initialize C to null.
2. Determine the subscripts of v at time t. Let
 S = [s1, s2, …, sn] be the list of subscripts.
3. For each element s in S:
 (i) Starting from the root of the PG, search the PG
 until the first variable with the subscript s is
 identified. Let x be such a variable.
 (ii) Let m be the time stamp associated with x.
 (ii) Add (x, m) to C.
4. Report the list C.

Given a TIN, a PG G1
 R: Set of Root Nodes (Actionable Events)
 F: Set of Leaf Nodes (Desired Effects)
 V: List of variables of interest
 T: List of times of interest
 S: List of variables with equal time stamp
1. For each r ∈ R find all the paths leading to a f ∈ F.
 Apply this step for all f ∈ F.
2. Add a unique subscript to each node in an individual
 path obtained in Step 1.
3. Represent each path as a PG where a node in the path
 becomes a vertex and a delay d (d >0) on an arc
 between two vertices v1, v2 becomes
 Length(v1,v2)=d in the PG.
 4. For each set of vertices in PG that represent a root
 node in TIN, add a temporal equality constraint
 ‘Equal’ among its elements.
5. For each element v in V,
 (i) Find its subscript at the corresponding time t
 (t ∈ T) in G1. Let s be the subscript.
 (ii) Add variable v with subscript s to S.
6. Add temporal equality constraint ‘Equals’ among the
 elements of list S.
7. Construct an aggregate PG G2 using temporal
 statements provided in Steps 3-6.

B1;B2;C2 A1
5 1

1

D1;E3;E4

C1;A3;D4 D3;C4 C3 1

1
1 6 7

8 9 10

not explained below. In Step 5, the subscripts of elements
in V at corresponding times, described in T, are
determined. Thus, C at time 8 has subscript ‘1’, while C at
time 9 has subscript ‘4’. As a result of this step, list S
consists of [C1, C4]. Step 6 adds the following statement:
C1 Equals C4

The PG resulted from the temporal statements
provided in Steps 2-6 is shown in Figure 8. The PG can
now be used to answer the query the system modeler is
interested in. For instance, the length between points
representing events B and E is 5 time units. Therefore, to
combine the impacts that affect node C at time 8 and 9, B
must be executed 5 time units before E.

The what-if analysis not only identifies the
temporal relationships that should exist between two
actionable events for achieving a desired impact at a
certain time instant, but it also tells a system modeler if the
given set of requirements are temporally inconsistent.

Figure 8: PG Used for What-If Analysis

5. Conclusions
This paper presents a suite of techniques that further
enhances the capabilities of TIN based formalism as a
modeling and analysis tool for dynamic uncertain
situations. The PG based suite of techniques, when applied
on a TIN, aids a system modeler in having a better
understanding of the behavior of a desired effect over a
period of time. The proposed technique also aids in
performing ‘what-if’ analysis. The outcome of this analysis
tells a system modeler what needs to be done for achieving
a desired effect at a particular time instant, given that there
are no temporal anomalies among the set of requirements
provided by the system modeler. If the set of requirements
are inconsistent, the PG structure would explain the
reasons that resulted in inconsistencies.

Acknowledgements
This research was sponsored by the Air Force Research
Laboratory, Information Directorate under Grant No.
F30602-01-C-0065 and Air Force Office of Scientific
Research under contract numbers F49620-01-1-0008. The
authors are grateful to the anonymous reviewers for their
useful suggestions. The contribution of Mr. Mashhood
Ishaque of the GMU System Architectures Laboratory in
the development of PIL Engine (the software
implementation of PG and temporal logic) is gratefully
acknowledged.

References
Allen, J. F. 1983. Maintaining knowledge about temporal
intervals. Communication ACM 26:832–843.

Boyen, X. and Koller, D. 1998. Tractable inference for complex
stochastic processes. In Proceedings of the Fourteenth
Conference on Uncertainty in Artificial Intelligence.

Burns, B. and Morrison, C. T. 2003. Temporal Abstraction in
Bayesian Networks. AAAI Spring Symposium, Palo Alto, Calif.

Galton, A. 1999. Temporal Logic: The Stanford Encyclopedia of
Philosophy. Edward N. Zalta (ed.).

Haider, S. and Zaidi, A. K. 2004. Transforming Timed Influence
Nets into Time Sliced Bayesian Networks. In Proceedings of
Command and Control Research and Technology Symposium,
San Diego, Calif.

Hanks, S., Madigan, D., and Gavrin, J. 1995. Probabilistic
Temporal Reasoning with Endogenous Change. In Proceedings of
the Eleventh Conference on Uncertainty in Artificial Intelligence.

Jensen, F. V. 2001. Bayesian Networks and Decision Graphs
Springer-Veralg.

Kjaerulff, U. 1992. A Computational Scheme for Reasoning in
Dynamic Probabilistic Networks. In Proceedings of the Eighth
Conference on Uncertainty in Artificial Intelligence.

Neapolitan, R. E. 2003. Learning Bayesian Networks. Prentice
Hall.

Pearl, J. 1987. Probabilistic Reasoning in Intelligent Systems:
Network of Plausible Inference. Morgan Kaufmann.

Santos Jr. E. and Young, J. D. 1999. Probabilistic Temporal
Network: A Unified Framework for Reasoning with Time and
Uncertainty. International Journal of Approximate Reasoning 2.

Wagenhals, L. W. and Levis, A. H. 2002. Modeling Support of
Effect-Based Operations in War Games. In Proceedings of the
Command and Control Research and Technology Symposium.

Wagenhals, L. W., Levis, A. H., McCrabb, M. B. 2003. Effects-
Based Operations: A Historical Perspective of a Way Ahead. In
Proceedings of the Eighth International Command and Control
Research and Technology Symposium, Washington DC.

Zaidi, A. K. 1999. On Temporal Logic Programming Using Petri
Nets. IEEE Transactions on Systems, Man and Cybernetics, Part
A 29(3): 245-254.

Zaidi, A.K. and Levis, A. H. 2001. TEMPER: A Temporal
Programmer for Time-sensitive Control of Discrete-event
Systems. IEEE Transaction on Systems, Man, and Cybernetics
31(6): 485-496.

Zaidi, A. K. and Wagenhals, Lee W. 2005 (n Press). Planning
Temporal Events Using Point Interval Logic. Special Issue of
Mathematical and Computer Modeling.

B1;B2 5 1

1

A1;E3;E4 D1;A3;D4

C1;D3;C4 C3

1

